用户名: 密码: 验证码:
机械合金化Si-B-C-N-Al粉末及陶瓷的组织结构与抗氧化性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以铝粉和氮化铝粉为铝源,通过机械合金化的方法制备出了Si-B-C-N-Al粉末,系统研究了铝源种类及铝含量对粉末的微观组织结构、价键类型、热稳定性及抗氧化性的影响规律。在此基础上,采用热压烧结的方法成功制备出了Si-B-C-N-Al块体陶瓷材料,分析了烧结工艺、铝源种类及铝含量对陶瓷的物相、组织结构及性能的影响。通过高温氧化试验,研究了铝源种类及氧化温度对材料抗氧化性的影响并探讨了其高温抗氧化机理。
     研究表明,以立方硅粉(c-Si)、六方氮化硼粉(h-BN)、石墨粉(C)和金属铝粉(Al)为原料制备的A3粉末,其粉末颗粒经高能球磨后完全实现了非晶化;而以氮化铝粉(AlN)为铝源制备的AN3粉末中,除了含有极少量的AlN纳米晶外,绝大部分的粉末粒子呈非晶态。价键分析显示:各种原料粉末在球磨过程中发生了相互反应,生成了Si-C、B-C-N、C-C、B-N和Al-N等化学键。所不同的是,A3粉末中还含有Al-O-N键,而AN3粉末不含具有氧的化学键;同时核磁共振结果表明,AN3粉末中的Al原子有着较A3粉末中的Al原子更为简单的结构环境。AN3粉末的抗氧化性优于A3粉末;而随着铝含量的增加,粉末的活化能减小,抗氧化性降低;在氩气中,各种粉末均表现出了良好的热稳定性。
     采用不同烧结工艺制备了四种陶瓷,研究发现,烧结温度的升高和压力的增大,对陶瓷的物相组成影响不大,四种陶瓷中主要含有3C-SiC、BCN、AlN和AlON相。但烧结温度和压力对材料的致密化有显著影响,其中1900°C、50MPa下烧结的陶瓷密度最高,最致密。
     铝含量和铝源种类对陶瓷的物相组成有较大的影响,其中铝含量较低的陶瓷中出现了4H-SiC相,而采用氮化铝粉为铝源制备的陶瓷中则不含有AlON相。两种不同铝源制备的陶瓷,其微观组织结构相似,均表现为组织均匀、晶粒细小,其中BCN相呈层片状,3C-SiC相中含有较多平直的层错,并且SiC、AlN和BCN晶粒内部均存在原子排列的混乱区。在1300°C时,三种材料的热膨胀系数值在4.8~5.1×10-6/°C之间。
     在1200、1300和1400°C氧化时,随着氧化时间的增加,两种不同铝源制备的陶瓷其质量变化呈现出相似的变化趋势,即先失重,然后迅速增重,最后质量变化进入相对稳定阶段。在1200、1300和1400°C氧化80h后,两种陶瓷的氧化表面所含物相相同,氧化产物主要有SiO2、莫来石和C,其中C和莫来石的衍射峰强度随氧化温度的升高逐渐增强,而SiO2则由1200°C时的晶态衍射峰转变为1400°C时的非晶态漫散射峰,这一变化对提高材料的抗氧化性是有利的。两种陶瓷的氧化层厚度均随氧化温度的升高而增加;而在相同温度下氧化时,以铝粉为铝源制备的陶瓷其氧化层厚度略大于氮化铝粉为铝源制备的陶瓷。综合比较,氮化铝粉为铝源制备的陶瓷的抗氧化性优于铝粉为铝源制备的陶瓷。
     陶瓷的氧化机理:1200°C时,氧化主要受扩散控制,1300°C以上时受氧化反应和扩散两种机制控制。
Si-B-C-N-Al powders have been prepared by mechanical alloying (MA)technique using aluminum (Al) and aluminum nitride (AlN) as aluminum source,respectively. The effects of aluminum source and content on microstructure, valencebond, thermal stability and oxidation resistance were systematically investigated.And Si-B-C-N-Al ceramics were fabricated by hot pressing (HP) technique. Theinfluence of sintering parameters, aluminum source and content on phasecompositions, microstructure and properties of the bulk ceramics has been studied.The effects of aluminum source and oxidation temperature on the oxidationbehaviour of materials were investigated and the oxidation mechanism was alsodiscussed.
     The experimental results show that in the A3powders, which were preparedusing crystalline silicon (Si), hexagonal boron nitride (h-BN), graphite (C) andaluminum (Al) as starting materials, the particles are completely amorphous; theas-prepared AN3powders using AlN as aluminum source are predominantlyamorphous with a very small volume fraction of AlN nano-crystalline phase. Theanalysis on bonds shows that the solid reactions among raw materials occurred byMA, which resulted in the generation of new chemical bonds such as Si-C, B-C-N,C-C, B-N and Al-N. Compared with the A3powders, the AN3powders have similarbonding types but no oxygen-containing bonds and have relatively simpleenvironment of aluminum atoms. The oxidation resistance of AN3is better than thatof A3. The activation energies and oxidation resistance of the powders reduced withthe increase of aluminum content. The thermal stability of Si-B-C-N-Al powderswas excellent at high temperature in argon.
     There are four ceramics prepared using different sintering technique. Theincrease of sintering temperature and pressure has little effect on the phasecompositions and3C-SiC、BCN、AlN and AlON are the main phases in the fourceramics. While the increase of sintering temperature and pressure has a great effecton densification, the ceramics prepared at1900°C under a pressure of50MPa havethe highest density and are most dense.
     The aluminum source and content have a greater impact on the phasecompositions. The ceramics with lower aluminum content contain4H-SiC phase andthe ceramics using AlN powders as aluminum source does not have AlON phase.The microstructures are fine and homogeneous in the two ceramics using differentaluminum source, lamellar BCN and3C-SiC with straight stacking faults areobserved, disordered atom areas were also found in3C-SiC、 AlN and BCN grains.The thermal expansion coefficient values of the three ceramics were4.8~5.1×10-6/°C at1300°C.
     The weight change of the two ceramics using different aluminum source showsthe similar trends with the oxidation time increasing when the oxidationtemperatures are1200、1300and1400°C, that is first weight loss, then rapid weightgain and finally into a relatively stable stage of weight change. The phasecompositions on the oxidation surface are the same for the two ceramics afteroxidation for80h at1200、1300and1400°C. The oxidation products are SiO2、mullite and C, the diffraction peaks of mullite and C increase in intensity withoxidation temperature raising, while the crystalline diffraction peaks of SiO2at1200°C changed into amorphous diffuse scattering peaks at1400°C, this change isbeneficial on improving the oxidation resisitance of the materials. The thickness ofoxide scales increased with increasing oxidation temperature for the two ceramics;while at the same oxidation temperature, the oxide scales of the ceramics using Alpowders as aluminum source are slightly thicker than those of the ceramics usingAlN powders as aluminum source. The oxidation resistance of the ceramics usingAlN powders as aluminum source is superior to the ceramics using Al powders asaluminum source with comprehensive comparison.
     The analysis on the oxidation mechanism of the ceramics shows that thediffusion mechanism controls the oxidation at1200°C, the oxidation behaviour iscontrolled by the oxidation reaction and diffusion mechanism when the temperatureis higher than1300°C.
引文
[1] Jack K H. Sialons and Related Nitrogen Ceramics[J]. Journal of MaterialsScience,1976,11(6):1135-1158.
    [2] Buljan S T, Pasto A E, Kim H J. Ceramic Whisker-andParticulate-Composites: Properties, Reliability and Applications[J]. AmericanCeramic Society Bulletin,1989,68(2):387-394.
    [3] Zhang G J, Yang J F, Ohji T. In Situ Si3N4-SiC-BN Composites: Preparation,Microstructures and Properties[J]. Materials Science and Engineering A,2002,328(1):201-205.
    [4] Dressler W, Riedel R. Progress in Silicon-Based Non-Oxide StructuralCeramics[J]. International Journal of Refractory Metals and Hard Materials,1997,15(1):13-47.
    [5] Baufeld B, Gu H, Bill J, et al. High Temperature Deformation ofPrecursor-Derived Amorphous Si-B-C-N Ceramics[J]. Journal of theEuropean Ceramic Society,1999,19(16):2797-2814.
    [6] Bernard S, Weinmann M, Cornu D, et al. Preparation of High-TemperatureStable Si-B-C-N Fibers from Tailored Single Source Polyborosilazanes[J].Journal of the European Ceramic Society,2005,25(2-3):251-256.
    [7] Butchereit E, Nickel K G. Oxidation Behaviour of Precursor DerivedSi-(B)-C-N-Ceramics[J]. Journal of Materials Processing and ManufacturingScience,1998,7(1):15-21.
    [8] Christ M, Thurn G, Weinmann M, et al. High‐Temperature MechanicalProperties of Si-B-C-N-Precursor-Derived Amorphous Ceramics and theApplicability of Deformation Models Developed for Metallic Glasses[J].Journal of the American Ceramic Society,2000,83(12):3025-3032.
    [9] Riedel R, Kienzle A, Dressler W, et al. A Silicoboron Carbonitride CeramicStable to2,000°C[J]. Nature,1996,382(6594):796-798.
    [10] Kumar N V R, Prinz S, Cai Y, et al. Crystallization and Creep Behavior ofSi-B-C-N Ceramics[J]. Acta Materialia,2005,53(17):4567-4578.
    [11] Jacobson N S, Opila E J, Lee K N. Oxidation and Corrosion of Ceramics andCeramic Matrix Composites[J]. Current Opinion in Solid State and MaterialsScience,2001,5(4):301-309.
    [12] Baldus H P, Jansen M. Novel High-Performance Ceramics-AmorphousInorganic Networks from Molecular Precursors[J]. Angewandte ChemieInternational Edition in English,1997,36(4):328-343.
    [13] Riedel R, Ruswisch L M, An L, et al. Amorphous Silicoboron CarbonitrideCeramic with Very High Viscosity at Temperatures above1500°C[J]. Journalof the American Ceramic Society,1998,81(12):3341-3344.
    [14] Bill J, Aldinger F. Precursor-Derived Covalent Ceramics[J]. AdvancedMaterials,1995,7(9):775-787.
    [15] Janakiraman N, Weinmann M, Schuhmacher J, et al. Thermal Stability, PhaseEvolution, and Crystallization in Si-B-C-N Ceramics Derived from aPolyborosilazane Precursor[J]. Journal of the American Ceramic Society,2002,85(7):1807-1814.
    [16] Müller A, Zern A, Gerstel P, et al. Boron-Modified Poly(Propenylsilazane)-Derived Si-B-C-N Ceramics: Preparation and HighTemperature Properties[J]. Journal of the European Ceramic Society,2002,22(9):1631-1643.
    [17] Butchereit E, Nickel K G, Müller A. Precursor-Derived Si-B-C-N Ceramics:Oxidation Kinetics[J]. Journal of the American Ceramic Society,2001,84(10):2184-2188.
    [18] Schumacher C. Oxidationsverhalten Von Bor Und Kohlenstoff BeinhaltendenGesinterten Siliciumcarbid-Werkstoffen Bei1500°C[J]. PhD thesis,2001,Universit t Tübingen.
    [19] Müller A, Gerstel P, Butchereit E, et al. Si/B/C/N/Al Precursor-DerivedCeramics: Synthesis, High Temperature Behaviour and OxidationResistance[J]. Journal of the European Ceramic Society,2004,24(12):3409-3417.
    [20] Wideman T, Su K, Remsen E E, et al. Synthesis, Characterization, andCeramic Conversion Reactions of Borazine/Silazane Copolymers: NewPolymeric Precursors to SiNCB Ceramics[J]. Chemistry of Materials,1995,7(11):2203-2212.
    [21] Wideman T, Cortez E, Remsen E E, et al. Reactions of MonofunctionalBoranes with Hydridopolysilazane: Synthesis, Characterization, and CeramicConversion Reactions of New Processible Precursors to SiNCB CeramicMaterials[J]. Chemistry of Materials,1997,9(10):2218-2230.
    [22] Su K, Remsen E E, Zank G A, et al. Synthesis, Characterization, andCeramic Conversion Reactions of Borazine-Modified Hydridopolysilazanes:New Polymeric Precursors to Silicon Nitride Carbide Boride (SiNCB)Ceramic Composites[J]. Chemistry of Materials,1993,5(4):547-556.
    [23] Gerstel P, Müller A, Bill J, et al. Synthesis and High-Temperature Behaviorof Si/B/C/N Precursor-Derived Ceramics without “Free Carbon”[J].Chemistry of Materials,2003,15(26):4980-4986.
    [24] Cao F, Li X, Kim D. Efficient Curing of Polymethylsilane by Borazine andReaction Mechanism Study[J]. Journal of Organometallic Chemistry,2003,688(1-2):125-131.
    [25] Weinmann M, H rz M, Berger F, et al. Dehydrocoupling of Tris(Hydridosilylethyl) Boranes and Cyanamide: A Novel Access toBoron-Containing Polysilylcarbodiimides[J]. Journal of OrganometallicChemistry,2002,659(1-2):29-42.
    [26] Weinmann M, Schuhmacher J, Kummer H, et al. Synthesis and ThermalBehavior of Novel Si-B-C-N Ceramic Precursors[J]. Chemistry of Materials,2000,12(3):623-632.
    [27] Weinmann M, Kamphowe T W, Schuhmacher J, et al. Design of PolymericSi-B-C-N Ceramic Precursors for Application in Fiber-Reinforced CompositeMaterials[J]. Chemistry of Materials,2000,12(8):2112-2122.
    [28] Wideman T, Fazen P J, Su K, et al. Second-Generation Polymeric Precursorsfor BN and SiNCB Ceramic Materials[J]. Applied Organometallic Chemistry,1998,12(10-11):681-693.
    [29] Wang Z C, Gerstel P, Kaiser G, et al. Synthesis of Ultrahigh-TemperatureSi-B-C-N Ceramic from Polymeric Waste Gas[J]. Journal of the AmericanCeramic Society,2005,88(10):2709-2712.
    [30] Schiavon M A, Sorarù G D, Yoshida I V P. Poly (Borosilazanes) asPrecursors of SiBCN Glasses: Synthesis and High Temperature Properties[J].Journal of Non-Crystalline Solids,2004,348:156-161.
    [31] Weinmann M, Haug R, Bill J, et al. Boron-Modified Polysilylcarbodi-Imidesas Precursors for Si-B-C-N Ceramics: Synthesis, Plastic-Forming andHigh-Temperature Behavior[J]. Applied Organometallic Chemistry,1998,12(10-11):725-734.
    [32] Nghiem Q D, Jeon J K, Hong L Y, et al. Polymer Derived Si-C-B-N CeramicsVia Hydroboration from Borazine Derivatives and Trivinylcyclotrisilazane[J].Journal of Organometallic Chemistry,2003,688(1-2):27-35.
    [33] Jeon J K, Nghiem Q D, Kim D P, et al. Olefin Hydroboration of Borazinewith Vinylsilanes as Precursors of Si-B-C-N Ceramics[J]. Journal ofOrganometallic Chemistry,2004,689(14):2311-2318.
    [34] Müller A, Gerstel P, Weinmann M, et al. Si-B-C-N Ceramic PrecursorsDerived from Dichlorodivinylsilane and Chlorotrivinylsilane.1. PrecursorSynthesis[J]. Chemistry of Materials,2002,14(8):3398-3405.
    [35] Müller A, Peng J, Seifert H J, et al. Si-B-C-N Ceramic Precursors Derivedfrom Dichlorodivinylsilane and Chlorotrivinylsilane.2. Ceramization ofPolymers and High-Temperature Behavior of Ceramic Materials[J].Chemistry of Materials,2002,14(8):3406-3412.
    [36] Schmidt W R, Narsavage-Heald D M, Jones D M, et al. Poly (Borosilazane)Precursors to Ceramic Nanocomposites[J]. Chemistry of Materials,1999,11(6):1455-1464.
    [37] Wang Z C, Aldinger F, Riedel R. Novel Silicon-Boron-Carbon-NitrogenMaterials Thermally Stable up to2200°C[J]. Journal of the AmericanCeramic Society,2001,84(10):2179-2183.
    [38] Jansen M. Highly Stable Ceramics through Single Source Precursors[J].Solid State Ionics,1997,101:1-7.
    [39] Jüngermann H, Jansen M. Synthesis of an Extremely Stable Ceramic in theSystem Si/B/C/N Using1-(Trichlorosilyl)-1-(Dichloroboryl) Ethane as aSingle-Source Precursor[J]. Materials Research Innovations,1999,2(4):200-206.
    [40] Bernard S, Weinmann M, Gerstel P, et al. Boron-Modified Polysilazane as aNovel Single-Source Precursor for SiBCN Ceramic Fibers: Synthesis,Melt-Spinning, Curing and Ceramic Conversion[J]. Journal of MaterialsChemistry,2004,15(2):289-299.
    [41] Srivastava D, Duesler E N, Paine R T. Synthesis of Silylborazines and TheirUtilization as Precursors to Silicon-Containing Boron Nitride[J]. EuropeanJournal of Inorganic Chemistry,1998,1998(6):855-859.
    [42] Baldus P, Jansen M, Sporn D. Ceramic Fibers for Matrix Composites inHigh-Temperature Engine Applications[J]. Science,1999,285(5428):699-703.
    [43] Jaschke T, Jansen M. Synthesis and Characterization of New AmorphousSi/B/N/C Ceramics with Increased Carbon Content through Single-SourcePrecursors[J]. Comptes Rendus Chimie,2004,7(5):471-482.
    [44] J schke T, Jansen M. Synthesis, Crystal Structure, and SpectroscopicCharacterization of the Borazine Derivatives [B{CH2(SiCl3)}NH]3and [B{CH2(SiCl2CH3)}NH]3[J]. Zeitschrift für Anorganische und AllgemeineChemie,2004,630(2):239-243.
    [45] Lee J, Butt D P, Baney R H, et al. Synthesis and Pyrolysis of NovelPolysilazane to SiBCN Ceramic[J]. Journal of Non-Crystalline Solids,2005,351(37:2995-3005.
    [46] Cowley A H, Sisler H H, Ryschkewitsch G E. The Chemistry of Borazine. III.B-Silyl Borazines[J]. Journal of the American Chemical Society,1960,82(2):501-502.
    [47] Jaschke T, Jansen M. Improved Durability of Si/B/N/C Random InorganicNetworks[J]. Journal of the European Ceramic Society,2005,25(2-3):211-220.
    [48] Jalowiecki A, Bill J, Aldinger F, et al. Interface Characterization ofNanosized B-Doped Si3N4/SiC Ceramics[J]. Composites Part A: AppliedScience and Manufacturing,1996,27(9):717-721.
    [49] Bill J, Kamphowe T W, Müller A, et al. Precursor-Derived Si-(B)-C-NCeramics: Thermolysis, Amorphous State and Crystallization[J]. AppliedOrganometallic Chemistry,2001,15(10):777-793.
    [50] Bunjes N, Muller A, Sigle W, et al. Crystallization of Polymer-DerivedSiC/BN/C Composites Investigated by TEM[J]. Journal of Non-CrystallineSolids,2007,353(16-17):1567-1576.
    [51] Kroke E, Li Y L, Konetschny C, et al. Silazane Derived Ceramics andRelated Materials[J]. Materials Science and Engineering R: Reports,2000,26(4-6):97-199.
    [52] Ravi Kumar N V, Mager R, Cai Y, et al. High Temperature DeformationBehaviour of Crystallized Si-B-C-N Ceramics Obtained from a BoronModified Poly(Vinyl)Silazane Polymeric Precursor[J]. Scripta Materialia,2004,51(1):65-69.
    [53] Baldus H P, Passing G. Studies on SiBN(C) Ceramics: Oxidation andCrystallisation Behaviour Lead the Way to Applications[J]. Mater. Res. Soc.Symp. Proc.,1994,346:617–622.
    [54] Christ M, Zimmermann A, Aldinger F. Anelastic Behaviour ofPrecursor-Derived Amorphous Ceramics in the System Si-B-C-N[J]. Journalof Materials Research,2001,16(7):1994-1997.
    [55] Christ M, Zimmermann A, Zern A, et al. High Temperature DeformationBehavior of Crystallized Precursor-Derived Si-B-C-N Ceramics[J]. Journalof Materials Science,2001,36(24):5767-5772.
    [56] Ishihara S, Hirayama T, Bill J, et al. Compressive Deformation of PartiallyCrystallized Amorphous Si-B-C-N Ceramics at Elevated Temperatures[J].Materials Transactions-JIM,2003,44(2):226-231.
    [57] Khonik V A. Comment on “High-Temperature Mechanical Properties ofSi-B-C-N-Precursor-Derived Amorphous Ceramics and the Applicability ofDeformation Models Developed for Metallic Glasses”[J]. Journal of theAmerican Ceramic Society,2002,85(7):1903-1903.
    [58] Kumar R, Rixecker G, Aldinger F. Anelasticity of Precursor DerivedSi-B-C-N Ceramics[J]. Journal of the European Ceramic Society,2007,27(2-3):1475-1480.
    [59] Zimmermann A, Bauer A, Christ M, et al. High-Temperature Deformation ofAmorphous Si-C-N and Si-B-C-N Ceramics Derived from Polymers[J]. ActaMaterialia,2002,50(5):1187-1196.
    [60] Kern F, Gadow R. Liquid Phase Coating Process for Protective CeramicLayers on Carbon Fibers[J]. Surface and Coatings Technology,2002,151:418-423.
    [61] Rooke M A, Sherwood P M A. Surface Studies of Potentially OxidationProtective Si-B-N-C Films for Carbon Fibers[J]. Chemistry of Materials,1997,9(1):285-296.
    [62] Heinemann D, Assenmacher W, Mader W, et al. Structural Characterizationof Amorphous Ceramics in the System Si-B-N-(C) by Means of TransmissionElectron Microscopy Methods[J]. Journal of Materials Research,1999,14(09):3746-3753.
    [63] Khabashesku V N, Margrave J L. Carbonitride Nanomaterials, Thin Films,and Solids[J]. Advanced Engineering Materials,2002,4(9):671-675.
    [64] Hegemann D, Riedel R, Oehr C. Pacvd-Derived Thin Films in the SystemSi-B-C-N[J]. Chemical Vapor Deposition,1999,5(2):61-65.
    [65] Martan J, Herve O, Lang V. Two-Detector Measurement System of PulsePhotothermal Radiometry for the Investigation of the Thermal Properties ofThin Films[J]. Journal of Applied Physics,2007,102(6):3525-3532.
    [66] Vijayakumar A, Todi R M, Todi V O, et al. In Situ High TemperatureElectrical Characterization of RF Sputtered SiCBN Thin Films[J]. Journal ofthe Electrochemical Society,2007,154(108):875-878.
    [67] Vijayakumar A, Todi R M, Sundaram K B. Oxygen AnnealingCharacterization of Reactively Sputtered SiCBN Thin Films by X-RayPhotoelectron Spectroscopy[J]. Journal of the Electrochemical Society,2007,154(7): H547-H551.
    [68] Vijayakumar A, Todi R M, Sundaram K B. Effect of N2/Ar Gas MixtureComposition on the Chemistry of SiCBN Thin Films Prepared by RFReactive Sputtering[J]. Journal of the Electrochemical Society,2007,154(4):H271-H274.
    [69] Houska J, Vlcek J, Potocky S, et al. Influence of Substrate Bias Voltage onStructure and Properties of Hard Si-B-C-N Films Prepared by ReactiveMagnetron Sputtering[J]. Diamond and Related Materials,2007,16(1):29-36.
    [70] Vl ek J, Potocky, í ek J, et al. Reactive Magnetron Sputtering of HardSi-B-C-N Films with a High-Temperature Oxidation Resistance[J]. Journalof Vacuum Science&Technology A: Vacuum, Surfaces, and Films,2005,23(6):1513-1522.
    [71] Bernard S, Duperrier S, Cornu D, et al. Chemical Tailoring of Single-SourceMolecular and Polymeric Precursors for the Preparation of Ceramic Fibers[J].Journal of Optoelectronics and Advanced Materials,2006,8(2):648-653.
    [72] Cinibulk M K, Parthasarathy T A. Characterization of OxidizedPolymer-Derived SiBCN Fibers[J]. Journal of the American Ceramic Society,2001,84(10):2197-2202.
    [73] Nestler K, Dietrich D, Preidel A, et al. CVD of Mono and Double-Layers onSi-B-N-C Fibres[J]. Journal de Physique IV: JP,1999,9(8):1123-1130.
    [74] Weisbarth R, Jansen M. Investigations on Reactive Coatings Applied toSiboramic (SiBN3C) Fibers[J]. Journal of Materials Chemistry,2003,13(8):1926-1929.
    [75] Prof P M, Bernard S, Cornu D, et al. Recent Developments inPolymer-Derived Ceramic Fibers (PDCFs): Preparation, Properties andApplications–A Review[J]. Soft Materials,2007,4(2-4):249-286.
    [76] Jansen M, J schke B, J schke T. Amorphous Multinary Ceramics in theSi-B-N-C System[J]. High Performance Non-Oxide Ceramics I, Structure&Bonding,2002,101:137-191.
    [77] Gruber W, Borchardt G, Schmidt H. Atomic Motion and DiffusionMechanism of Hydrogen in Amorphous Ceramics of the System Si-B-C-N[J].Defect and Diffusion Forum,2007,263:63-68.
    [78] Haberecht J, Nesper R, Grützmacher H. A Construction Kit for Si-B-C-NCeramic Materials Based on Borazine Precursors[J]. Chemistry of Materials,2005,17(9):2340-2347.
    [79]杨治华. Si-B-C-N机械合金化粉末及陶瓷的组织结构与高温性能[D].哈尔滨:哈尔滨工业大学学位论文,2008.
    [80] Horton R M. Oxidation Kinetics of Powdered Silicon Nitride[J]. Journal ofthe American Ceramic Society,1969,52(3):121-124.
    [81] Jorgensen P J, Wadsworth M E, Cutler I B. Oxidation of Silicon Carbide[J].Journal of the American Ceramic Society,1959,42(12):613-616.
    [82] Das D, Farjas J, Roura P. Passive-Oxidation Kinetics of SiCMicroparticles[J]. Journal of the American Ceramic Society,2004,87(7):1301-1305.
    [83] Jia Q, Zhang H J, Li S, et al. Effect of Particle Size on Oxidation of SiliconCarbide Powders[J]. Ceramics International,2007,33(2):309-313.
    [84] Wang Y, Fei W, An L. Oxidation/Corrosion of Polymer-Derived SiAlCNCeramics in Water Vapor[J]. Journal of the American Ceramic Society,2006,89(3):1079-1082.
    [85] Wang Y, An L, Fan Y, et al. Oxidation of Polymer‐Derived SiAlCNCeramics[J]. Journal of the American Ceramic Society,2005,88(11):3075-3080.
    [86] An L, Wang Y, Bharadwaj L, et al. Silicoaluminum Carbonitride withAnomalously High Resistance to Oxidation and Hot Corrosion[J]. AdvancedEngineering Materials,2004,6(5):337-340.
    [87] Dhamne A, Xu W, Fookes B G, et al. Polymer-Ceramic Conversion of LiquidPolyaluminasilazanes for SiAlCN Ceramics[J]. Journal of the AmericanCeramic Society,2005,88(9):2415-2419.
    [88] Wang Y, Fan Y, Zhang L, et al. Polymer-Derived SiAlCN Ceramics ResistOxidation at1400°C[J]. Scripta Materialia,2006,55(4):295-297.
    [89] Seyferth D, Brodt G, Boury B. Polymeric Aluminasilazane Precursors forAluminosilicon Nitride[J]. Journal of Materials Science Letters,1996,15(4):348-349.
    [90] Berger F, Weinmann M, Aldinger F, et al. Solid-State Nmr Studies of thePreparation of Si-Al-C-N Ceramics from Aluminum-Modified Polysilazanesand Polysilylcarbodiimides[J]. Chemistry of Materials,2004,16(5):919-929.
    [91] Boury B, Seyferth D. Preparation of Si/C/Al/N Ceramics by Pyrolysis ofPolyaluminasilazanes[J]. Applied Organometallic Chemistry,1999,13(6):431-440.
    [92] Verdecia G, O'brien K L, Schmidt W R, et al. Aluminum-27and Silicon-29Solid-State Nuclear Magnetic Resonance Study of SiliconCarbide/Aluminum Nitride Systems: Effect of Silicon/Aluminum Ratio andPyrolysis Temperature[J]. Chemistry of Materials,1998,10(4):1003-1009.
    [93] Toyoda R, Kitaoka S, Sugahara Y. Modification of Perhydropolysilazanewith Aluminum Hydride: Preparation of Poly(Aluminasilazane)s and TheirConversion into Si-Al-N-C Ceramics[J]. Journal of the European CeramicSociety,2008,28(1):271-277.
    [94] Nakashima H, Koyama S, Kuroda K, et al. Conversion of a PrecursorDerived from Cage-Type and Cyclic Molecular Building Blocks intoAl-Si-N-C Ceramic Composites[J]. Journal of the American Ceramic Society,2002,85(1):59-64.
    [95] Koyama S, Nakashima H, Sugahara Y, et al. Preparation of a HybridPreceramic Precursor for Al-Si-C-N Nanocomposites Via a MolecularBuilding Block Approach[J]. Chemistry Letters,1998,1998(2):191-192.
    [96] Mori Y, Sugahara Y. Pyrolytic Conversion of an Al-Si-N-C PrecursorPrepared Via Hydrosilylation between [Me(H)SiNH]4and
    [HAlN(allyl)]m[HAlN (ethyl)]n[J]. Applied Organometallic Chemistry,2006,20(8):527-534.
    [97] Ogbuji L U J T, Opila E J. A Comparison of the Oxidation Kinetics of SiCand Si3N4[J]. Journal of the Electrochemical Society,1995,142:925-930.
    [98] Ishikawa T, Kohtoku Y, Kumagawa K, et al. High-Strength Alkali-ResistantSintered SiC Fibre Stable to2,200oC[J]. Nature,1998,391(6669):773-775.
    [99] Cheong Y S, Mukundhan P, Du H H, et al. Improved Oxidation Resistance ofSilicon Nitride by Aluminum Implantation: I, Kinetics and OxideCharacteristics[J]. Journal of the American Ceramic Society,2000,83(1):154-160.
    [100] Rawson H. Properties and Applications of Glass[M]. Elsevier Scientific Pub.Co.,1980.
    [101] Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[J]. JohnWilley&Sons, NY,1976.
    [102] Xie X, Yang Z, Ren R, et al. Solid State29Si Magic Angle Spinning NMR:Investigation of Bond Formation and Crystallinity of Silicon and GraphitePowder Mixtures During High Energy Milling[J]. Materials Science andEngineering A,1998,255(1-2):39-48.
    [103] Yang X Y, Huang Z W, Wu Y K, et al. Hrem Observations of the SynthesizedProcess of Nano-Sized SiC by Ball Milling of Si and C Mixed Powders[J].Materials Science and Engineering: A,2001,300(1):278-283.
    [104] Yang Z G, Shaw L L. Synthesis of Nanocrystalline SiC at AmbientTemperature through High Energy Reaction Milling[J]. NanostructuredMaterials,1996,7(8):873-886.
    [105] Ghosh B, Pradhan S K. Microstructural Characterization of NanocrystallineSiC Synthesized by High-Energy Ball-Milling[J]. Journal of Alloys andCompounds,2009,486(1-2):480-485.
    [106] Yamamoto T, Kitaura H, Kodera Y, et al. Consolidation of NanostructuredΒ-SiC by Spark Plasma Sintering[J]. Journal of the American CeramicSociety,2004,87(8):1436-1441.
    [107] Torres R, Caretti I, Gago R, et al. Bonding Structure of BCN NanopowdersPrepared by Ball Milling[J]. Diamond and Related Materials,2007,16(4-7):1450-1454.
    [108] Yao B, Liu L, Su W H. Formation, Characterization, and Properties of a NewBoron-Carbon-Nitrogen Crystal[J]. Journal of Applied Physics,1999,86(5):2464-2467.
    [109] Zhang Y F, Tang Y H, Lee C S, et al. Nanocrystalline C–B-N Synthesized byMechanical Alloying[J]. Diamond and Related Materials,1999,8(2):610-613.
    [110]陈万金,华中,姚斌等.非晶BCN的制备及其导电性[J].金属学报,1999,35(5):468-472.
    [111] Du Y J, Li S Y, Zhang K, et al. BN/Al Composite Formation by High-EnergyBall Milling[J]. Scripta Materialia,1997,36(1):7-14.
    [112] Xia Z P, Li Z Q, Lu C J, et al. Structural Evolution of Al/BN Mixture DuringMechanical Alloying[J]. Journal of Alloys and Compounds,2005,399(1-2):139-143.
    [113] Shaw L L, Yang Z G, Ren R M. Synthesis of Nanostructured Si3N4/SiCComposite Powders through High Energy Reaction Milling[J]. MaterialsScience and Engineering: A,1998,244(1):113-126.
    [114] Yang Z H, Jia D C, Zhou Y, et al. Fabrication and Characterization ofAmorphous SiBCN Powders[J]. Ceramics International,2007,33(8):1573-1577.
    [115] Yang Z H, Jia D C, Zhou Y, et al. Processing and Characterization ofSiB0.5C1.5N0.5Produced by Mechanical Alloying and Subsequent SparkPlasma Sintering[J]. Materials Science and Engineering: A,2008,488(1-2):241-246.
    [116] Yang Z H, Zhou Y, Jia D C, et al. Microstructures and Properties ofSiB0.5C1.5N0.5Ceramics Consolidated by Mechanical Alloying and HotPressing[J]. Materials Science and Engineering: A,2008,489(1):187-192.
    [117] Yang Z H, Jia D C, Duan X, et al. Microstructure and Thermal Stabilities inVarious Atmospheres of SiB0.5C1.5N0.5Nano-Sized Powders Fabricated byMechanical Alloying Technique[J]. Journal of Non-Crystalline Solids,2010,356(6-8):326-333.
    [118] Yang Z H, Jia D C, Duan X M, et al. Effect of Si/C Ratio and Their Contenton the Microstructure and Properties of Si-B-C-N Ceramics Prepared bySpark Plasma Sintering Techniques[J]. Materials Science and Engineering: A,2011,528:1944-1948.
    [119] Ermakov A E, Yurchikov E E, Barinov V A. Magnetic Properties ofAmorphous Powders of Y-Co Alloys Prepared by Mechanical Grinding[J].Physics of Metals and Metallography,1981,52(6):50-58.
    [120] Koch C C, Cavin O B, Mckamey C G, et al. Preparation of‘‘Amorphous’’Ni60Nb40by Mechanical Alloying[J]. Applied Physics Letters,1983,43(11):1017-1019.
    [121] Suryanarayana C. Mechanical Alloying and Milling: A Bibliography,1970-1994[M]. Cambridge Intersicence Publishing,1995.
    [122] Suryanarayana C. Recent Advances in the Synthesis of Alloy Phases byMechanical Alloying/Milling[J]. Metals and Materials International,1996,2(4):195-209.
    [123] Murty B S, Ranganathan S. Novel Materials Synthesis by MechanicalAlloying/Milling[J]. International Materials Reviews,1998,43(3):101-141.
    [124] Mccormick P G. Application of Mechanical Alloying to Chemical Refining(Overview)[J]. Materials Transactions-JIM,1995,36(2):161-169.
    [125] Maurice D R, Courtney T H. The Physics of Mechanical Alloying: A FirstReport[J]. Metallurgical and Materials Transactions A,1990,21(1):289-303.
    [126] Koch C C, Cahn R W. Processing of Metals and Alloys, Vol.15of MaterialsScience and Technology-A Comprehensive Treatment[J]. Weinheim,Germany: VCH Verlagsgesellschaft GmbH,1991,193-245.
    [127] Ivanov E I. Preparation of Cuxhg1-X Solid Solutions by MechanicalAlloying[J]. Materials Science Forum,1992,88-90:475-480.
    [128] Yamazaki T, Terayama K, Shimazaki T, et al. Mechanical Alloying betweenNi Powder and Liquid Ga[J]. Journal of Materials ScienceLetters,1997,16(16):1357-1359.
    [129] Dolgin B P, Vanek M A, Mcgory T, et al. Mechanical Alloying of Ni, Co, andFe with Ti. Formation of an Amorphous Phase[J]. Journal of Non-CrystallineSolids,1986,87(3):281-289.
    [130] Di L M, Bakker H. Phase Transformation of the Compound V3Ga Induced byMechanical Grinding[J]. Journal of Physics: Condensed Matter,1991,3:3427-3432.
    [131] Suryanarayana C, Ivanov E, Noufi R, et al. Phase Selection in aMechanically Alloyed Cu2013: in–Ga–Se Powder Mixture[J]. Journal ofMaterials Research,1999,14(02):377-383.
    [132] Chu B L, Chen C C, Perng T P. Amorphization of Ti1xMnx[J]. Metallurgicaland Materials Transactions A,1992,23(8):2105-2110.
    [133] Tokumitsu K. Synthesis of Metastable Fe3C, Co3C and Ni3C by MechanicalAlloying Method[J]. Materials Science Forum,1997,235-238:127-132.
    [134] Yen B K, Aizawa T, Kihara J. Synthesis and Formation Mechanisms ofMolybdenum Silicides by Mechanical Alloying[J]. Materials Science andEngineering: A,1996,220(1):8-14.
    [135] Yen B K, Aizawa T, Kihara J. Mechanical Alloying Behavior inMolybdenum-Silicon System[J]. Materials Science Forum,1997,235-238:157-162.
    [136] Ohtani T, Maruyama K, Ohshima K. Synthesis of Copper, Silver, andSamarium Chalcogenides by Mechanical Alloying[J]. Materials RresearchBulletin,1997,32(3):343-350.
    [137] Sakurai K, Lee C H, Kuroda N, et al. Nitrogen Effect in Mechanical Alloyingof Immiscible Cu-V: Extended X-Ray Absorption Fine Structure Study[J].Journal of Applied Physics,1994,75(12):7752-7755.
    [138] Harringa J L, Cook B A, Beaudry B J. Effects of Vial Shape on the Rate ofMechanical Alloying in Si80Ge20[J]. Journal of Materials Science,1992,27(3):801-804.
    [139] Kaloshkin S D, Tomilin I A, Andrianov G A, et al. Phase Transformationsand Hyperfine Interactions in Mechanically Alloyed Fe-Cu Solid Solutions[J].Materials Science Forum,1997,235-238:565-570.
    [140] Calka A, Nikolov J I, Ninham B W. High Temperature Nitrides and Carbidesfor Structural Applications Synthesized by Mechanical Alloying[J].Mechanical Alloying for Structural Applications,1993,20-22:189-195.
    [141] Calka A, Radlinski A P. Universal High Performance Ball-Milling Deviceand Its Application for Mechanical Alloying[J]. Materials Science andEngineering: A,1991,134:1350-1353.
    [142] Suryanarayana C. Does a Disordered γ-TiAl Phase Exist in MechanicallyAlloyed Ti-Al Powders?[J]. Intermetallics,1995,3(2):153-160.
    [143] Lü L, Lai M O. Mechanical Alloying[M]. Boston, MA: Kluwer AcademicPublishers,1998.
    [144] Park Y H, Hashimoto H, Watanabe R. Morphological Evolution andAmorphization of Ti/Cu and Ti/Al Powder Mixtures During Vibratory BallMilling[J]. Materials Science Forum,1992,88-90:59-66.
    [145] Guo W, Iasonna A, Magini M, et al. Synthesis of Amorphous and MetastableTi40Al60Alloys by Mechanical Alloying of Elemental Powders[J]. Journalof Materials Science,1994,29(9):2436-2444.
    [146] Liu L H, Casadio S, Magini M, et al. Solid State Reactions of V75Si25Driven by Mechanical Alloying[J]. Materials Science Forum,1997,235-238:163-168.
    [147] Suryanarayana C, Lee D S. Phase Relations in Ti-Al-Nb Alloys at1200oC[J].Scripta Metallurgica et Materialia,1992,26:1727-1732.
    [148] Calka A, Williams J S. Synthesis of Nitrides by Mechanical Alloying[J].Materials Science Forum,1992,88-90:787-794.
    [149] Chen Y, Williams J R. Hydriding Reactions Induced by Ball Milling[J].Materials Science Forum,1996,225-227:881-888.
    [150] Ogino Y, Yamasaki T, Murayama S, et al. Non-Equilibrium Phases Formedby Mechanical Alloying of Cr-Cu Alloys[J]. Journal of Non-CrystallineSolids,1990,117:737-740.
    [151] Lee C H, Mori M, Fukunaga T, et al. Effect of Ambient Temperature on theMa and Mg Processes in Ni-Zr Alloy System[J]. Japanese Journal of AppliedPhysics,1990,29(part1):540-544.
    [152] Lee P Y, Yang J L, Lin H M. Amorphization Behaviour in MechanicallyAlloyed Ni-Ta Powders[J]. Journal of Materials Science,1998,33(1):235-239.
    [153] Koch C C. The Synthesis and Structure of Nanocrystalline MaterialsProduced by Mechanical Attrition: A Review[J]. Nanostructured Materials,1993,2(2):109-129.
    [154] Suryanarayana C. Nanocrystalline Materials[J]. International MaterialsReviews,1995,40(2):41-64.
    [155] Benjamin J S. Mechanical Alloying[J]. Scientific American,1976,234(5):40-48.
    [156] Benjamin J S, Volin T E. The Mechanism of Mechanical Alloying[J].Metallurgical and Materials Transactions B,1974,5(8):1929-1934.
    [157] Benjamin J S. Mechanical Alloying-A Perspective[J]. Metal Powder Report,1990,45(2):122-127.
    [158] Gilman P S, Benjamin J S. Mechanical Alloying[J]. Annual review ofMaterials Science,1983,13(1):279-300.
    [159] Davis R M, Koch C C. Mechanical Alloying of Brittle Components: Siliconand Germanium[J]. Scripta Metallurgica,1987,21(3):305-310.
    [160] Davis R M, Mcdermott B, Koch C C. Mechanical Alloying of BrittleMaterials[J]. Metallurgical and Materials Transactions A,1988,19(12):2867-2874.
    [161] Lee P Y, Koch C C. Formation of Amorphous Ni-Zr Alloys by MechanicalAlloying of Mixtures of the Intermetallic Compounds Ni11Zr9and NiZr2[J].Applied Physics Letters,1987,50(22):1578-1580.
    [162] Buckel W, Hilsch R. Behavior of Resistance of A Quench-Condensed Film ofTin, Z[J]. Physik,1952,132:420.
    [163] Klement W, Willens R H, Duwez P. Non-Crystalline Structure in SolidifiedGold–Silicon Alloys[J]. Nature,1960,187:869-871.
    [164] Oleszak D, Burzynska-Szyszko M, Matyja H. Structural Changes DuringMechanical Alloying of Elemental Al-Ti, Al-Nb and Ti-Si Powders[J].Journal of Materials Science Letters,1993,12(1):3-5.
    [165] Bonetti E, Cocco G, Enzo S, et al. Amorphisation and Phase Transformationsin Mechanically Alloyed Ti– Al Powders: Electron MicroscopyInvestigation[J]. Materials Science and Technology,1990,6(12):1258-1262.
    [166] Fukunaga T, Homma Y, Suzuki K, et al. Structural Characterization of Ni-VAmorphous Alloys Prepared by Mechanical Alloying[J]. Materials Scienceand Engineering: A,1991,134:987-991.
    [167] Trudeau M L, Schulz R, Dussault D, et al. Structural Changes DuringHigh-Energy Ball Milling of Iron-Based Amorphous Alloys: Is High-EnergyBall Milling Equivalent to a Thermal Process?[J]. Physical Review Lletters,1990,64(1):99-102.
    [168] Trudeau M L. Deformation Induced Crystallization Due to Instability inAmorphous FeZr Alloys[J]. Applied Physics Letters,1994,64(26):3661-3663.
    [169] Koch C C, Pathak D, Yamada K. Effect of Milling Temperature on theStructure of Some Intemetallic Compounds after Mechanical Milling[J].Mechanical Alloying for Structural Applications,1993,205-212.
    [170] Schwarz R B, Johnson W L. Formation of an Amorphous Alloy bySolid-State Reaction of the Pure Polycrystalline Metals[J]. Physical ReviewLetters,1983,51(5):415-418.
    [171] Hellstern E, Schultz L. Glass Formation in Mechanically Alloyed TransitionMetal-Titanium Alloys[J]. Materials Science and Engineering,1987,93:213-216.
    [172] Schwarz R B, Rubin J B. Solid-State Amorphizing Transformations:Thermodynamics and Kinetics[J]. Journal of Alloys and Compounds,1993,194(2):189-197.
    [173] Gaffet E, Faudot F, Harmelin M. Metastable Phase Transition Induced byBall-Milling in the Ge-Si System[J]. Materials Science Forum,1992,88-90:375-382.
    [174] Johnson W L. Crystal-to-Glass Transformation in Metallic Materials[J].Materials Science and Engineering,1988,97:1-13.
    [175] Hen Z. The Quantification of Criteria for Predicting Glass Formation ofBinary Transition Metals by Mechanical Alloying[J]. Journal of Physics:Condensed Matter,1993,5: L337-L342.
    [176] Chakk Y, Berger S, Weiss B Z, et al. Solid State Amorphization byMechanical Alloying--an Atomistic Model[J]. Acta Metallurgica etMaterialia,1994,42(11):3679-3685.
    [177] Omuro K, Miura H. Amorphization of Mechanically Alloyed Fe-C and Fe-NMaterials with Additive Elements and Their Concentration Dependence[J].Materials Science Forum,1995,179-181:273-280.
    [178] Labatut C, Berjoan R, Armas B, et al. Studies of LPVCD Al-Fe-O Depositsby XPS, EELS and M ssbauer Spectroscopies[J]. Surface and CoatingsTechnology,1998,105(1-2):31-37.
    [179] Besling W F A, Goossens A, Meester B, et al. Laser-Induced Chemical VaporDeposition of Nanostructured Silicon Carbonitride Thin Films[J]. Journal ofApplied Physics,1998,83:544-553.
    [180] Xiong Y H, Xiong C S, Wei S Q, et al. Study on the Bonding State forCarbon-Boron Nitrogen with Different Ball Milling Time[J]. Applied SurfaceScience,2006,253(5):2515-2521.
    [181] Dalmau R, Collazo R, Mita S, et al. X-Ray Photoelectron SpectroscopyCharacterization of Aluminum Nitride Surface Oxides: Thermal andHydrothermal Evolution[J]. Journal of Electronic Materials,2007,36(4):414-419.
    [182] Soares G V, Bastos K P, Pezzi R P, et al. Nitrogen Bonding, Stability, andTransport in AlON Films on Si[J]. Applied Physics Letters,2004,84(24):4992-4994.
    [183] Malengreau F, Hautier V, Vermeersch M, et al. Chemical Interactions at theInterface between Aluminium Nitride and Iron Oxide Determined by XPS[J].Surface Science,1995,330(1):75-85.
    [184] Do T, Mcintyre N S, Harshman R A, et al. Application of Parallel FactorAnalysis and X-Ray Photoelectron Spectroscopy to the Initial Stages inOxidation of Aluminium. I. The Al2p Photoelectron Line[J]. Surface andInterface Analysis,1999,27(7):618-628.
    [185] Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-Ray PhotoelectronSpectroscopy.1992[J]. Perkin-Elmer Corporation, Eden Prairie, MN,
    [186] Berger F, Weinmann M, Aldinger F, et al. Solid-State NMR Studies of thePreparation of Si-Al-Cn Ceramics from Aluminum-Modified Polysilazanesand Polysilylcarbodiimides[J]. Chemistry of Materials,2004,16(5):919-929.
    [187] Li X, Edirisinghe M J. A New Aluminum Coordination Site in Si\C\Al\N\(O)Ceramics[J]. Journal of the American Ceramic Society,2003,86(12):2212-2214.
    [188] Duez N, Mutel B, Vivien C, et al. XPS Investigation of Aluminum andSilicon Surfaces Nitrided by a Distributed Electron Cyclotron ResonanceNitrogen Plasma[J]. Surface Science,2001,482:220-226.
    [189] Harrison S, Xie X, Jakubenas K J, et al. Silicon29Solid-State MAS NMRInvestigation of Selective Area Laser Deposition Silicon Carbide Material[J].Journal of the American Ceramic Society,1999,82(11):3221-3224.
    [190] Clegg W J. Role of Carbon in the Sintering of Boron\Doped SiliconCarbide[J]. Journal of the American Ceramic Society,2000,83(5):1039-1043.
    [191] Zhang G J, Yang J F, Ohji T. Thermogravimetry, Differential ThermalAnalysis, and Mass Spectrometry Study of the Silicon Nitride¨CboronCarbide¨Ccarbon Reaction System for the Synthesis of SiliconCarbide¨Cboron Nitride Composites[J]. Journal of the American CeramicSociety,2002,85(9):2256-2260.
    [192] Negita K. Effective Sintering Aids for Silicon Carbide Ceramics: Reactivitiesof Silicon Carbide with Various Additives[J]. Journal of the AmericanCeramic Society,1986,69(12): C-308-C-310.
    [193] Brach M, Sciti D, Balbo A, et al. Short-Term Oxidation of a TernaryComposite in the System AlN-SiC-ZrB2[J]. Journal of the European CeramicSociety,2005,25(10):1771-1780.
    [194] Bellosi A, Landi E, Tampieri A. Oxidation Behavior of Aluminum Nitride[J].Journal of Materials Research,1993,8(03):565-572.
    [195] Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J].Analytical Chemistry,1957,29(11):1702-1706.
    [196] Jepps N W, Page T F. Polytypic Transformations in Silicon Carbide[J].Progress in Crystal Growth and Characterization,1983,7:259-307.
    [197] Zhang X F, Yang Q, De Jonghe L C. Microstructure Development inHot-Pressed Silicon Carbide: Effects of Aluminum, Boron, and CarbonAdditives[J]. Acta Materialia,2003,51(13):3849-3860.
    [198] Corbin N D. Aluminum Oxynitride Spinel: A Review[J]. Journal of theEuropean Ceramic Society,1989,5(3):143-154.
    [199] Mccauley J W, Corbin N D. Phase Relations and Reaction Sintering ofTransparent Cubic Aluminum Oxynitride Spinel (AlON)[J]. Journal of theAmerican Ceramic Society,1979,62(9‐10):476-479.
    [200]贾德昌.无机非金属材料性能[M].北京:科学出版社,2007.
    [201] Komatsu T, Samedima M, Awano T, et al. Creation of Superhard B–C–NHeterodiamond Using an Advanced Shock Wave Compression Technology[J].Journal of Materials Processing Technology,1999,85(1):69-73.
    [202] Hartnett T M, Maguire E A, Gentilman R L, et al. Aluminum OxynitrideSpinel (AlON)–A New Optical and Multimode Window Material[J]. CeramicEngineering and Science Proceedings,1982,3(1-2):67-76.
    [203] Goursat P, Goeuriot P, Billy M. Contribution a L'etude Du SystemeAl/O/Ni-Reactive De L'oxynitrure D'aluminium γ[J]. Materials Chemistry,1976,1(2):131-149.
    [204] Goursat P, Billy M, Goeuriot P, et al. Contribution a L'etude Du SystemeAl/O/N II: Retention D'azote Dans Les Produits D'oxydation De L'oxynitrureD'aluminium γ[J]. Materials Chemistry,1981,6(2):81-93.
    [205] Lefort P, Ado G, Billy M. Comportement a I'oxydation De I'oxynitrureD'aluminium Transparent[J]. Journal de Physique,1986,47:521-525.
    [206] Desmaison J, Desmaison-Brut M. High-Temperature Oxidation Kinetics ofNon-Oxide Monolithic and Particulate Composite Ceramics[J]. MaterialsScience Forum,2001,369-372(39):39-54.
    [207] Gogotsi Y G, Yaroshenko V P, Porz F. Oxidation Resistance of BoronCarbide-Based Ceramics[J]. Journal of Materials Science Letters,1992,11(5):308-310.
    [208] Doerner P, Gauckler L J, Krieg H, et al. On the Calculation andRepresentation of Multicomponent Systems[J]. Calphad,1979,3(4):241-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700