用户名: 密码: 验证码:
水性铝-锌基金属微粉涂层工艺和耐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性锌-铝基金属微粉涂层是二十世纪六十年代后期诞生的主要用于钢
    铁表面的一种新型防锈涂层,因高耐蚀、无氢脆、处理过程少污染、适用加
    工的产品品种多,现已在表面处理行业占据一席之地。目前在美国、日本和
    欧洲等地广泛应用,但在我国还处于起步阶段。该涂层的研究具有重要的理
    论和实际意义。现有的产品及现行研究以锌基金属微粉涂层为主,并且涂层
    中铬含量高。为了取代涂层中的六价铬,使其进一步向绿色技术发展,也需
    要全面深入地研究该技术。
    本文以水性铝-锌基金属微粉涂层工艺和耐蚀机理为研究重点。确定了
    水性铝-锌基金属微粉涂层处理液的配方;制定了涂层制备工艺流程:研究
    了处理液各组分的作用和影响涂层性能的因素;较全面地评价了涂层的耐蚀
    性;通过涂层结构和涂层腐蚀行为的研究,提出了涂层保护基体的耐蚀机
    理。
    借助扫描电镜(SEM)研究了铝-锌合金粉的形貌。得出金属粉球磨
    后:片状铝粉明显细化,但其形状没变;球状锌粉未细化,但有较大程度的
    变形。
    收集了大量资料,通过试验验证、分析了处理液各组份的作用。得出润
    湿剂是关键性的组份,在涂液配制和涂覆时润湿分散金属粉,而且在烧结过
    程中作为还原剂。同时比较了磁力搅拌和超声波分散这两种金属粉分散方
    法,由于实验采用的超声波频率的空化作用强,破坏了金属粉的叶浮性且使
    处理液稳定性下降,所以本文采用磁力搅拌器分散金属粉。
    通过正交实验和交互正交实验确定了涂层处理液最佳配方,并通过实验
    确定了影响涂层性能的其它因素的工艺参数,如甩液工艺参数,烘干工艺参
    数(80℃,10min),烧结工艺参数(300℃,20min)。
    采用全浸试验、大气暴露试验检测了涂层的耐蚀性能,检测结果表明涂
    层耐蚀性处在金属涂镀层耐蚀性10级标准中的3-4级,耐蚀性能良好。
    参照国家标准GB 5270-85,采用划格法检验涂层的结合强度,评分为
    9分(满分为10分)。
    通过实验测试了涂层的耐热性能及孔隙率,实验数据表明涂层的耐热性
    能良好,但孔隙率过高。
    
    
    水性铝一锌基金属微粉涂层工艺和耐蚀机理研究
     采用涂层断面金相、X射线衍射、扫描电镜分析方法,研究了涂层微观
    形貌、组织结构、组成成份。涂层中片状铝粉基本上是层层盈加,锌粉不均
    匀地夹杂在铝粉中,金属粉之间通过粘结剂粘结在一起.X射线衍射分析结
    果表明涂层中主要含有的物相为:^l、Zn、ZnCrZO4、^IP04、
    2 n3(P 04)2、C rO3。
     据以上研究结果提出了水性铝一锌基金属微粉涂层耐蚀机理。将该涂层
    对钢/铁基体的腐蚀防护分为两阶段:第一阶段为壁垒保护阶段,片状铝粉
    对腐蚀因子的扩散具有横向导向作用;第二阶段为牺牲阳极保护阶段,涂层
    表现得象纯金属的多孔电极,其腐蚀为氧去极化的浓度控制。
     据耐蚀机理提出了一条改进和发展工艺的思路.通过改善涂层致密性、
    厚度均匀性和使铝在外层富集来增强壁垒效应。
The zinc-aluminum based water-soluble metallic micro-powder coating is a new type anticorrosion coating for mainly iron and steel. It appeared in the end of 1960s, and developed so rapidly because of its advantages such as anticorrosion property, no hydrogen embrittlement, less pollution and having lots of product kind of this processing that at present it holds an important place in metal finishing industry. Although it was applied widely in US, Japan and Europe, it just steps in initial stage of apply in China. The study of the zinc-aluminum based water-soluble metallic micro-powder coating is expected in be very important in both theory and practice. Existing product and current research belong to tiny powder coat with zinc fund mainly, and in coat chromium content is high. To replace hexavalent chromium in this coating and to develop it into a more "green" technology depends on studies of the coating in detail.
    The zinc-aluminum based water-soluble metallic micro-powder coating's process and its anticorrosion mechanism are this paper's research focal point. The components of the coating processing liquid have been provised. The preparation process of the coating has been established. Roles of each component in the zinc-aluminum based water-soluble metallic micro-powder coating and factors effecting coating's capability were studied in this thesis. Anticorrosion performances of this coating were evaluated. An anticorrosion mechanism was proposed based on the studies of coating's structure and corrosion behavior.
    The appearance of aluminum-zinc alloy powder were studied having the aid of SEM. Some conclusions were educed, such as the dimension of flake aluminum powder minished obviously, the dimension of globular zinc didn't minish but its shape was greater changed.
    
    
    
    Having collected plenty of information and having analysed the function of every handle liquid's composition through experiments. Wetter was found to be a key to coating preparation. It not only wetted and dispersed metal powder but also acted as reductor during the period of sintering. At the same time have compared magnetic force stir with supers-onic scatter this two metal powders the method of scattering. Because of the cavitation of the supersonic frequency of adopting, role is strong , has destroied the leaf buoyancy of metal powder and makes handling liquid stability drop , so this paper adopt magnetic force stirrer scatter metal powder.
    Through orthogonality experiment and interactive orthogonality experiment, have determined coat to handle liquid best prescription. And through the technology parameter of the other factor that tests to determine to affect coat performance, such as swing liquid technology parameter, dry te-chnology parameter (80C , 10 min ), sintering technology par-ameter( 300 C, 20 min).
    With immersion experiment and atmosphere expose tested detection the coating's anticorrosion property. Detection result showed the coating's anticorrosion property met 3 ~ 4 levels in 10 sexual level standard. This showed the coating's anticorrosion property was excellent.
    Reference national standard GB5270-85, using the stroke shelf method inspected the coating's strength. It got 9 mark (full mark was 10).
    With coat section metallographic, X-ray diffraction and scanning electrical mirror analysis method, have studied coat microscopic shape look, organization structure and the coating's composition. In coat flake form aluminium powder basically is layer upon layer overlay, zinc powder did not distribute evenly in aluminium powder, glue knoted together between metal powder. X-ray
    
    
    diffraction analysis result showed the main substances in the coat, including Al, Zn, ZnCr2O4, A1PO4, Zn3(PO4)2, CrO3.
    According to above research result had put forward the coating's anticorrosion mechanism. Divided the coating's corrosion protection for steel or iron into two stages. First stage was rampart protect stage, the flat proliferation of flake form aluminium powder for corrosion factor had lateral lead role. Second stage was sa
引文
[1] 何明奕,刘丽.铝基金属微粉涂层.金属热处理,2003,28(8) :13-16
    [2] 张伟明.达克罗-当今世界表面处理的高新技术.材料保护,1995, 28(8) :19-20
    [3] 孙贺明.锌铬膜-一种特殊的表面处理新技术.材料保护,1994,27(8) : 21-23
    [4] 张伟明.锌铝膜表面技术的锌发展及其应用前景.电镀与精饰,1996, 18(6) :19-21,27
    [5] 文光男.锌-铬水系涂层的研究.材料保护,1996,29(6) :1-2
    [6] 文光男,刘希柏.锌基涂层的电化学行为贺防蚀机理.材料保护,1998, 31(2) :8-9
    [7] 文光男.低温热固型锌铬酸盐转化涂层的研究.东北大学学报(自然科 学版),1996,17(1) :75-78
    [8] 魏晓川,杨方坤等.达克罗涂料的制备与应用.沈阳表面处理,2000(2) : 7-10
    [9] 周海晖,许岩,罗胜联等.我国防腐蚀涂料的现状及其发展.表面技术, 2002,31(1) :5
    [10] 郭晓军,何鱼游.水性硅酸锂富锌涂料的研制及应用.涂料工业,2002, 32(4) :37
    [11] Schieferstein L, Gorzinski M, Kuepper Setal. Polymerizable, chromiumfree, organic coatings for metal. US Pat, 6365234, 2002
    [12] 南建林,郭小刚等.水性防锈涂料及其制各方法[P].CN-1096799A, 1994
    [13] 水野贤辅,川口纯,森田良治等. 水性铬酸盐处理组合物及其处理金属 材料的方法[P].CN 1141355A,1997
    [14] 杨宗志.低毒或无毒防锈颜填料的进展.涂料工业,2001(6) :39
    [15] Richard G. Mysliwczyk, Willianm Hetal. Epoxy resin based coating composition and method[P]. US Pat 5635049,1997
    
    
    [16] 夏正斌,涂伟萍.水性金属防护涂料的研究进展.材料保护,2003,36(4) : 5-8
    [17] 胡忠良,马承银.OP-10丙烯酸酯的合成及其乳化特性的研究化学与粘 合.2002,(1) :13
    [18] 张人韬.水性氟硅涂料及其自分层效果研究.新型建筑材料,2002,(6) , 23
    [19] 罗国钦,卢迪斯等.氟树脂防粘涂料的自分层性.涂料工业,2001(3) :38
    [20] 陈玲.烧结式锌铝涂层的制备及耐蚀机理研究[博士论文]. 哈尔滨工 业大学
    [21] 李宁,陈玲等.达克罗技术专利综述.材料保护,2000,(2) :7-10
    [22] Michel Lonca. Dacrotizing an Effective Protection against Corrosion. Finishing. 1 993,7 1 (1 ):2 1-25
    [23] Alain Sontag. Zinc/aluminium Coating for Corrosion Protection. Finishing. 1 992,1 6(8) :3 8-42
    [24] 高勤.达克罗--一种优秀新型涂层.电镀与环保.1995,15(5) : 29-30
    [25] 苏红军.水系锌铬膜涂层技术研究.表面技术,2000,29(1) :12-14
    [26] David P.Chapman. Challenge: aluminum pigments in aqueous coating. Journal of Coatings Technology, 1996,68(862) : 1 9-24
    [27] H.J.Koeppen, Wolfsburg. Korrosionsverhalten von Zinksyste-men and Duplexbeschichtungen in der Praxis. Galvanotechnik. 1997,88(7) :171-176
    [28] L.Fedrizzi, F.Deflorian, S.Rossi. Corrosion Protection of Sintered Metal Parts by Coating Deposition Part 1: Microstructu-ral Characterization. Werkstoffe and Korrosion. 1994,45:264-2 71
    [29] Earl Groshart. Finishing in the Green-Cadmium Replacements. Metal Finishing. 1 997,February, 79-81
    [30] Ralph.W.White. Double Teaming the Elimination of Cadmium-part2. Fastener Technology International. 1995,June:25-29
    
    
    [31] 龚光福.环氧锌鳞片涂料耐蚀性研究.电讯技术,1998,38(1) :43-47
    [32] 金晓鸿.鳞片状锌基环氧富锌底漆的研究.材料保护,1999,32(4) : 25-26
    [33] 朱骥良.颜料工艺学.化学工业出版社.1995:313
    [34] David P.Chapman. Challenge: aluminum pigments in aqueous coatings. Journal of Coatings Technology. 1996, 68(862) : 30-33
    [35] 李宁,陈玲等.锌基烧结涂层基本工艺条件的探索.材料保护,1998,31 (12) :16-18
    [36] 粒子形状、粉体工学便览、日刊工业新闻.日本粉体学会编,1986: 1-15
    [37] 吴昱,吴自强.水体系中颜料分散过程的研究.涂料工业,1998,(9) : 35-37
    [38] 钱逢麟,竺玉书.涂料助剂.化学工业出版社.1990:74
    [39] 马立群,陈锋等.超声在制备SiC/Al-Mg颗粒增强复合材料的应用.东 南大学学报.1995,25(2) :50-54
    [40] Trevor Gregory. Rheological Studies on Paints. Paint & Resin Issue. 1995,(2) :4-5
    [41] N.V.Mandich. Chemistry &Theory of Chromium Deposition : Part 1 Chemistry. Plating & Surface Finishing. 1997,(5) : 108-115
    [42] 王鸿建.电镀工艺学.哈尔滨工业大学出版社.1988:90-95
    [43] 邢辉毅,徐瑞秋等.基础有机化学.高等教育出版社.1984:311-312
    [44] JB/T 6073-92金属覆盖层实验室全浸腐蚀试验
    [45] 金良超.正交设计与多指标分析.中国铁道出版社.1988
    [46] 俭济斌.多因素试验正交选优法.科学出版社.1976
    [47] 孙秋霞.材料的腐蚀与防护.冶金工业出版社.2001:60
    [48] 李国英.表面工程手册.机械工业出版社.1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700