用户名: 密码: 验证码:
铝基水系金属微粉涂层工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的发展,人们对材料的装饰性和表面功能都有了更高的要求,各种各样的表面技术应运而生。而随着环保法规的强化,传统的表面处理工艺,如热浸镀和电镀都因工艺过程产生一定的污染,在许多国家和地区受到不同程度的限制。以达克罗为典型代表的金属微粉涂层技术因其优异的表面防护功效和无污染等特点,正引起人们越来越广泛的关注。
     本论文按照金属微粉涂层的定义,概述了现有的各种金属微粉涂(镀)层的技术特点,经大量的理论分析,提出了铝基水系金属微粉涂层的设想。试以金属铝粉为基体,以其它无毒无害的无机可溶性盐为粘接剂,研制开发出具有较强耐蚀性和少污染的铝基水系金属微粉涂层工艺。并与达可罗涂层技术的相关性能进行比较。
     论文从铝基水系金属微粉涂层所用微粉的制备入手,利用颗粒学、物理、化学、金属学的基础理论知识,结合矿物加工过程中的磨矿、选矿以及机械合金化中的物理化学变化研究设计了金属微粉制备的设备,并确定了制粉工艺的相关参数。制备了可用于获得较好性能涂层的金属微粉。运用显微镜及扫描电镜对制备前后微粉的形态和粒度进行了初步分析。通过试验比较了微粉球磨前后润湿性的变化。
     论文经多次试验研制出了铝基水系金属微粉涂层的配方,并利用正交试验的极差、方差分析方法对各种配方进行优化,确定了获得涂层的最佳烘烤方式,得到了耐蚀性较强的铝基水系金属微粉涂层。还综合考察了涂层中各种化学物质以及不同的加料方法对涂层性能的影响。
     论文通过涂(镀)层耐腐蚀性、耐热性、结合强度以及孔隙率的试验,将铝基水系金属微粉涂层与其它镀层对比,就各项性能指标进行综合分析。
     运用金相显微镜、扫描电镜、牛津能谱分析等现代材料检测手段,对涂层的形貌、与基体的结合状态、空间位置等进行观察和研究。统计分析了工件的表层、
    
    铝基水系金属徽粉涂层口二艺研究
    摘委
    涂层的基层、中间层和涂层表层的化学成分,初步建立了涂层的结构模型。
     因为本论文首次提出铝基水系金属微粉涂层的有关概念,并从事该涂层微粉
    制备、工艺配方以及性能分析等多方面的研究,整个研究过程涉及的内容较多,
    要使该技术应用于实际工业生产,还有许多内容需要进一步地深入和完善。
With the development of modern science and technology, there are higher requirements for the decorative and surficial performance of materials, and many methods of surface treatment come forth. Due to the pollution produced during the process, however, conventional methods of surface treatment, such as hot dip coating and electroplating, is restricted from further development in many countries and areas. With perfect corrosion resistance and free of pollution, Dacromet, a typical representative of metallic micro-powder coating, get more eyes.
    According to the definition of metallic micro-powder coating, this thesis summarized the characteristics of prevailing technology of metallic micro-powder coatings. And the conception of aluminum based water-soluble metallic micro-powder coating was brought forward. Using aluminum powder as substrate and innoxious inorganic water-soluble salts as adhesives, the process of aluminum based water-soluble metallic micro-powder coating was developed. It's capability was compared with that of Dacromet.
    Starting with the preparation of micro-powder used in aluminum based water-soluble metallic micro-powder coating, and in reference to basic theories of physics, chemistry, metallurgy, process of mineral whetting, mill running and physical chemistry about mechanical alloying, this thesis designed the equipment for micro-powder preparation, and the relevant parameters of the equipment were confirmed. Using this experimental equipment, metallic micro-powder for coating was produced. The shape and granularity of original powder and micro-powder were observed and studied through microscope and SEM, and the different moist capability of those metallic powders was compared through experiment as well.
    After many times of test, the formula of aluminum based water-soluble metallic micro-powder coating was found. Those formulas were optimized through the quadrature experiment. The best sinter
    
    
    process was stipulated and coatings with good corrosion resistance were then obtained. The effects of different ingredients and methods of operation on the performance of coating were also discussed.
    In this thesis, the corrosion resistance, heat resistance, bonding strength and porosity of the coating were studied and comparisons of these properties with other coatings were also included.
    The appearance of coating was observed and studied through microscope, SEM, and EDS. The chemical compositions of substrate, the internal, middle, and external layer of coating were statistically analyzed. At the same time, the primary model of coating structure was built up in this thesis.
    Because the conception of aluminum based water-soluble metallic micro-powder coating was brought forward for the very first time in this thesis, and the process of micro-powder preparation, formula research and property analysis of the coating were also included, the contents of this thesis were so complex. Jn order to put this process into industrial use, there are still many problems waiting for further research and amelioration.
引文
[1]徐滨士.表面工程的应用和再制造工程.材料保护,2000,33(1):1~4
    [2]李金桂,肖定全主编.现代表面工程设计手册(第一版).北京:国防工业出版社,2000
    [3]孙秋霞.材料腐蚀与防护(第一版).北京:冶金工业出版社,2001
    [4]赵文轸.材料表面工程导论(第一版).西安:西安交通大学出版社,1998
    [5]重有色金属材料加工手册编写组.重有色金属材料加工手册(第一分册).北京:冶金工业出版社,1979
    [6]杨德钧.金属腐蚀学(第二版).北京:冶金工业出版社,1999
    [7]轻金属材料加工手册编写组.轻金属材料加工手册(第一版).北京:冶金工业出版社,1979
    [8]http://www. ctiin, com. cn 2001.03.20 14:00
    [9]蒋明华.我国铅锌工业的现状及发展方向.昆明理工大学学报,2001,26(10增刊:74~76
    [10]林肇琦.有色金属材料学(第一版).哈尔滨:东北工学院出版社,1986
    [11]谢刚.中国铝工业发展现状及国际竞争力分析.昆明理工大学第一届学术活动月论文,2001,10
    [12]何明奕,刘丽.铝基金属微粉涂层.金属热处理(待发表)
    [13]李国英主编.表面工程手册(第一版).北京:机械工业出版社,1998
    [14]Michall J. Naruslh. Dry Impact Plating Technology. Metal Finish, 1990, 88(7):15
    [15]Ray Holford. Mechanical Plating. Metal Finishing Mid-Yan, 1990.88(Guide Book Directory): 347~353.
    [16]US Pat No 4,880,132. Process for plating adherent co-deposit of aluminum, zinc, and tin onto metallic substrates, and apparatus
    [17]Gordon M. Allison. Mechanical Plating. Metal Finishing Guidebook, Vol. 99 (1A)(2001) pp. 399-408
    [18]何明奕.机械镀锌的工业应用及发展.表面处理杂志(台湾),1997.2(163):120~127
    
    
    [19]王胜民.机械镀锌形层机理的研究[硕士学位论文],昆明,昆明理工大学,2002
    [20]Heringer H K. Dacromet--A New Corrosion Protection for Fasteners [J].Product Finishing, 1977(5):29
    [21]Lonca M. Dacrometizing--An Effective Protection Against Corrosion [J]. Finishing, 1990,14(9):35
    [22]孙贺民.锌铬膜——一种特殊的表面处理新技术.材料保护,1994,27(8):21
    [23]文光男.锌-铬水系涂层的研究.材料保护,1996,29(6):1
    [24]李宁.锌基烧结涂层基本工艺条件的探索.材料保护,1998,31(12):16
    [25]徐立冲等.锌铬膜的制备及其耐蚀性能研究.腐蚀与防护,1998,19(3):108
    [26]于兴文,曹楚南.达克罗技术研究进展.腐蚀与防护,2001,22(1):1
    [27]张俊敏,李建明.国产化达可罗工艺技术及设备初探.材料保护,2002,4:65~66
    [28]韩树民.锌铝铬转化膜微观结构与成膜机理研究.中国腐蚀与防护学报,2002,22(5):269~273
    [29]张伟明.达克罗——当今世界表面处理的高新技术.材料保护,1995,28(8):19~20
    [30]Kennedy; Alexander W. US Pat No4,026,710.Preparation of Zinc Flake Coating Composition. 1977
    [31]Marguier; Gilbert. US Pat No4, 931,074. Anticorrosion coating composition with improved stability, and coated substrate. 1990
    [32]Gunn; Walter H.US Pat No3,954,510.Metal Treating Compositions of Controlled pH. 1976
    [33]Higashiyama; Takao; Nishikawa; Toshio. US Pat No4, 266, 975.Anticorrosibe Coating Composition. 1981
    [34]Foruez; Michel; Lonca; etc. US Pat No4, 799, 959.Anticorrosion coating composition, process for applying it and coated threaded components. 1989
    [35]Dorsett; Terry E. US Pat No4, 487,815.Temperature Resistant coating composite. 1984
    
    
    [36]Hosono; Tetsuo; Nakazato, etc. US Pat No6,361,872. Metal surface treatment agents, methods of treating metal surfaces and pre-coated steel substrates.2002
    [37]李宁,陈玲等.达可罗技术专利综述.材料保护,2000,6:19~21
    [38]Deridder J A. Concentrate for coating composition for metal substrate. US Pat No3,940,280.1976
    [39]王向东.国产镀锌板的耐蚀性研究,第五届中国热浸镀学术技术交流会论文集,中国腐蚀与防护学会,1999
    [40]中国电镀材料网.北方地区有色金属现货价格信息.2003.1.9
    [41](日)精细化学品辞典编辑委员会.精细化学品辞典.北京:化学工业出版社,1989
    [42]曹茂盛.超微颗粒制备科学与技术.哈尔滨:哈尔滨工业大学出版社,1998
    [43]曾凡、胡永平.矿物加工颗粒学(第二版).北京:中国矿业大学出版社,2001
    [44]日本粉体学会编.粒子形状.粉体工学便览.日刊工业新闻,1986:1~15
    [45]现代机械设备设计手册(第三卷)——非标准机械设备设计.北京:机械工业出版社,1996
    [46]黄培云.粉末冶金原理.北京:冶金工业出版社,1997
    [47]432.1972
    [48]陆厚根.粉体技术导论.上海:同济大学出版社,1998
    [49]GB 5270—85 金属基体上的金属覆盖层(电沉积和化学沉积层)附着强度试验方法
    [50]JB/T 6073—92 金属覆盖层 实验室全浸腐蚀试验
    [51]金良超.正交设计与多指标分析(第一版).北京:中国铁道出版社,1988
    [52]俭济斌.多因素试验正交选优法(第一版).北京:科学出版社,1976
    [53]正交试验设计法(第一版).上海:海科学技术出版社,1979
    [54]田口玄一著,魏锡禄、王世芳译.试验设计法.北京:机械工业出版社,1987
    [55]北京大学数学力学系数学专业概率统计组.正交设计——一种安排多因素试验的数学方法.北京:人民教育出版社,1976
    [56]J.K.贝多著,胡云秀、曹勇家译.雾化法生产金属粉末.北京:冶金工业出版社,1985
    [57]中国腐蚀与防护学会主编.腐蚀试验方法与防腐蚀检测技术.北京:化学工
    
    业出版社,1996
    [58]GB/T 10125—1997 人造气氛腐蚀试验—盐雾试验
    [59]ISO 9227:1990 Corrosion tests in artificial atmospheres--Salt spray tests
    [60]GB/T 14293—1998 人造气氛腐蚀试验—一般要求
    [61]ASTM B695--82 Standard Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel.
    [62]QB/SBST 001—2000.Eqv JDIS K 5311.达克罗(DACROMET)金属表面防护涂层.上海市企业标准
    [63]GB/T 17721—1999 金属覆盖层 孔隙率试验 铁试剂试验
    [64]张安良.镀锌、磷化、涂膜工艺在活柱上的应用.材料保护,1996(29)3:27~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700