用户名: 密码: 验证码:
非稀土Co-Zr系合金的结构与硬磁性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在全面评述永磁材料的基础上,采取快淬工艺成功制备出了一系列高矫顽力的Co-Zr基永磁合金薄带,对其相组成、微结构、硬磁性质和矫顽力机制进行了详细研究。一方面,利用Mo元素添加,获得了具有单Co5Zr相的条带样品,进一步拓宽了合金的成分范围,得到了富Co区Co-Zr合金具有单Co5Zr相结构的成分组成,详细分析了其结构与磁性的关系,发现Co5Zr是合金的硬磁性相,该相的含量与平均晶粒尺寸是决定矫顽力大小的主要因素,证明了Co-Zr-Mo合金条带的矫顽力机理为反磁化核的形核机制。此外,还利用分裂能带模型分析了部分样品的低温磁矩。另一方面,利用B和Mo元素进行联合添加,获得了目前Co-Zr系统合金的最大矫顽力,通过对其微结构的分析,发现Co-Zr-B-Mo合金条带的高矫顽力与其独特的微结构有密切的关系,结合磁性测量的结果,证明了Co-Zr-B-Mo合金条带的矫顽力机理为面缺陷控制下的非均匀畴壁钉扎。
In this thesis, formation, structural and magnetic properties of the non-rare-earth containing Co-Zr system alloys have been investigated, based on the review of the research and development of permanent magnetic materials, using melt-spun technology and element additive method. The purpose of this paper is to search for new permanent magnetic materials without rare earth. Furthermore, the coercivity mechanism of such permanent magnets is studied also.
     1. Co-Zr alloy ingots were prepared by arc melting and the melt-spun ribbons were successfully produced by rapidly quenched technology. We had systematically studied the structure and magnetic properties of those alloys.
     From x-ray diffraction analysis of Co_(100-x)Zr_x(x=16~20)alloy ingots and those melt-spun ribbons, we find that alloy ingots are composed of face-centered cubic Co, Co_(23)Zr_6,Co_5Zr and Co11Zr2 phase, while the melt-spun ribbons are composed of face-centered cubic Co, Co_(23)Zr_6 and Co_5Zr phase. Further analysis show that the more Co_5Zr phase the ribbon contains, the larger the coercivity it has. This indicates that the hard magnetic phase in Co-Zr alloy is Co_5Zr phase. This result has clarified the controversy for the hard magnetic phase in Co-Zr alloys and provided a basic research for further study of Co-Zr alloys. By the analysis of magnetic properties on the binary Co-Zr alloy samples with different components and quenching rates, we have obtained the optimized coercivity values of the component and quenching rate. The purpose of this work is to further study of Co-Zr alloys by additive. We had attempted to study magnetic properties of Co-Zr alloys by transition metal additive. It has been first found that the coercivity of Co-Zr alloy could be significantly enhanced by a small amount of Mo additive. From x-ray diffraction analysis of Co_(82-x)Zr_(18)Mo_x(x=1~5) alloy ribbons, we find that the melt-spun ribbons were composed of face-centered cubic Co and Co_5Zr phase. With the increasing of Mo content, the mount of Co_5Zr phase in those ribbons increases also. When the Mo content is up to 5%, the ribbons with nearly single Co_5Zr phase structure had been first found.
     2. We had systematically studied the effects of Mo additive on structure and magnetic properties of Co-Zr alloy.
     From thermo magnetic analysis of Co-Zr-Mo system alloy ribbons, we find that the Curie temperature of Mo doped Co_5Zr phase is about 450°C. The high Curie temperature suggests that Co-Zr permanent materials have potential applications for high temperature. The x-ray diffraction analysis and magnetic measurement of those ribbons show that Mo additive leads to a decrease of the magnetization measured in the field of 10kOe. While Mo additive plays an important role in increasing the mount of Co_5Zr phase, refining the grain size and enhancing coercivity. Those results confirm that the hard magnetic phase in the Co–Zr-Mo alloys is of Co_5Zr phase. The influence of quenching rate on the magnetic properties of Co-Zr-Mo melt-spun ribbons had been investigated. It is found that with the increasing of quenching rate, the coercivity increases linearly. The reason for this case is that with the increasing of quenching rate, the mount of minor phase (Co_(23)Zr_6) and the grain size of major phase (Co_5Zr) will decrease sharply. The influence of annealing on the magnetic properties of Co-Zr-Mo melt-spun ribbons had been investigated. It is found that annealing will lead to coercivity change by the change of the mount of Co_5Zr phase and the grain size of this phase. According to magnetizing field dependence of coercivity, the coercivity mechanism is controlled by the nucleation of the reversed domain.
     We had broadened and refined the range of compositions studies to systematically study the structure and magnetic properties of Co-Zr-Mo melt-spun ribbons. From x-ray diffraction analysis of Co_(100-x-y)Zr_xMo_y (x=15.5~18.5,y=4.0~6.5) melt-spun ribbons, we find that the major phase is Co_5Zr and minor phase is Co together with Co_(23)Zr_6. The composition range of the ribbons with nearly single Co_5Zr phase structure is x=18.0 y=5.0~6.0, x=16.5~18.0 y=5.5 and x=18.5 y=5.0. Coercivity, magnetization measured in the field of 10kOe and mean grain size of Co_5Zr phase as a function of composition of Cobalt-rich Co-Zr-Mo melt-spun ribbons were investigated. We can see that when the atomic proportion of Co Mo and Zr is near at 5:1, the ribbons will have the maximum coercivity value (4.7kOe). In comparison with the maximum coercivity value (3.6kOe) of the binary Co-Zr alloy, the maximum coercivity value increases near 30%. We had systematically analyzed the factors which affected the coercivity. We find that the effect of the mount of Co_5Zr phases is much less important than that of grain size. The meaning of this result is the confirmation that decrease of grain size is a effective method to increase coercivity. This study provides a method to further improve their magnetic properties.
     We had investigated the low temperature magnetic properties of some Co-Zr-Mo melt-spun ribbons. We find that the coercivity of the ribbons at low temperature are significantly higher than that of the ribbons at room temperature, that is to say, temperature dependence of coercivity is abnormal. According to magnetization measured in the field of 10kOe at low temperature (-196℃) dependence of composition, we find that experimental results can be in good agreement with the virtual bound state model.
     3. According to the theory of amorphous, the larger the difference in the size of constituent atoms, the easier the amorphous formed. So, small B atom is introduced into the Co-Zr-Mo alloys in an attempt to reduce the grain size and increase consequently the coercivity. The structure and magnetic properties of Co-Zr-B-Mo melt-spun ribbons had been studied.
     The largest coercivity of 7.0kOe ever for Co-Zr based alloys is observed on Co_(77)Zr_(16)B_2Mo_5 ribbons by the melt spinning. In addition, magnetization measured in the field of 10kOe increases with the increasing of the B content. From x-ray diffraction analysis of Co_(77)Zr_(18-x)B_xMo_5(x=0.5~4.0)melt-spun ribbons, we find that the ribbon of x=4.0 is amorphous. In the other ribbons major phase Co_5Zr and minor phase Co of face-centered cubic structure are coexist. According to thermo magnetic analysis and AC magnetic susceptibility measurements of Co-Zr-B-Mo melt-spun ribbons, we find that the Curie temperature of major phase is about 450°C, which is nearly unchanged with the increasing of the B content. The influence of annealing on the magnetic properties of Co-Zr-B-Mo melt-spun ribbons had been investigated. It can be seen that annealing at low temperature will lead to coercivity increase insignificantly while annealing at high temperature will lead to coercivity decrease significantly.
     The microstructure of Co_(77)Zr_(16)B_2Mo_5 melt-spun ribbons had been investigated by the transmission electron microscopy. The ribbons are of multi-crystalline structure. There are many blocky grains in the ribbons. Length and width of the grains are about a few hundred nanometers and the thickness of the grains is about several tens of nanometers. Each grain has the alternating light and dark lamellar structure, which suggests that the grains have high density of planar defects. The thickness of the planar defects is 2~5 nm. The spots in the Selected area electron diffraction(SAD)pattern demonstrate the characteristics of single crystal diffraction, but there is a broadened ring, suggesting that the ribbons is a partial crystal structure. The high coercivity may be related to the unique micro-structure of Co_(77)Zr_(16)B_2Mo_5 melt-spun ribbons.
     The coercivity indicates the ability of resisting the reversal field for a permanent magnets and the coercivity mechanism is key problem in permanent magnets. According to magnetizing field dependence of reduced remanence and coercivity and Henkel Plot, the coercivity mechanism is controlled by inhomogeneous domain pinning with planar defects. Unfortunately, it is impossible to calculate the theoretical coercivity according to the planar defects model because many parameters, especially in the planar defects, are unknown.
引文
[1] J. D. LIVINGSTON, Proceedings of Eighth International Workshop on Rare Earth Magnets, edited by K . J . Strnat, 1985 [C]. University of Dayton, Ohio, p. 423-440.
    [2] G. HERZER, W. FERNENGEL, E. ADLER, On the theory of nucleation fields in uniaxial ferromagnets [J]. J. Magn. Magn. Mater., 1986,58: 48-54.
    [3] L. H. LEWIS, D. O. WELCH, F. POURARIAN. Quantitative characterization of additional ferromagnetic phase in melt-quenched and sintered Nd–Fe–B-based magnets [J]. J. Appl. Phys.,1996, 79: 5513-5515.
    [4] H. KRONMULLER, K. D. DURST, M. SAGAWA. Analysis of the magnetic hardening mechanism in RE-Fe-B permanent magnets [J]. J. Magn. Magn. Mater., 1988, 74: 291–302.
    [5] M. SAGAWA, S. HIROSAWA, H. YAMAMOTO, S. FUJIMURA, H. TOKUHARA, K. HIRAGA. Magnetic properties of the BCC phase at grain boundaries in the Nd-Fe-B permanent magnet [J]. IEEE Trans. Magn. 1986, MAG-22: 910-912.
    [6] F. E. PINKERTON, D. J. VAN WINGERDEN. Magnetization process in rapidly solidified neodymium-iron-boron permanent magnet materials [J]. J. Appl. Phys.1986, 60: 3685-3690.
    [7] G. C. HADJIPANAYIS, A. T. KIM. Domain wall pinning versus nucleation of reversed domains in R-Fe-B magnets (invited) [J]. J. Appl. Phys., 1988, 63: 3310-3315.
    [8] G. C. HADJIPANAYIS, K. R. LAWLESS, R. C. DICKERSON. Magnetic hardening in iron-neodymium-boron permanent magnets [J]. J. Appl. Phys., 1985, 57: 4097-4099.
    [9] K. J. STRNAT, H. F. MILDRUM, M. TOKUNAGA, H. HARADA. Evidence for domain wall pinning by a magnetic grain-boundary phase in sintered Nd‐Fe‐B based permanent magnets [J]. J. Appl. Phys., 1988, 63: 3321-3323.
    [10] D.GIVORD, Q.LU, M.F.ROSSIGNOL, P.TENAUD, T.VIADIEU.Experimental approach to coercivity analysis in hard magnetic materials [J]. J. Magn. Magn. Mater., 1990,83: 183-188.
    [11]E.C.STONER, E.P.WOHLFARTH. A mechanism of magnetic hysteresis in heterogeneous alloys [J]. Phil. Trans. R. Soc. London A 240, 1948, 826: 599–642.
    [12] K. STRNAT, G. HOFFER, J. OLSON, W. OSTERTAG, J. J. BECKER. A Family of New Cobalt-Base Permanent Magnet Materials [J]. J. Appl. Phys, 1967, 38: 1001-1002.
    [13] K. H. J. BUSCHOW. Magnet material with a (BH)/sub max/ of 18.5 million gauss oersteds [J]. Philips. Tech. Rew, 1968, 29: 336-337.
    [14] K. J. STRNAT. Permanent magnets based on 4f-3d compounds [J]. IEEE. Trans. Magn, 1987, MAG-23: 2094-2099.
    [15] K. H. J. BUSCHOW et al. Permanent magnetic materials of rare earth cobalt compounds [J]. Z. Angew. Phys, 1969, 26: 157-160.
    [16] K. H. J. BUSCHOW. Intermetallic compounds of rare-earth and 3d transition metals [J]. Rep. Prog. Phys, 1977,40: 1179-1256.
    [17] W. A. J. J. VELGE, K. H. J. BUSCHOW. Magnetic and crystallographic properties of some rare earth cobalt Compounds with CaZn5 structure [J]. J. Appl. Phys, 1968, 39: 1717-1720.
    [18] K. S. V. L. NARASIMHAN, W. E. WALLACE, R. D. HUTCHENS, J. E. GREEDAN. Magnetic Anisotropy of R2Co17 Compounds (R = Er, Tm, Yb) [C]. AIP Conference Proceedings. 1974,18:1212-1216.
    [19] H. P. KLEIN, A. MENTH and R. S. PERKINS. Magnetocrystalline anisotropy of light rare-earth cobalt compounds [J]. Physical B, 1975, 80: 153-163.
    [20] J. E. GREEDAN, V. U. S. RAO. An analysis of the rare earth contribution to the magnetic anisotropy in RCo5 and R2Co17 compounds [J]. J. Solid. St. Chem. France, 1973, 6: 387-395.
    [21] S. G. SANKAR et al. Magnetocrystalline anisotropy of SmCo5 and its interpretation on a crystal-field model [J]. Phys. Rev. B, 1975, 11: 435-439.
    [22] K. H. J. BUSCHOW et al. Crystal-field anisotropy of Sm3+ in SmCo5 [J]. Solid St. Commun, 1974, 15: 903-906.
    [23] K. J. STRNAT et al. Ferrimagnetism of the Rare-Earth-Cobalt Intermetallic Compounds R2Co17 [J]. J. Appl. Phys, 1966, 37: 1252-1253.
    [24] S. YAJIMA, M. HAMANO. Magnetocrystalline Anisotropy of Nonstoichiometric Y2+xCo17-2x [J]. J. Phys. Soc. Japan, 1972, 32: 861-864.
    [25] N. S. BILONIZHKO AND B. YU. KUZMA. SYSTEM Ce-Fe-B [J]. J. Inorg. Mater (USSR), 1972, 8: 183-184.
    [26] N. F. CHABAN, B. YU. KUZMA, N. S. BURODUHKO, O. O. KACHMAR and N. N. PETROV, DOPOV. Ternary systems {Nd, Sm, Gd}-Fe-B [J]. Ahad Nauk USSR SerA, Fiz Mat. Tekh, 1979, 10 : 873-875. [27 ]J. J. CROAT. Preparation and coercive force of melt-spun Pr-Fe alloys [J]. Appl. Phys. Lett, 1980, 37: 1096-1098.
    [28] J. J. CROAT. Observation of large room-temperature coercivity in melt-spun Nd0.4Fe0.6 [J]. Appl. Phys. Lett, 1981, 39: 357-358.
    [29] J. J. CROAT. Magnetic properties of melt-spun Pr-Fe alloys [J]. J. Appl. Phys, 1981, 52: 2509-2511.
    [30] J. J. CROAT. Magnetic hardening of Pr-Fe and Nd-Fe alloys by melt-spinning [J]. J. Appl. Phys, 1982, 53: 3161-3169.
    [31] N. C. KOON and B. N. DAS. Magnetic properties of amorphous and crystallized (Fe0.82B0.18)0.9Tb0.05La0.05 [J]. Appl. Phys. Lett, 1981, 39: 840-842.
    [32] G. C. HADJIPANAYIS, R. C. HAZELTON, and K. R. LAWLESS. Cobalt-free permanent magnet materials based on iron-rare-earth alloys [J]. J. Appl. Phys, 1984, 55: 2073-2077.
    [33] M. SAGAWA, S. FUJIMURA, M. TOGAWA, H. YAMAMOTO, AND Y. MATSUURA. New material for permanent magnets on a base of Nd and Fe [J]. J. Appl. Phys, 1984, 55: 2083-2087.
    [34] J. M. D. COEY. Effect of hydrogen on the magnetic properties of Y2Fe14B [J]. S.S.Com, 1986, 58: 413-416.
    [35] K. H. J. BUSCHOW. 1988[C], Ferromagnetic Materials. A. Handbook on the Properties of Magnetically Ordered Substances, Vol.4 Ch.1, edited by E. P. Wohlfarth and K. H. J. Buschow (Elserier, the Netherlands).
    [36] H. Harada. Proceeding of“NdFeB98”Gorham. Interetech Consulting. Beijing China: October 18-21. 1998.
    [37] Z. ALTOUNIAN, E. BATALLA, and J. O. STROM-OLSEN. Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10 [J]. J. Appl. Phys., 1986, 59: 2364-2367. [38 ]A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. Magnetic moment suppression in rapidly solidified Co-Te-B alloys [J]. J. Appl. Phys., 1988, 63: 3388-3390.
    [39]A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. New microcrystalline hard magnets in a Co-Zr-B alloy system [J]. IEEE Trans. Magn., 1989, 25: 3312-3314.
    [40] GAO, H. WAN, G. C. HADJIPANAYIS. High coercivity in non-rare-earth containing alloys [J]. J. Appl. Phys., 1990, 67: 4960-4962.
    [41] G. STROINK, Z. M. STADNIK. G. VIAU, R. A. DUNLAP. The influence of quenching rate on the magnetic properties of microcrystalline alloys Co80Zr20-xBx [J]. J. Appl. Phys., 1990, 67: 4963-4965.
    [42] T. ISHIKAWA, K. OHMORI. Hard magnetic phase in rapidly quenched Zr-Co-B alloys [J]. IEEE Trans. Magn., 1990, 26: 1370-1372.
    [43] B.-G. SHEN, H.-Q. GUO, L-Y. YANG, J.-G. ZHAO. A new permanent magnetic material crystallized from amorphous Co84-xBxZr16 alloys [J]. Chin. Phys. Lett., 1990, 7: 365-368.
    [44] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Magnetic hardening of rapidly quenched Co100-xZrx alloys [J]. J. Magn. Magn. Mater., 1990, 92: L30-L34.
    [45] B.-G. SHEN, H.-Q. GUO, L.-Y. YANG, J.-X. ZHANG, J.-G. ZHAO. Crystallization of amorphous Co84-xBxZr16 alloys and its influence on hard magnetic properties [J]. Phys. stat. Sol., 1990, 121(3): KlO5-K109.
    [46] B.-G. SHEN, H.-Q. GUO, L-Y. YANG, J.-G. ZHAO. Magnetic properties and crystallization of amorphous Co100-x-yBxZry alloys [J]. Mater. Sci. Eng., 1991, 133: 165-168.
    [47] B.-G. SHEN, L.-Y. YANG, J.-X. ZHANG, H.-Q. GUO. Magnetic properties in melt-spun Co82B2Zr16 alloy [J]. Solid State Commun, 1991, 77: 783-787.
    [48] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Influence of Fe Substitution for Co on the Magnetic Properties of Melt-Spun Co-Fe-Zr Alloys [J]. Phys. Stat. Sol. (a), 1991, 124: 345-350.
    [49] BAO-GEN SHEN, LIN-YUAN YANG, LEI CAO, and HUI-QUN GUO. Hard magnetic properties in melt-spun Co82-xFexZr18 alloys [J]. J. Appl. Phys., 1993, 73: 5932-5934.
    [50] BAO-GEN SHEN, LIN-YUAN YANG, LEI CAO, and HUI-QUN GUO. Magnetic hardening of rapidly quenched Co-M-Zr (M=B, Fe) alloys [J]. Chin. Phys. Lett., 1993, 10: 175-178.
    [51] S. F. CHENG, W. E. WALLACE, and B. G. DEMCZYK. In Proceeding of the Sixth International Symposium on Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, Pittsburgh, PA, Oct. 1990[C], p.477.
    [52] A. M. GABAY, Y. ZHANG, G. C. HADJIPANAYIS. Cobalt-rich magnetic phases in Zr-Co alloys [J]. J. Magn. Magn. Mater., 2001, 236: 37-41.
    [53] TETSUJI SAITO. High performance Co-Zr-B melt-spun ribbons [J]. Appl. Phys. Lett, 2003, 82: 2305-2307.
    [54] TETSUJI SAITO. The Origin of the Coercivity in Co-Zr System Alloys [J]. IEEE Trans. Magn., 2003, 39: 2890-2892.
    [55] TETSUJI SAITO. Magnetization Process in Co-Zr-B Permanent-Magnet Materials [J]. IEEE Trans. Magn., 2004, 40: 2919-2921.
    [56] TETSUJI SAITO. Effects of the additives to Co-Zr alloys on their magnetic properties [J]. IEEE Trans. Eng. Manage, 2004, 124: 876-878.
    [57] TETSUJI SAITO, YASUSHI KAMAGATAL, WEN QQAN WANG. Magnetization in Co-Zr-C Melt-Spun Ribbons [J]. IEEE Trans. Magn, 2005, 41: 3787-3789.
    [58] L. Y. CHEN, H. W. CHANG, C. H. CHIU, C. W. CHANG, W. C. CHANG. Magnetic properties phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites [J]. J. Appl. Phys., 2005, 97: 10F307-1-F307-3.
    [1] P. CURIE. Sur la symétrie dans les phénomènes physiques [J]. Compt. Rend, 1894, 118: 796-859.
    [2] P. CURIE. On the symmetry in physical phenomena, symmetry of an electrical field and of a magnetic field [J]. J. de. Phys, 1894, 3:393-415.
    [3] P. CURIE. Proprietes magnetiques des corps a diverses temperatures [J]. Ann. De. Chim. Phys. 1895, 5 (7): 289-405.
    [4] P. LANGEVIN .Sur la théorie du magnétisme [J]. J. Phys, 1905, 4: 678-693.
    [5] P. LANGEVIN. Magnetisme et theorie des electrons [J]. Ann. De. Chim. Phys, 1905,5:70-75。
    [6] P. WEISS. L’hypothese du champ moleculaire et la propriete ferromagnetique [J]. J. Phys. Radium, 1907, 6: 661-690.
    [7] J.FRENKEL. Elementare theorie magnetischer und elektrischer eigenschaften der metalle beim absoluten nullpunkt der temperatur [J]. Z.physik, 1928, 49: 31-45
    [8] W.HEISENBERG. Zur theorie des ferromagnetismus [J].Z.physik, 1928, 49: 619-636
    [9] F.BLOCH. Bemerkung zur elektronentheorie des ferromagnetismus und der elektrischen leitf?higkeit [J]. Z.physik, 1929, 57: 545-555
    [10] E.STONER. Atomic moments in ferromagnetic metals and alloys with non-ferromagnetic elements [J]. Phil.Mag., 1933, 15: 1018-1034
    [11] N.F.MOTT. A discussion of the transition metals on the basis of quantum mechanics [J]. Proc.Phys.Soc., 1935, 47: 571-588
    [12] J.C.SLATER. The ferromagnetism of nickel [J]. Phys.Rev., 1936, 49: 537-545
    [13] E.P.WOHLFARTH. The theoretical and experimental status of the collective electron theory of ferromagnetism [J]. Rev. Mod. Phys., 1953, 25: 211 - 219
    [14] F.BLOCH. Zur theorie des ferromagnetismus [J]. Z.physik, 1930, 61: 206-219
    [15] J. H. VANVLECK. The theory of electric and magnetic susceptibilities [M]Clarendon Press, Oxford, 1932.
    [16] HOLSTEIN T, PRIMAKOFF H. Field dependence of the intrinsic domain magnetization of a ferromagnet [J]. Phys. Rev., 1940, 58:1098-1113
    [17] T.MORIYA. Recent progress in the theory of itinerant electron magnetism [J]. J.Magn.Magn.Mat.,1979, 14: 1-46
    [18] L. NEEL. Propriétés magnétiques des ferrites, ferrimagnétisme [J]. Ann.de Phys., 1948, 3: 137-198
    [19] J.FRENKEL, J.DORFMAN. Spontaneous and induced magnetisation in ferromagnetic bodies [J]. Nature,1930, 126: 274-275
    [20] FRIEDBERG R,PAUL D I. New theory of coercive force of ferromagnetic materials [J]. Phys.Rev.Lett.,1975, 34:1234-1237
    [21] HIZINGER H R. The influence of planar defects on the coercive field of hard magnetic materials [J]. Appl. Phys., 1977, 12: 253-260
    [22] PAUL D I. General theory of coercive force due to domain wall pinning [J]. J. Appl.Phys.,1982, 53: 1649-1654
    [23] PAUL D I. Extended theory of coercive force due to domain wall pinning [J]. J. Appl.Phys.,1982, 53: 2362-2364
    [1] M. SAGAWA, S. FUJIMURA, N. TOGAWA, H. YAMAMOTO, AND Y. MATSUURA. New material for permanent magnets on a base of Nd and Fe [J]. J. Appl. Phys, 1984, 55: 2083-2087.
    [2] J. M. D. COEY and H. SUN. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia [J]. J. Magn. Magn. Mater, 1990, 87: L251-L254.
    [3] K. D. KORT. in Proc. 14th Int. Workshop Rare Earth Magnets and Applications, San Paulo, Brazil, 1996[C], pp. 47-56.
    [4] K. INOMATO, T. SAWA, and S. HASHIMOTO. Effect of large boron additions to magnetically hard Fe-Pt alloys [J].J. Appl. Phys, 1988, 64: 2537-2540.
    [5] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. Magnetic moment suppression in rapidly solidified Co-Te-B alloys [J]. J. Appl. Phys, 1988, 63: 3388-3390.
    [6] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. New microcrystalline hard magnets in a Co-Zr-B alloy system [J]. IEEE Trans. Magn, 1989, 25: 3312-3314.
    [7] Z. ALTOUNIAN, E. BATALLA, and J. O. STROM-OLSEN. Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10 [J]. J. Appl. Phys, 1986, 59: 2364-2367.
    [8] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Magnetic hardening of rapidly quenched Co100-xZrx alloys [J]. J. Magn. Magn. Mater, 1990, 92: L30-L34.
    [9] B.-G. SHEN, L.-Y. YANG, J.-X. ZHANG, H.-Q. GUO. Magnetic properties in melt-spun Co82B2Zr16 alloy [J]. Solid State Commun, 1991, 77: 783-787.
    [10] C. GAO, H. WAN, G. C. HADJIPANAYIS. High coercivity in non-rare-earth containing alloys [J]. J. Appl. Phys, 1990, 67: 4960-4962.
    [11] TETSUJI SAITO. High performance Co-Zr-B melt-spun ribbons [J]. Appl. Phys. Lett, 2003, 82: 2305-2307.
    [12] TETSUJI SAITO. Magnetization Process in Co-Zr-B Permanent-MagnetMaterials [J]. IEEE Trans. Magn, 2004, 40: 2919-2921.
    [13] L. Y. CHEN, H. W. CHANG, C. H. CHIU, C. W. CHANG, W. C. CHANG. Magnetic properties phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites [J]. J. Appl. Phys, 2005, 97: 10F307-1-F307-3.
    [14] G. STROINK, Z. M. STADNIK. G. VIAU, R. A. DUNLAP. The influence of quenching rate on the magnetic properties of microcrystalline alloys Co80Zr20-xBx [J]. J. Appl. Phys, 1990, 67: 4963-4965.
    [15] T. ISHIKAWA, K. OHMORI. Hard magnetic phase in rapidly quenched Zr-Co-B alloys [J]. IEEE Trans. Magn, 1990, 26: 1370-1372.
    [16] XIAO-FENGYAO and JIAN-PING WANG. Microstructure and magnetic properties of CoZr thin film [J]. J. Appl. Phys, 2003, 93: 8310-8312.
    [17] TETSUJI SAITO. The Origin of the Coercivity in Co-Zr System Alloys [J]. IEEE Trans. Magn, 2003, 39: 2890-2892.
    [18] TETSUJI SAITO, YASUSHI KAMAGATAL, WEN QQAN WANG. Magnetization in Co-Zr-C Melt-Spun Ribbons [J]. IEEE Trans. Magn, 2005, 41: 3787-3789.
    [19] TETSUJI SAITO. Effects of the additives to Co-Zr alloys on their magnetic properties [J]. IEEJ Trans. FM, 2004,124: 876-880.
    [20] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Influence of Fe Substitution for Co on the Magnetic Properties of Melt-Spun Co-Fe-Zr Alloys [J]. Phys. Stat. Sol. (a), 1991, 124: 345-350.
    [21] BAO-GEN SHEN, LIN-YUAN YANG, LEI CAO, and HUI-QUN GUO. Hard magnetic properties in melt-spun Co82-xFexZr18 alloys [J]. J. Appl. Phys., 1993, 73: 5932-5934.
    [22] BAO-GEN SHEN, LIN-YUAN YANG, LEI CAO, and HUI-QUN GUO. Magnetic hardening of rapidly quenched Co-M-Zr (M=B, Fe) alloys [J]. Chin. Phys. Lett., 1993, 10: 175-178.
    [23] L. PARETI, M. SOLZI, and A.PAOLUZI. Magnetocrystalline anisotropy of 3d sublattice in the cubic intermetallic system Zr6Co23-xMx(M=Fe,Ni) [J]. J. Appl. Phys., 1993, 73: 2941-2947.
    [1] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. Magnetic moment suppression in rapidly solidified Co-Te-B alloys [J]. J. Appl. Phys, 1988, 63: 3388-3390.
    [2] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. New microcrystalline hard magnets in a Co-Zr-B alloy system [J]. IEEE Trans. Magn, 1989, 25: 3312-3314.
    [3] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Magnetic hardening of rapidly quenched Co100-xZrx alloys [J]. J. Magn. Magn. Mater, 1990, 92: L30-L34.
    [4] BAO-GEN SHEN, LIN-YUAN YANG, LEI CAO, and HUI-QUN GUO. Hard magnetic properties in melt-spun Co82-xFexZr18 alloys [J]. J. Appl. Phys., 1993, 73: 5932-5934.
    [5] BAO-GEN SHEN, LIN-YUAN YANG, LEI CAO, and HUI-QUN GUO. Magnetic hardening of rapidly quenched Co-M-Zr (M=B, Fe) alloys [J]. Chin. Phys. Lett., 1993, 10: 175-178.
    [6] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Influence of Fe Substitution for Co on the Magnetic Properties of Melt-Spun Co-Fe-Zr Alloys [J]. Phys. Stat. Sol. (a), 1991, 124: 345-350.
    [7] TETSUJI SAITO. The Origin of the Coercivity in Co-Zr System Alloys [J]. IEEE Trans. Magn, 2003, 39: 2890-2892.
    [8] TETSUJI SAITO, YASUSHI KAMAGATAL, WEN QQAN WANG. Magnetization in Co-Zr-C Melt-Spun Ribbons [J]. IEEE Trans. Magn, 2005, 41: 3787-3789.
    [9] TETSUJI SAITO. Effects of the additives to Co-Zr alloys on their magnetic properties [J]. IEEJ Trans. FM, 2004,124: 876-880.
    [10] B.-G. SHEN, L.-Y. YANG, J.-X. ZHANG, H.-Q. GUO. Magnetic properties in melt-spun Co82B2Zr16 alloy [J]. Solid State Commun, 1991, 77: 783-787.
    [11] C. GAO, H. WAN, G. C. HADJIPANAYIS. High coercivity in non-rare-earth containing alloys [J]. J. Appl. Phys, 1990, 67: 4960-4962.
    [12] TETSUJI SAITO. High performance Co-Zr-B melt-spun ribbons [J]. Appl. Phys. Lett, 2003, 82: 2305-2307.
    [13] TETSUJI SAITO. Magnetization Process in Co-Zr-B Permanent-Magnet Materials [J]. IEEE Trans. Magn, 2004, 40: 2919-2921.
    [14] L. Y. CHEN, H. W. CHANG, C. H. CHIU, C. W. CHANG, W. C. CHANG. Magnetic properties phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites [J]. J. Appl. Phys, 2005, 97: 10F307-1-F307-3.
    [15] G. STROINK, Z. M. STADNIK. G. VIAU, R. A. DUNLAP. The influence of quenching rate on the magnetic properties of microcrystalline alloys Co80Zr20-xBx [J]. J. Appl. Phys, 1990, 67: 4963-4965.
    [16] T. ISHIKAWA, K. OHMORI. Hard magnetic phase in rapidly quenched Zr-Co-B alloys [J]. IEEE Trans. Magn, 1990, 26: 1370-1372.
    [17] Z. ALTOUNIAN, E. BATALLA, and J. O. STROM-OLSEN. Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10 [J]. J. Appl. Phys, 1986, 59: 2364-2367.
    [18] XIAO-FENGYAO and JIAN-PING WANG. Microstructure and magnetic properties of CoZr thin film [J]. J. Appl. Phys, 2003, 93: 8310-8312.
    [19] K. H. J. BUSCHOW. New developments in hard magnetic materials [J]. Rep. Prog. Phys.,1991, 54: 1123-1213
    [20] K.J.STRNAT, Ferromagnetic Materials, edited by E. P. Wohlfarth and K. H. J. Buschow , [C] North–Holland, Amsterdam, 1988, 4: 131–209
    [1] B.-G. SHEN, L.-Y. YANG, J.-X. ZHANG, H.-Q. GUO. Magnetic properties in melt-spun Co82B2Zr16 alloy [J]. Solid State Commun, 1991, 77: 783-787.
    [2] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Magnetic hardening of rapidly quenched Co100-xZrx alloys [J]. J. Magn. Magn. Mater, 1990, 92: L30-L34.
    [3] TETSUJI SAITO. Magnetization Process in Co-Zr-B Permanent-Magnet Materials [J]. IEEE Trans. Magn, 2004, 40: 2919-2921.
    [4] TETSUJI SAITO, YASUSHI KAMAGATAL, WEN QQAN WANG. Magnetization in Co-Zr-C Melt-Spun Ribbons [J]. IEEE Trans. Magn, 2005, 41: 3787-3789.
    [5] T. ISHIKAWA, K. OHMORI. Hard magnetic phase in rapidly quenched Zr-Co-B alloys [J]. IEEE Trans. Magn, 1990, 26: 1370-1372.
    [6] K. INOMATO, T. SAWA, and S. HASHIMOTO. Effect of large boron additions to magnetically hard Fe-Pt alloys [J].J. Appl. Phys, 1988, 64: 2537-2540.
    [7] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. New microcrystalline hard magnets in a Co-Zr-B alloy system [J]. IEEE Trans. Magn, 1989, 25: 3312-3314.
    [8] A. M. GABAY, Y. ZHANG, G. C. HADJIPANAYIS. Cobalt-rich magnetic phases in Zr-Co alloys [J]. J. Magn. Magn. Mater., 2001, 236: 37-41.
    [9] Z. ALTOUNIAN, E. BATALLA, and J. O. STROM-OLSEN. Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10 [J]. J. Appl. Phys, 1986, 59: 2364-2367
    [10] G. STROINK, Z. M. STADNIK. G. VIAU, R. A. DUNLAP. The influence of quenching rate on the magnetic properties of microcrystalline alloys Co80Zr20-xBx [J]. J. Appl. Phys, 1990, 67: 4963-4965.
    [11] C. GAO, H. WAN, G. C. HADJIPANAYIS. High coercivity in non-rare-earth containing alloys [J]. J. Appl. Phys, 1990, 67: 4960-4962.
    [12] TETSUJI SAITO. The Origin of the Coercivity in Co-Zr System Alloys [J]. IEEE Trans. Magn, 2003, 39: 2890-2892.
    [13] L. Y. CHEN, H. W. CHANG, C. H. CHIU, C. W. CHANG, W. C. CHANG.Magnetic properties phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites [J]. J. Appl. Phys, 2005, 97: 10F307-1-F307-3.
    [14] TETSUJI SAITO. High performance Co-Zr-B melt-spun ribbons [J]. Appl. Phys. Lett, 2003, 82: 2305-2307.
    [15] XIAO-FENGYAO and JIAN-PING WANG. Microstructure and magnetic properties of CoZr thin film [J]. J. Appl. Phys, 2003, 93: 8310-8312.
    [1] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. New microcrystalline hard magnets in a Co-Zr-B alloy system [J]. IEEE Trans. Magn, 1989, 25: 3312-3314.
    [2] G. STROINK, Z. M. STADNIK. G. VIAU, R. A. DUNLAP. The influence of quenching rate on the magnetic properties of microcrystalline alloys Co80Zr20-xBx [J]. J. Appl. Phys, 1990, 67: 4963-4965.
    [3] Z. ALTOUNIAN, E. BATALLA, and J. O. STROM-OLSEN. Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10 [J]. J. Appl. Phys, 1986, 59: 2364-2367.
    [4] TETSUJI SAITO. Magnetization Process in Co-Zr-B Permanent-Magnet Materials [J]. IEEE Trans. Magn, 2004, 40: 2919-2921
    [5] B.-G. SHEN, L.-Y. YANG, J.-X. ZHANG, H.-Q. GUO. Magnetic properties in melt-spun Co82B2Zr16 alloy [J]. Solid State Commun, 1991, 77: 783-787.
    [6] TETSUJI SAITO. High performance Co-Zr-B melt-spun ribbons [J]. Appl. Phys. Lett, 2003, 82: 2305-2307.
    [7] TETSUJI SAITO. The Origin of the Coercivity in Co-Zr System Alloys [J]. IEEE Trans. Magn, 2003, 39: 2890-2892.
    [8] TETSUJI SAITO, YASUSHI KAMAGATAL, WEN QQAN WANG. Magnetization in Co-Zr-C Melt-Spun Ribbons [J]. IEEE Trans. Magn, 2005, 41: 3787-3789.
    [9] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Magnetic hardening of rapidly quenched Co100-xZrx alloys [J]. J. Magn. Magn. Mater, 1990, 92: L30-L34.
    [10] L. Y. CHEN, H. W. CHANG, C. H. CHIU, C. W. CHANG, W. C. CHANG. Magnetic properties phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites [J]. J. Appl. Phys, 2005, 97: 10F307-1-F307-3
    [11] C. GAO, H. WAN, G. C. HADJIPANAYIS. High coercivity in non-rare-earth containing alloys [J]. J. Appl. Phys, 1990, 67: 4960-4962.
    [12] TETSUJI SAITO. Effects of the additives to Co-Zr alloys on their magnetic properties [J]. IEEJ Trans. FM, 2004,124: 876-880.
    [13]陈斌,低温下某些金属铁磁系统矫顽力反常的理论研究[J]低温物理学报,1996, 18: 224-226.
    [14] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. Magnetic moment suppression in rapidly solidified Co-Te-B alloys [J]. J. Appl. Phys, 1988, 63: 3388-3390
    [1] A. M. GHEMAWAT, M. FOLDEAKI, R. A. DUNLAP, R. C. O’HANDLEY. New microcrystalline hard magnets in a Co-Zr-B alloy system [J]. IEEE Trans. Magn, 1989, 25: 3312-3314.
    [2] L. Y. CHEN, H. W. CHANG, C. H. CHIU, C. W. CHANG, W. C. CHANG. Magnetic properties phase evolution, and coercivity mechanism of CoxZr98-xB2 (x=74-86) nanocomposites [J]. J. Appl. Phys, 2005, 97: 10F307-1-F307-3.
    [3] G. STROINK, Z. M. STADNIK. G. VIAU, R. A. DUNLAP. The influence of quenching rate on the magnetic properties of microcrystalline alloys Co80Zr20-xBx [J]. J. Appl. Phys, 1990, 67: 4963-4965.
    [4] T. ISHIKAWA, K. OHMORI. Hard magnetic phase in rapidly quenched Zr-Co-B alloys [J]. IEEE Trans. Magn, 1990, 26: 1370-1372.
    [5] B.-G. SHEN, L.-Y. YANG, J.-X. ZHANG, H.-Q. GUO. Magnetic properties in melt-spun Co82B2Zr16 alloy [J]. Solid State Commun, 1991, 77: 783-787.
    [6] TETSUJI SAITO. High performance Co-Zr-B melt-spun ribbons [J]. Appl. Phys. Lett, 2003, 82: 2305-2307.
    [7] Z. ALTOUNIAN, E. BATALLA, and J. O. STROM-OLSEN. Crystallization characteristics of late transition metal-Zr glasses around the composition M90Zr10 [J]. J. Appl. Phys, 1986, 59: 2364-2367.
    [8] TETSUJI SAITO. The Origin of the Coercivity in Co-Zr System Alloys [J]. IEEE Trans. Magn, 2003, 39: 2890-2892.
    [9] B.-G. SHEN, L.-Y. YANG, H.-Q. GUO, J.-X. ZHANG, J.-G. ZHAO. Magnetic hardening of rapidly quenched Co100-xZrx alloys [J]. J. Magn. Magn. Mater, 1990, 92: L30-L34.
    [10] TETSUJI SAITO. Magnetization Process in Co-Zr-B Permanent-Magnet Materials [J]. IEEE Trans. Magn, 2004, 40: 2919-2921.
    [11] C. GAO, H. WAN, G. C. HADJIPANAYIS. High coercivity in non-rare-earth containing alloys [J]. J. Appl. Phys, 1990, 67: 4960-4962.
    [12] INOUE A,OHTERA K,KITA K,et a1.New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility[J].Jpn. J. Appl. Phys.,1988,27:2248-2251.
    [13] INOUE A,KOHINATA M,TSAI A P,et a1.Mg-Ni-La Amorphous Alloyswith a Wide Supercooled Liquid Region[J].Mater.Trans. JIM,1989,30(5):378-381.
    [14] INOUE A,MASUMOTO T.Production and Properties of Light-metal-based Amorphous Alloys[J].Materials Science and Engineering A,1991,133:6-9.
    [15] INOUE A,KATO A,ZHANG T. Mg-Cu-Y Amorphous Alloys with High Mechanical Strengical Strengths Produced by a Metallic Mold Casting Method[J].Mater. Trans. JIM,1991,32(7):609-616
    [16] FRIEDEL J. Metallic alloys [J]. Nuovo Cimento, 1958,7: 287-311,
    [17] K. H. J. BUSCHOW, New development in hard magnetic materials [J] Rep. Prog. Phys. 1991,54:1123-1213。
    [18] K. J. STRNAT, Ferromagnetic Materials, edited by E. P. Wohlfarth and K. H. J. Buschow [M].North-Holland, Amsterdam, 1988, 4:131–209
    [19]E.P. WOHLFARTH, Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles [J]. J. Appl. Phys., 1958, 29: 595-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700