用户名: 密码: 验证码:
表面等离子体耦合定向发射荧光法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体耦合定向发射荧光法(SPCDE)是利用激发态的荧光团和金属表面等离子体的耦合近场作用而建立起来的表面增强荧光技术。作为一种新型荧光技术,SPCDE展现出其独特的优点:高度的角度定向发射性、荧光发射偏振性、波长分辨性、有效的背景信号抑制等,其在生物传感、界面分析等领域中显露出广阔的应用前景。本论文致力于构建表面等离子体耦合定向荧光法的实验装置,并在此基础上开展相关研究,进而将其应用于生物传感体系。论文分为六章:
     第一章绪论。该章从表面增强荧光技术的简要介绍开始,阐述了表面等离子体共振的原理并以此引出表面等离子体耦合定向荧光法的技术原理、发展及其在生物领域中的应用,最后提出本论文的研究思路。
     第二章表面等离子体耦合定向荧光检测的实现。在自制多功能荧光仪上实现SPCDE荧光信号的检测,并且该仪器与激光作为光源的SPCDE仪相比可以进一步获得激发光谱信息。通过实验对SPCDE展开深入的研究。结果证明,纳米金属表面的荧光团与等离子体耦合产生定向发射荧光信号,该信号具有高p-偏振性。理论计算模拟结果与实验相吻合。同时研究表明了SPCDE可以在无需增加光学元件的条件下实现波长分辨,并且具有抑制背景信号的能力。
     第三章表面等离子体耦合定向荧光法的小型装置。以改装过的市售激光笔作为光源,自主搭建SPCDE小型实验装置。该装置具有结构简单,操作方便,成本低廉等优点,完全能够满足一般的SPCDE测试要求。并运用该装置进行了表面等离子体耦合定向荧光法和表面等离子体场增强荧光法的光学性质的比较。
     第四章基于过渡金属铁的SPCDE研究。首次成功地把表面等离子体耦合定向荧光法研究拓展到重要的过渡金属铁。菲涅耳方程理论计算预测355nm-1088nm范围内的光在固定角度范围内(70°-75°)能够有效耦合25nm光滑铁膜的表面等离子体。实验证明金属铁膜上荧光染料的SPCDE信号具有较高的p-偏振性和定向性,并且定向发射角度都固定在一定范围。通过与金膜为基底的SPCDE信号相比较,证明在纳米铁膜上可以实现固定检测角度监控不同波长的荧光信号。
     第五章基于核酸适配子构型转换的SPCDE荧光传感。采用核酸适配子作为识别和报告分子,首次提出结合金属共振能量转移猝灭效应和表面等离子体耦合增强效应来实现对凝血酶简单、快速、特异检测。通过对比不同化学固定方式,选择亲和素-生物素法作为适配子探针的固定方法。通过对荧光信号偏振和信号角度分布情况考察,证明了荧光增强是由表面等离子耦合效应引起的。
     第六章结语与展望。总结了本论文研究工作的创新性,并对研究工作的进一步开展进行了展望。
Surface Plasmon Coupled Directional Emission (SPCDE)is a novel surfaceenhanced fluorescence method based on the near-field interaction of excitedfluorophores with surface plasmon on the thin metal films.SPCDE displays uniqueadvantages which include strong directional emission,unique polarization,background rejection and wavelength resolution.Therefore,it has a promising andwide application prospect in the biological detection and interface analysis.Thisdissertation focuses on the design of instrumental systems for SPCDE fluorescencemeasurement,the investigation of relevant theoretical and experimental research andthe applications in biochemistry.The dissertation consists of six chapters.
     In the first chapter,the development of surface plasmon coupled directionalemission was reviewed.Surface enhanced fluorescence spectroscopy techniques,theoretical principle and properties of Surface Plasmon Resonance and SPCDE,theresearch progress and application of SPCDE in biochemistry were described in detail,then the plans for the dissertation were put forward.
     In the second chapter,an instrumental system for surface plasmon coupleddirectional emission technique was developed in a laboratory-constructedspectrofluorimeter.This setup can get more information from excitation spectrum,ascompared SPCDE system with laser light source.The theoretical calculation andexperimental results showed that SPCDE was the coupling of the surface plasmonsand excited fluorophores on a thin metal film,resulting in a radiation of surfaceplasmons into the higher refractive index media,which showed highly directional andpolarized emission.The properties of background rejection and wavelength resolutionby selecting the observation angle were demonstrated.
     In the third chapter,a micro-spectrometer of SPCDE was designed with modifiedcommercial laser pointer as light source.The experimental results revealed theinstrument had good advantages,such as simple construction,convenient operationand low cost.In this study,the different properties of two surface enhancedfluorescence methods between surface plasmon field-enhanced fluorescence and surface plasmon coupled directional emission were compared.
     In the fourth chapter,SPCDE studies have been firstly successfully extended toiron which was an important transition metal.Theoretical Fresnel calculationsperformed in the ultraviolet to near-infrared spectral range (355-1088nm)predictedthe near-field generation of surface plasmons in 25nm iron thin films.The use of ironfilms in SPCDE to generate highly polarized and directional emission wasdemonstrated by experiments.Both theoretical calculations and experimental resultsshowed that coupled fluorescence through iron films occurred over a narrow range ofangles.This suggested that compared with gold films,where there was a strongdependence of emission angle with coupling wavelength,“fixed angle”geometriescould be used over a broad range of wavelength applications on iron films.
     In the fifth chapter,surface plasmon coupled directional emission based onconformational switching signaling aptamer was studied.Using the aptamer as bothrecognition and signaling elements,we firstly proposed the combination of theenhancement of SPCDE and the quenching by metal to detect thrombin.Bycomparing different chemical methods for the immobilization of aptamer,biotin-avidin method was finally chosen.The enhanced directional fluorescenceemission of signaling aptamer was observed due to the binding of a target thrombinwith aptamer which induces conformational switching.The polarization and angulardistribution of the observed emission demonstrated that the fluorescence enhancementwas due to surface plasmon.
     In the sixth chapter,the innovation of the study was concluded and the prospectof this research was given.
引文
1.Moskovits M.Surface-enhanced Raman spectroscopy:a brief perspective.Surface-Enhanced Raman Scattering:Physics and Applications 2006;103:1-17.
    2.Ding SY,Wu DY,Yang ZL,Ren B,Xu X,Tian ZQ.Some Progresses in Mechanistic Studies on Surface-Enhanced Raman Scattering.Chemical Journal of Chinese Universities-Chinese 2008;29:2569-2581.
    3.Kneipp K,Wang Y,Kneipp H,Perelman LT,Itzkan I,Dasari R,Feld MS.Single molecule detection using surface-enhanced Raman scattering(SERS).Physical Review Letters 1997;78:1667-1670.
    4.Nie SM,Emery SR.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science 1997;275:1102-1106.
    5.Hartstein A,Kirt]ey JR,Tsang JC.Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers.Physical Review Letters 1980;45:201-204.
    6.Zhang ZJ,Imae T.Study of surface-enhanced infrared spectroscopy-1.Dependence of the enhancement on thickness of metal island films and structure of chemisorbed molecules.Journal of Colloid and Interface Science 2001;233:99-106.
    7.Zhang ZJ,Imae T.Study of surface-enhanced infrared spectroscopy-2.Large enhancement achieved through metal-molecule-metal sandwich configurations. Journal of Colloid and Interface Science 2001;233:107-111.
    8. Ataka K, Yotsuyanagi T, Osawa. M. Potential dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. Journal of Physical Chemistry 1996; 100:10664-10672.
    9. Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bulletin of the Chemical Society of Japan 1997;70:2861-2880.
    10. Brown CW, Li Y, Seelenbinder JA, Pivarnik P, Rand AG, Letcher SV, et al. Immunoassays based on surface enhanced infrared absorption spectroscopy. Analytical Chemistry 1998;70:2991-2996.
    11. Wanzenbock HD, EdlMizaikoff B, Friedbacher G, Grasserbauer M, Kellner R, Arntzen M, et al. Surface-enhanced infrared absorption spectroscopy (SEIRA) using multi-reflection ATR-elements. Mikrochimica Acta 1997:665-667.
    12.吕凤婷,郑海荣,房喻.表面增强荧光研究进展.化学进展2007;19:256-266.
    13. Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000; 171:115-130.
    14. Lakowicz JR. Radiative decay engineering 3. Surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:153-169.
    15. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:170-182.
    16. Malicka J, Gryczynski I, Lakowicz JR. DNA hybridization assays using metal-enhanced fluorescence. Biochemical and Biophysical Research Communications 2003;306:213-218.
    17. Maliwal BP, Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. Fluorescence properties of labeled proteins near silver colloid surfaces. Biopolymers 2003;70:585-594.
    18.Geddes CD,Lakowicz JR.Metal-enhanced fluorescence.Journal of Fluorescence 2002;12:121-129.
    19.Zhang J,Lakowicz JR.Metal-enhanced fluorescence of an organic fluorophore using gold particles.Optics Express 2007;15:2598-2606.
    20.Lakowicz JR.Plasmonics in biology and plasmon-controlled fluorescence.Plasmonics 2006;1:5-33.
    21.Neumann T,Johansson ML,Kambhampati D,Knoll W.Surface-plasmon fluorescence spectroscopy.Advanced Functional Materials 2002;12:575-586.
    22.Ekgasit S,Yu F,Knoll W.Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy.Sensors and Actuators B-Chemical 2005;104:294-301.
    23.Chu LQ,Forch R,Knoll W.Surface-plasmon-enhanced fluorescence spectroscopy for DNA detection using fluorescently labeled PNA as “DNA indicator”.Angewandte Chemie-International Edition 2007;46:4944-4947.
    24.Yu F,Persson B,Lofas S,Knoll W.Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy.Journal of the American Chemical Society 2004; 126:8902-8 903.
    25.Van Orden A,Machara NP,Goodwin PM,Keller RA.Single molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate.Analytical Chemistry 1998;70:1444-1451.
    26.Nie S,Chiu D,Zare R.Probing individual molecules with confocal fluorescence microscopy Science 1994;266:1018-1021.
    27.Alleaume R,Treussart F Courty JM,Roch JF.Photon statistics characterization of a single-photon source.New Journal of Physics 2004;6:-.
    28.石岩,王立强,郑华,汪洁,陆祖康.提高荧光收集效率的新型微流控芯片检测系统光电子激光2008;19:92-95.
    29.Geddes CD,Gryczynski I,Malicka J,Gryczynski Z,Lakowicz JR.Directional surface plasmon coupled emission.Journal of Fluorescence 2004;14:119-123.
    30.Liedberg B,Nylander C,Lundstrom I.Surface plasmons resonance for gas detection and biosensing.Sensors and Actuators 1983;4:299-304.
    31.Raether H.Surface plasmon on smooth and rough surfaces and on gratings.Berlin:Springer,1988:136pp.
    32.Born M,Wolf E.Principles of Optics:Electromagnetic Theory of Propagation,Interference and Diffraction of Light.New york:Cambridge University Press,1980:986pp.
    33.Feldheim DL,Foss CA.Metal Nanoparticles:Synthesis,Characterization,and Applications.New York:Marcel Dekker,Inc,2002:360pp.
    34.Johnson PB,Christy RW.Optical Constants of the Noble Metals.Physical Review B 1972;6:4370-4379.
    35.杨志林,吴德印,任斌,周海光,田中群.铑电极在紫外区的表面增强拉曼散射机理.光谱学与光谱分析2004;24:682-685.
    36.岳萍,粱宏晞,顾月清,顾建华.SPR传感器光学参数的确定及应用中国医学物理学杂志2001;18:122-126.
    37.GRYCZYNSKI Z,MATVEEVA EG,CALANDER N,ZHANG J,LAKOWICZ JR,GRYCZYNSKI1 I.Surface Plasmon Nanophotonics:Springer Berlin/Heidelberg,2007:247-265pp.
    38.Salamon Z,Macleod HA,Tollin G.Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .1 .Theoretical principles.Biochimica Et Biophysica Acta-Reviews on Biomembranes 1997; 1331:117-129.
    39.Ford GW,Weber WH.Electromagnetic interactions of molecules with metal surfaces.Physics Reports 1984;113:195-287.
    40.Chance RR,A.Prock RS.Molecular Fluorescence and Energy Transfer Near Interfaces Advances in Chemical Physics 1978;37:1-65.
    41.Barnes WL.Fluorescence near interfaces:the role of photonic mode density.Journal of Modem Optics 1998;45:661-699.
    42.Gryczynski I,Malicka J,Gryczynski Z,Lakowicz JR.Surface plasmon-coupled emission with gold films.Journal of Physical Chemistry B 2004:108:12568-12574.
    43.Hiep HM,Fujii M,Hayashi S.Effects of molecular orientation on surface-plasmon-coupled emission patterns.Applied Physics Letters 2007;91:-.
    44.Weber WH,Eagen CF.Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal Optics Letters 1979;4:236-238.
    45.Benner RE,Dornhaus R,Chang RK.Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface.Optics Communications 1979;30:145-149.
    46.Ekgasit S,Thammacharoen C,Knoll W.Surface plasmon resonance spectroscopy based on evanescent field treatment.Analytical Chemistry 2004;76:561-568.
    47.Ekgasit S,Thammacharoen C,Yu F,Knoll W.Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies.Analytical Chemistry 2004;76:2210-2219.
    48.Lakowicz JR,Malicka J,Gryczynski I,Gryczynski Z.Directional surface plasmon-coupled emission:a new method for high sensitivity detection.Biochemical and Biophysical Research Communications 2003;307:435-439.
    49.Soper SA,L.Nutter H,Keller RA,Davis LM,Shera EB.The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy.Photochemistry and photobiology 1993;57:972-977.
    50.Yu F,Yao DF,Knoll W.Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen.Analytical Chemistry 2003;75:2610-2617.
    51.司民真,苗润才.纳米银粒子表面吸附染料分子的荧光增强及荧光猝灭现象.光子学报1998;27:635-637.
    52.司民真,武荣国,张鹏翔.染料分子吸附在正、负电性纳米银上的荧光增强及荧光猝灭现象.化学物理学报2002;15:346-350.
    53.王悦辉,周济,石士考.纳米银与表面吸附荧光素的荧光性能的影响.光谱学与光谱分析2007;27:1555-1559.
    54.Gryczynski I,Malicka J,Gryczynski Z,Nowaczyk K,Lakowicz JR.Surface plasmon-coupled directional fluorescence emission. Plasmonics in Biology and Medicine 2004;5327:37-44.
    55. Previte MJR, Zhang YX, Asian K, Geddes CD. Surface plasmon coupled fluorescence from copper substrates. Applied Physics Letters 2007;91:-.
    56. Gryczynski I, Malicka J, Gryczynski Z, Nowaczyk K, Lakowicz JR. Ultraviolet surface plasmon-coupled emission using thin aluminum films. Analytical Chemistry 2004;76:4076-4081.
    57. Asian K, Previte MJR, Zhang YX, Geddes CD. Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films. Analytical Chemistry 2008;80:7304-7312.
    58. Asian K, Geddes CD. Surface plasmon coupled chemiluminescence from zinc substrates: Directional chemiluminescence. Applied Physics Letters 2009;94:-.
    59. Asian K, Zhang YX, Geddes CD. Surface Plasmon Coupled Fluorescence in the Visible to Near-Infrared Spectral Regions using Thin Nickel Films: Application to Whole Blood Assays. Analytical Chemistry 2009;81:3801-3808.
    60. Weisenberg M, Asian K, Hortle E, Geddes CD. Directional surface plasmon coupled chemiluminescence from nickel thin films: Fixed angle observation. Chemical Physics Letters 2009;473:120-125.
    61. Ray K, Chowdhury MH, Lakowicz JR. Observation of surface plasmon-coupled emission using thin platinum films. Chemical Physics Letters 2008;465:92-95.
    62. Chowdhury MH, Ray K, Geddes CD, Lakowicz JR. Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chemical Physics Letters 2008;452:162-167.
    63. Asian K, McDonald K, Previte MJR, Zhang YX, Geddes CD. Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films. Chemical Physics Letters 2008;464:216-219.
    64. Previte MJR, Asian K, Zhang YX, Geddes CD. Surface plasmon coupled phosphorescence (SPCP). Chemical Physics Letters 2006;432:610-615.
    65. Zhang J, Gryczynski Z, Lakowicz JR. First observation of surface plasmon-coupled electrochemiluminescence. Chemical Physics Letters 2004;393:483-487.
    66. Chowdhury MH, Malyn SN, Asian K, Lakowicz JR, Geddes CD. First observation of surface plasmon-coupled chemiluminescence (SPCC). Chemical Physics Letters 2007;435:114-118.
    67. Chowdhury MH, Malyn SN, Asian K, Lakowicz JR, Geddes CD. Multicolor directional surface plasmon-coupled chemiluminescence. Journal of Physical Chemistry B 2006; 110:22644-22651.
    68. Borejdo J, Calander N, Gryczynski Z, Gryczynski I. Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope. Optics Express 2006;14:7878-7888.
    69. Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I. Application of surface plasmon coupled emission to study of muscle. Biophysical Journal 2006;91:2626-2635.
    70. Smith DS, Kostov Y, Rao G, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. First observation of surface plasmon-coupled emission due to LED excitation. Journal of Fluorescence 2005;15:895-900.
    71. Matveeva EG, Gryczynski I, Malicka J, Gryczynski Z, Goldys E, Howe J, et al. Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission. Journal of Fluorescence 2005; 15:865-871.
    72. Smith DS, Kostov Y, Rao G. Signal enhancement of surface plasmon-coupled directional emission by a conical mirror. Applied Optics 2008;47:5229-5234.
    73. Asian K, Malyn SN, Geddes CD. Microwave-accelerated surface plasmon-coupled directional luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood. Journal of Immunological Methods 2007;323:55-64.
    74. Asian K, Previte MJR, Zhang YX, Geddes CD. Microwave-accelerated surface plasmon-coupled directional luminescence 2: A platform technology for ultra fast and sensitive target DNA detection in whole blood. Journal of Immunological Methods 2008;331:103-113.
    75. Previte MJR, Geddes CD. Microwave-triggered surface plasmon coupled chemiluminescence. Journal of the American Chemical Society 2007; 129:9850-9851.
    76. Matveeva E, Gryczynski Z, Gryczynski I, Lakowicz JR. Immunoassays based on directional surface plasmon-coupled emission. Journal of Immunological Methods 2004;286:133-140.
    77. Matveeva E, Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. Multi-wavelength immunoassays using surface plasmon-coupled emission. Biochemical and Biophysical Research Communications 2004;313:721-726.
    78. Matveeva EG, Malicka J, Gryczynski I, Lakowicz JR, Gryczynski Z. Multicolor fluoroimmunoassays based on surface plasmon-coupled emission. Advanced Biomedical and Clinical Diagnostic Systems Iii 2005;5692:316-325.
    79. Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, et al. Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood. Analytical Biochemistry 2005;344:161-167.
    80. Matveeva EG, Gryczynski I, Barnett A, Calander N, Gryczynski Z. Red blood cells do not attenuate the SPCE fluorescence in surface assays. Analytical and Bioanalytical Chemistry 2007;388:l 127-1135.
    81. Matveeva E, Gryczynski Z, Gryczynski I, Malicka J, Lakowicz JR. Myoglobin immunoassay utilizing directional surface plasmon-coupled emission. Analytical Chemistry 2004;76:6287-6292.
    82. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. DNA hybridization using surface plasmon-coupled emission. Biomedical Vibrational Spectroscopy and Biohazard Detection Technologies 2004;5321:283-288.
    83. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. DNA hybridization using surface plasmon-coupled emission. Analytical Chemistry 2003;75:6629-6633.
    84. Smith DS, Kostov Y, Rao G. SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sensors and Actuators B-Chemical 2007; 127:432-440.
    1. Chen JL, Gao YC, Guo C, Wu GH, Chen YC, Lin BW. Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(II(??)) in aqueous solution. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2008;69:572-579.
    2. Huang ST, Ting KN, Wang KL. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols. Analytica Chimica Acta 2008;620:120-126.
    3. Nie S, Chiu D, Zare R. Probing individual molecules with confocal fluorescence microscopy Science 1994;266:1018-1021.
    4. Frassanito MC, Piccoli C, Capozzi V, Boffoli D, Tabilio A, Capitanio N. Topological organization of NADPH-oxidase in haematopoietic stem cell membrane: preliminary study by fluorescence near-field optical microscopy. Journal of Microscopy-Oxford 2008;229:517-524.
    5. Lu FT, Zheng HR, Fang Y. Studies of surface-enhanced fluorescence. Progress in Chemistry 2007; 19:256-266.
    6. Lakowicz JR. Radiative decay engineering 3. Surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:153-169.
    7. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:170-182.
    8. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Directional surface plasmon coupled emission. Journal of Fluorescence 2004; 14:119-123.
    9. Lakowicz JR, Malicka J, Gryczynski I, Gryczynski Z. Directional surface plasmon-coupled emission: a new method for high sensitivity detection. Biochemical and Biophysical Research Communications 2003;307:435-439.
    10. Matveeva E, Gryczynski Z, Gryczynski I, Lakowicz JR. Immunoassays based on directional surface plasmon-coupled emission. Journal of Immunological Methods 2004;286:133-140.
    11. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. DNA hybridization using surface plasmon-coupled emission. Analytical Chemistry 2003;75:6629-6633.
    12. Lakowicz JR, Malicka J, Matveeva E, Gryczynski I, Gryczynski Z. Plasmonic technology: Novel approach to ultrasensitive immunoassays. Clinical Chemistry 2005;51:1914-1922.
    13. Geddes CD, Lakowicz JR. Metal-enhanced fluorescence. Journal of Fluorescence 2002;12:121-129.
    14. Fort E, Gresillon S. Surface enhanced fluorescence. Journal of Physics D-Applied Physics 2008;41:1-31.
    15. Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000; 171:115-130.
    16. Johansen K, Arwin H, Lundstrom I, Liedberg B. Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations. Review of Scientific Instruments 2000;71:3530-3538.
    17. Roy D. Surface plasmon resonance spectroscopy of dielectric coated gold and silver films on supporting metal layers: Reflectivity formulas in the Kretschmann formalism. Applied Spectroscopy 2001;55:1046-1052.
    18. Yu F, Yao DF, Knoll W. Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen. Analytical Chemistry 2003;75:2610-2617.
    19. Huang FM, Festy F, Richards D. Tip-enhanced fluorescence imaging of quantum dots. Applied Physics Letters 2005;87:-.
    20. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Surface plasmon-coupled emission with gold films. Journal of Physical Chemistry B 2004;108:12568-12574.
    21. Calander N. Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Analytical Chemistry 2004;76:2168-2173.
    22. Salamon Z, Macleod HA, Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .2. Applications to biological systems. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1997;1331:131-152.
    23. Salamon Z, Macleod HA, Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .1. Theoretical principles. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1997;1331:117-129.
    24. TF Calc., Software Spectra, Inc., Portland, Oregon.
    25. Raether H. Surface plasmon oscillations and their applications. Phys Thin Films 1977;9:145-261.
    26. Raether H. Excitation of plasmons and interband transitions by electrons: Berlin ; New York : Springer-Verlag, 1980.
    27. Wiltschi B, Knoll W, Sinner EK. Binding assays with artificial tethered membranes using surface plasmon resonance. Methods 2006;39:134-146.
    28. Tawa K, Morigaki K. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. Biophysical Journal 2005;89:2750-2758.
    29. Zhang L, Vidu R, Waring AJ, Lehrer RI, Longo ML, Stroeve P. Electrochemical and surface properties of solid-supported, mobile phospholipid bilayers on a polyion/alkylthiol layer pair used for detection of antimicrobial peptide insertion. Langmuir 2002;18:1318-1331.
    30. Lakowicz JR. Principles of Fluorescence Spectroscopy, Second Edition. New York: Kluwer Academic/Plenum Press, 1999:698pp.
    31. Chowdhury MH, Malyn SN, Asian K, Lakowicz JR, Geddes CD. First observation of surface plasmon-coupled chemiluminescence (SPCC). Chemical Physics Letters 2007;435:114-118.
    32. Zhang J, Gryczynski Z, Lakowicz JR. First observation of surface plasmon-coupled electrochemiluminescence. Chemical Physics Letters 2004;393:483-487.
    33. Borejdo J, Calander N, Gryczynski Z, Gryczynski I. Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope. Optics Express 2006;14:7878-7888.
    1.Lakowicz JR.Radiative decay engineering 1:Biophysical and biomedical applications.Analytical Biochemistry 2001;298:1-24.
    2.Lakowicz JR,Shen YB,D'Auria S,Malicka J,Fang JY,Gryczynski Z,Gryczynski I.Radiative decay engineering 2.Effects of silver island films on fluorescence intensity,lifetimes,and resonance energy transfer.Analytical Biochemistry 2002;301:261-277.
    3.Liebermann T,Knoll W.Surface-plasmon field-enhanced fluorescence spectroscopy.Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000;171:115-130.
    4.Neumann T,Johansson ML,Kambhampati D,Knoll W.Surface-plasmon fluorescence spectroscopy.Advanced Functional Materials 2002;12:575-586.
    5. Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry 2005;337:171-194.
    6. Lakowicz JR, Malicka J, Gryczynski I, Gryczynski Z. Directional surface plasmon-coupled emission: a new method for high sensitivity detection. Biochemical and Biophysical Research Communications 2003;307:435-439.
    7. Lakowicz JR. Radiative decay engineering 3. Surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:153-169.
    8. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:170-182.
    9. Salamon Z, Macleod HA, Tollin G. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems .1. Theoretical principles. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1997;1331:117-129.
    10. Calander N. Molecular detection and analysis by using surface plasmon resonances. Current Analytical Chemistry 2006;2:203-211.
    11. Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, et al. Directional surface plasmon-coupled emission: Application for an immunoassay in whole blood. Analytical Biochemistry 2005;344:161-167.
    12. Smith DS, Kostov Y, Rao G. SPCE-based sensors: Ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sensors and Actuators B-Chemical 2007; 127:432-440.
    13. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. Use of surface plasmon-coupled emission to measure DNA hybridization. Journal of Biomolecular Screening 2004;9:208-215.
    14. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Directional surface plasmon coupled emission. Journal of Fluorescence 2004; 14:119-123.
    15. Matveeva E, Gryczynski Z, Gryczynski I, Lakowicz JR. Immunoassays based on directional surface plasmon-coupled emission. Journal of Immunological Methods 2004;286:133-140.
    16. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR. DNA hybridization using surface plasmon-coupled emission. Analytical Chemistry 2003;75:6629-6633.
    17. Smith DS, Kostov Y, Rao G, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. First observation of surface plasmon-coupled emission due to LED excitation. Journal of Fluorescence 2005;15:895-900.
    18. Gryczynski I, Malicka J, Gryczynski Z, Nowaczyk K, Lakowicz JR. Ultraviolet surface plasmon-coupled emission using thin aluminum films. Analytical Chemistry 2004;76:4076-4081.
    1.曹佩根,姚建林,徐浩元,顾仁敖,田中群.铁电极表面拉曼光谱的初步研究.光散射学报 2000; 12:87-89.
    2.Aslan K,Malyn SN,Geddes CD.Microwave-accelerated surface plasmon-coupled directional luminescence:Application to fast and sensitive assays in buffer,human serum and whole blood.Journal of Immunological Methods 2007;323:55-64.
    3.Zhang J,Gryczynski Z,Lakowicz JR.First observation of surface plasmon-coupled electrochemiluminescence.Chemical Physics Letters 2004;393:483-487.
    4.Malicka J,Gryczynski I,Gryczynski Z,Lakowicz JR.DNA hybridization using surface plasmon-coupled emission.Analytical Chemistry 2003;75:6629-6633.
    5.Gryczynski I,Malicka J,Lakowicz JR,Goldys EM,Calander N,Gryczynski Z.Directional two-photon induced surface plasmon-coupled emission.Thin Solid Films 2005;491:173-176.
    6.Matveeva E,Gryczynski Z,Gryczynski I,Lakowicz JR.Immunoassays based on directional surface plasmon-coupled emission.Journal of Immunological Methods 2004;286:133-140.
    7.Previte MJR,Zhang YX,Aslan K,Geddes CD.Surface plasmon coupled fluorescence from copper substrates.Applied Physics Letters 2007;91:-
    8.Aslan K,McDonald K,Previte MJR,Zhang YX,Geddes CD.Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films.Chemical Physics Letters 2008;464:216-219.
    9.Gryczynski I,Malicka J,Gryczynski Z,Nowaczyk K,Lakowicz JR.Ultraviolet surface plasmon-coupled emission using thin aluminum films.Analytical Chemistry 2004;76:4076-4081.
    10.Malicka J,Gryczynski I,Gryczynski Z,Lakowicz JR.Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole. Journal of Physical Chemistry B 2004;108:19114-19118.
    11.Gryczynski I,Malicka J,Lukomska J,Gryczynski Z,Lakowicz JR.Surface plasmon-coupled polarized emission of N-acetyl-L-tryptophanamide.Photochemistry and Photobiology 2004;80:482-485.
    12.Asian K,Previte MJR,Zhang YX,Geddes CD.Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films Analytical Chemistry 2008;80:7304-7312.
    13.Aslan K,Geddes CD.Surface plasmon coupled chemiluminescence from zinc substrates:Directional chemiluminescence.Applied Physics Letters 2009;94:-.
    14.Aslan K,Zhang YX,Geddes CD.Surface Plasmon Coupled Fluorescence in the Visible to Near-Infrared Spectral Regions using Thin Nickel Films:Application to Whole Blood Assays.Analytical Chemistry 2009;81:3801-3808.
    15.Weisenberg M,Aslan K,Hortle E,Geddes CD.Directional surface plasmon coupled chemiluminescence from nickel thin films:Fixed angle observation.Chemical Physics Letters 2009;473:120-125.
    16.Lakowicz JR.Radiative decay engineering 3.Surface plasmon-coupled directional emission.Analytical Biochemistry 2004;324:153-169.
    17.杨志林,吴德印,任斌,周海光,田中群.铑电极在紫外区的表面增强拉曼散射机理.光谱学与光谱分析2004;24:682-685.
    18.Johnson PB,Christy RW.Optical Constants of the Noble Metals.Physical Review B 1972;6:4370-4379.
    19.Johnson PB,Christy RW.Optical constants of transition metals Ti,V,Cr,Mn,Fe,Co,Ni,and Pd.Physical Review B 1974;9:5056-5070.
    20.Nash DJ,Sambles JR.Surface plasmon-polariton study of the optical dielectric function of zinc.Journal of Modern Optics 1998;45:2585-2596.
    21.万惠霖.固体表面物理化学若干研究前沿.厦门:厦门大学出版社,2006:685pp.
    22.杨志林,吴德印,姚建林,胡建强,任斌,周海光,田中群.镍电极的表面 增强拉曼散射机理初探.科学通报 2002;47:989-992.
    23. Salamona Z, Macleodb HA, Gordon Tollina. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Ⅰ: Theoretical principles. Biochimica Et Biophysica Acta-Reviews on Biomembranes 1997; 1331:117-129.
    24. Nelson BP, Frutos AG, Brockman JM, Corn RM. Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Analytical Chemistry 1999;71:3928-3934.
    25. Frutos AG, Weibel SC, Corn RM. Rear-infrared surface plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy. Analytical Chemistry 1999;71:3935-3940.
    26. TF Calc, Software Spectra, Inc., Portland, Oregon.
    27. Raether H. Surface plasmon oscillations and their applications. Phys Thin Films 1977;9:145-261.
    28. Raether H. Excitation of plasmons and interband transitions by electrons: Berlin ; New York : Springer-Verlag, 1980.
    29. Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000; 171:115-130.
    30. Ekgasit S, Thammacharoen C, Yu F, Knoll W. Influence of the Metal Film Thickness on the Sensitivity of Surface Plasmon Resonance Biosensors. Applied Spectroscopy 2005;59:661-667.
    31. Gryczynski I, Malicka J, Nowaczyk K, Gryczynski Z, Lakowicz JR. Effects of sample thickness on the optical properties of surface plasmon-coupled emission. Journal of Physical Chemistry B 2004;108:12073-12083.
    32. Knoll W. Interface and thin films as seen by bound electromagnetic waves. Annual Review of Physical Chemistry 1998;49:569-638.
    33. Ray K, Chowdhury MH, Lakowicz JR. Observation of surface plasmon-coupled emission using thin platinum films. Chemical Physics Letters 2008;465:92-95.
    34. Asian K, Geddes CD. Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle? Analytical Chemistry 2009;81:6913-6922.
    35. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Surface plasmon-coupled emission with gold films. Journal of Physical Chemistry B 2004;108:12568-12574.
    36. Matveeva EG, Malicka J, Gryczynski I, Lakowicz JR, Gryczynski Z. Multicolor fluoroimmunoassays based on surface plasmon-coupled emission. Advanced Biomedical and Clinical Diagnostic Systems Iii 2005;5692:316-325.
    37. Chowdhury MH, Malyn SN, Asian K, Lakowicz JR, Geddes CD. Multicolor directional surface plasmon-coupled chemiluminescence. Journal of Physical Chemistry B 2006; 110:22644-22651.
    38. Barnes WL. Fluorescence near interfaces: the role of photonic mode density. Journal of Modern Optics 1998;45:661-699.
    39. Lakowicz JR. Principles of Fluorescence Spectroscopy, Second Edition. New York: Kluwer Academic/Plenum Press, 1999:698pp.
    40. Lakowicz JR. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry 2005;337:171-194.
    41. 侯宪鲁,南俊民.铁电极材料在电池中的应用.电池 2003;33:44-46.
    1. Lai RY, Plaxco KW, Heeger AJ. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry 2007;79:229-233.
    2. Chen JW, Jiang JH, Gao X, Liu GK, Shen GL, Yu RQ. A New Aptameric Biosensor for Cocaine Based on Surface-Enhanced Raman Scattering Spectroscopy. Chemistry-a European Journal 2008;14:8374-8382.
    3. Maxwell DJ, Taylor JR, Nie S. Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules. Journal Of The American Chemical Society 2002; 124:9606-9612.
    4. Hamaguchi N, Ellington A, Stanton M. Aptamer Beacons for the Direct Detection of Proteins, analytical Biochemistry 2001 ;294:126-131.
    5. Fang XH, Cao ZH, Beck T, Tan WH. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry 2001;73:5752-5757.
    6. Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM. Adapting selected nucleic acid ligands (aptamers) to biosensors. Analytical Chemistry 1998;70:3419-3425.
    7. Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC. Fluorescence enhancement by metal-core/silica-shell nanoparticles. Advanced Materials 2006; 18:91-95.
    8. Huang FM, Festy F, Richards D. Tip-enhanced fluorescence imaging of quantum dots. Applied Physics Letters 2005;87:-.
    9. Ford GW, Weber WH. Electromagnetic interactions of molecules with metal surfaces. Physics Reports 1984;113:195-287.
    10. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Directional surface plasmon coupled emission. Journal of Fluorescence 2004; 14:119-123.
    11. Huang FM, Richards D. Fluorescence enhancement and energy transfer in apertureless scanning near-field optical microscopy. Journal of Optics a-Pure and Applied Optics 2006;8:S234-S238.
    12. Lakowicz JR. Radiative decay engineering 3. Surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:153-169.
    13. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Analytical Biochemistry 2004;324:170-182.
    14. Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology 1997;272:688-698.
    15. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. nature 1992;355:564-566.
    16. Du H, Disney MD, Miller BL, Krauss TD. Hybridization-based unquenching of DNA hairpins on Au surfaces: Prototypical "molecular beacon" biosensors. Journal of the American Chemical Society 2003;125:4012-4013.
    17. Duconge F, Di Primo C, Toulme JJ. Is a closing "GA pair" a rule for stable loop-loop RNA complexes? Journal of Biological Chemistry 2000;275:21287-21294.
    18. Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000; 171:115-130.
    19. Yu F, Yao DF, Knoll W. Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen. Analytical Chemistry 2003;75:2610-2617.
    20. Weber WH, Eagen CF. Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal Optics Letters 1979;4:236-238.
    21. He GX, Williams JP, Postich MJ, Swaminathan S, Shea RG, Terhorst T, et al. In vitro and in vivo activities of oligodeoxynucleotide-based thrombin inhibitors containing neutral formacetal linkages. Journal of Medicinal Chemistry 1998;41:4224-4231.
    22. Griffin LC, Toole JJ, Leung LL. The discovery and characterization of a novel nucleotide-based thrombin inhibitor. Gene 1993;137:25-31.
    23. Wu Q, Tsiang M, Sadler JE. Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. The Journal of biological chemistry 1992;267:24408-24412.
    24. Lee JH, Kim H, Ko JY, Lee Y. Interaction of C5 protein with RNA aptamers selected by SELEX. Nucleic Acids Research 2002;30:5360-5368.
    25. Gearheart LA, Ploehn HJ, Murphy CJ. Oligonucleotide Adsorption to Gold Nanoparticles: A Surface-Enhanced Raman Spectroscopy Study of Intrinsically Bent DNA. The Journal of Physical Chemistry B 2001;105:12609-12615.
    26. Hianik T, Ostatna V, Zajacova Z, Stoikova E, Evtugyn G. Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorganic & Medicinal Chemistry Letters 2005 ;15:291-295.
    27. Ostatna V, Vaisocherova H, Homola J, Hianik T. Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and Bioanalytical Chemistry 2008;391:1861-1869.
    28. Yao G, Fang XH, Yokota H, Yanagida T, Tan WH. Monitoring molecular beacon DNA probe hybridization at the single-molecule level. Chemistry-a European Journal 2003;9:5686-5692.
    29. Park IS, Kim DK, Adanyi N, Varadi M, Kim N. Development of a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosensors & Bioelectronics 2004; 19:667-674.
    30. Andreas P. Abel, Michael G. Weller, Gert L. Duveneck, Markus Ehrat, Widmer HM. Fiber-Optic Evanescent Wave Biosensor for the Detection of Oligonucleotides. Analytical Chemistry 1996;68:2905-2912.
    31. Liu G, Wan Y, Gau V, Zhang J, Wang LH, Song SP, Fan CH. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society 2008;130:6820-6825.
    32. Stobiecka M, Ciesla JM, Janowska B, Tudek B, Radecka H. Piezoelectric sensor for determination of genetically modified soybean roundup ready((R)) in samples not amplified by PCR. Sensors 2007;7:1462-1479.
    33. Matveeva E, Gryczynski Z, Gryczynski I, Malicka J, Lakowicz JR. Myoglobin immunoassay utilizing directional surface plasmon-coupled emission. Analytical Chemistry 2004;76:6287-6292.
    34. Lakowicz JR, Malicka J, Gryczynski I, Gryczynski Z. Directional surface plasmon-coupled emission: a new method for high sensitivity detection. Biochemical and Biophysical Research Communications 2003;307:435-439.
    35. Calander N. Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Analytical Chemistry 2004;76:2168-2173.
    36. McCauley TG, Hamaguchi N, Stanton M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Analytical Biochemistry 2003;319:244-250.
    37. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie-International Edition 2005;44:5456-5459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700