用户名: 密码: 验证码:
柴油基磁性液体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性液体凭借其独特的性能在密封、传感器、减震器等领域都取得了令人瞩目的进展。为了进一步扩展其应用范围,文本选择粘度较低、挥发性小且价廉易得的柴油为载液,制备了柴油基磁性液体,并采用多种测试手段进行了结构和性能的表征,总结了制备过程中对磁性液体性能产生影响的因素。
     本文首先以化学共沉淀法为基本原理,采用改进的Massart水解法和改进的滴定水解法制备了Fe304纳米磁性颗粒。确定了采用改进的Massart水解法制备磁性液体用的Fe304磁性颗粒的最佳实验工艺为:反应前躯体溶液浓度为0.6mol/L,反应温度为70℃,反应时间为1h。并采用油酸为表面活性剂,对这一制备工艺的样品进行了包覆实验,确定出最佳的包覆时间为4h,包覆后颗粒的平均尺寸大约在12nm左右。总结出采用改进的滴定法制备纳米Fe304磁性颗粒时添加表面活性剂的最佳时机,即当溶液开始出现棕色沉淀时滴加表面活性剂,采用这一路线制备的磁性颗粒粒径最小(9nm左右),分散性良好。
     采用机械搅拌与超声波分散相结合的方式,以柴油为载液,制备了柴油基Fe304磁性液体,考察了磁性颗粒的制备工艺、磁性颗粒的含量对磁性液体性能的影响。总结出磁性颗粒的粒径及分散性是决定磁性液体磁性能和稳定性的关键性因素,在一定范围内,粒径越小,所能悬浮在载液中的磁性颗粒越多,磁性液体的饱和磁化强度也就越高。本实验制备出饱和磁化强度高达625Gs,室温下粘度仅为34mPa· s的高饱和磁化强度低粘度的柴油基Fe304磁性液体。
     为进一步提高磁性液体的磁化强度,本文制备了柴油基Co-Fe_3O_4复合磁性液体。首先采用化学法,以CoCl_2·6H_2O为钻源,以锌粉为还原剂,在水溶液中制备了纳米Co颗粒,经过采取改变反应物配比,让反应后的颗粒悬浮液与NaOH溶液反应等措施,除去了ZnO杂质,得到了相对较纯的粒径为123nm的片状钴颗粒,采用机械搅拌与超声波分散相结合的方式,将纳米Co颗粒和纳米Fe304磁性颗粒同时分散于柴油中,制备出柴油基Co-Fe_3O_4复合磁性液体。但是由于纳米钴颗粒的粒径及形状的原因,使复合磁性液体的饱和磁化强度低于具有相同的磁性颗粒与载液的配比的柴油基Fe304磁性液体。分析表明,球状而非片状钴颗粒更适合制备柴油基Co-Fe_30_4复合磁性液体。作者从理论上提出了化学法制备球状纳米钴颗粒的实验工艺。
Magnetic fluid has been widely used in seal, sensors and shock absorbers and made remarkable progress because of its unique performance. In order to expand the scope of its application, in this paper diesel oil which is cheap and has low viscosity and volatility was chosen as carrier liquid and diesel fuel based magnetic fluid was prepared. Then a variety of test means have been used for characterization of the structure and properties of magnetic fluid. Finally, the paper summarized the influence factors that had bearing on magnetic fluid properties during the preparation.
     Firstly, Fe3O4nano-magnetic particles were prepared by the improved Massart hydrolysis method and the improved titering hydrolysis process which all based on the principle of chemical precipitation. By making experiments that Fe3O4nano-magnetic particles were prepared by the improved Massart hydrolysis method, optional technological conditions were determined. It was that concentration of the reactors was0.6mol/L, reaction temperature was70℃, reaction time was1h. Moreover, the coating experiment was conducted using oleic acid as the surface active agent to the sample which had the best performance. The results indicated that the best coating time was4h and the average size of the coated particles was about12nm. By making experiments that Fe3O4nano-magnetic particles were prepared by the improved titering hydrolysis process, it was found that the best time for adding surfactants was the moment that the brown precipitation began to appear in the reaction solution. The particles prepared under this process had the smallest size and preferable dispersibility.
     By the disperse way of ultrasonic oscillating combining with mechanical raking, diesel fuel based Fe3O4magnetic fluid was prepared. The influence of technological condition of magnetic particles and its content in the fluid on the performance of the fluid were observed. The results showed that the size and dispersibility of magnetic particles were key factors to magnetic property and stability of the fluid. Within a certain range, the smaller the particle size was, the more magnetic particles can suspend in the fliud and the higher saturation magnetization strength of magnetic fluid had.
     Diesel fuel based Fe3O4magnetic fluid which has high saturation magnetization strength and low viscosity has been prepared. Its saturation magnetization strength was as high as625Gs while its viscosity was only34mPa· s at room temperature.
     In order to enhance saturation magnetization strength of the fluid, diesel fuel based magnetic fluid was prepared. The nano-Co particles were firstly prepared in aqueous solution by chemical method using zinc dust as reducing agent and cobalt chloride as cobalt source. ZnO impurities were removed and relatively pure schistic nano-Co particles with size of123nm were obtained by taking measures of changing reactants ratio and making the particle suspension react with NaOH solution. Nano-Co particles and Fe3O4nano-magnetic particles were dispersed in the diesel fuel at the same time by the disperse way of ultrasonic oscillating combined with mechanical raking so that diesel fuel based Co-Fe3O4magnetic fluid was attained. But for the reason of size and shape of nano-Co particles, saturation magnetization strength of diesel fuel based Co-Fe3O4magnetic fluid was less than the diesel fuel based Fe3O4magnetic fluid which had same ratio of magnetic particles and carrier liquid. Theoretical analysis showed that, the spherical rather than flake cobalt particles were more suitable for the preparation of diesel fuel based Co-Fe3O4magnetic fluid. The author put forward preparation scheme in theory for spherical nano-Co particles using chemical method.
引文
[1]李德才.磁性液体的理论和应用[M].第一版.北京.科学出版社.2003.8.3-26.
    [2]韩会敏,李德才.磁性液体制备技术的研究现状与发展方向.机械工程师.2007.2.55-57.
    [3]Papell S.S. Space Daity.211.1963.U.S.Patent.3,215,572(1965).
    [4]R.E.Rosensweig.Ferrohydrodynamics[M].Cambridge:Cambridge University Press,1985.
    [5]藤田丰久,下饭坂润三.水基磁性液体浓缩.日本化学会.1984,6(3):15-18.
    [6]Reimer G W, Khalafalla S E.United State Patent.3764540.
    [7]李德才.磁性液体的理论和应用[D].北京:北方交通大学,1996.
    [8]韩琪.磁性液体在倾角传感器中的应用[D].北京交通大学硕士学位论文.北京:北京交通大学.2011.
    [9]李德才.“磁性液体加速度传感器理论及实验研究”项目申请书[Z].2004,4.
    [10]吕建强,李德才,白博海,郝瑞参.磁性液体的研究现状及典型应用[J].中国材料科技与设备.2007.4(1):44-47.
    [11]余宗宝,李国斌.高性能磁性液体材料研究进展[J].功能材料.2007增刊(38):1179-1182.
    [12]Berkovdky B M,etal.Magnetic Fluids-engineering Applictions.Oxford University Press,1993.
    [13]崔海蓉.磁性液体水平传感器的理论与实验研究[D].北京交通大学博士学位论文.北京:北京交通大学.2011.
    [14]马来鹏,尹衍升.磁性液体的研究现状[J].四川化工.2005.8(3):16-20.
    [15]曾桓兴,周文运.单分子层油酸包覆Fe304的研究[J].应用科学学报:1989.7(1):75-79
    [16]刘子元,丁忠浩.纳米磁性液体的特性、制备及应用[J].过程工程学报:2004.增刊(4):484-488.
    [17]周文运.永磁铁氧体和磁性液体设计工艺.成都:电子科技大学出版社,1991.
    [18]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2001.
    [19]Papell S.S. Low viscosity magnetic fluid obtained by the colloidal[P].US Patent.3 215 572,1965.
    [20]于英仪,徐教仁,刘思林,滕荣厚,王新林.磁性液体的制备方法[J].粉末冶金工业:2003.13(4):31-36.
    [21]R.Kaiser,G.Miskolczy.[J].J.Appl.Phys.,1970,41(3):1064-1072.
    [22]赵慎强,王宇鑫,严彪,廖文俊,詹凤.磁性液体的制备方法及在发电中的应用[J].金属功能材料:2010.17(1):66-71.
    [23]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [24]王宇鑫,赵慎强,杜春风,李成魁,严彪.纳米磁性液体的制备方法[J].金属功能材料:2010.17(1):62-65.
    [25]黄巍,王晓雷.磁性液体的制备及其在工业中的应用[J].润滑与密封:2008.33(10):91-99.
    [26]丁明,张锋,孙虹,韩效钊.磁性液体的制备及应用进展[J].合肥学院学报(自然科学版):2004.14(2):1-6.
    [27]王丁宁,胡先罗,张洁等.稀土镝铁氧体磁流体的W/O微乳液法制备及性质研究[J].华东师范大学学报(自然科学版):2001.(1):71-76.
    [28]Production of magnetic fluids by peptization techniques.US.P.1972.3480555.
    [29]赵慎强,王宇鑫,严彪,廖文俊,詹凤.纳米磁性液体的制备方法及应用[J].上海有色金属:2010.31(1):30-34.
    [30]J.R.Thomas. [J]. J.Appl.Phys.1966.37(7):2914-2915.
    [31]Luborsky F E,Opie J D.Journ Appl.Phys.1963.34.1317.
    [32]J.L.Tirade, J.M.Thomas, D.A.Jefferson, GR.Mill-ward, S.W.Charles. [J].Chem Commun, 1987,5:365-368.
    [33]I Nakatani,T Furubayashi.Iron-nitride magnetic fluids prepared by plasma CVD technique and their magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 1990,85:11-13.
    [34]刘思林,徐教仁,滕荣厚,于英仪.氮化铁磁性液体及其制备[J].金属功能材料:5(6):281-284.
    [35]张猛.共沉淀法制备磁性液体用Fe3O4磁性纳米颗粒[D].北京交通大学硕士学位论文.北京:北京交通大学.2011.
    [36]顾红,祝琳华,王先逵,李衡燕,李锡蓉.一种极具潜力的新型化工材料-磁性液体[J].云南化工,2001,28(2):37-40.
    [37]Yu D.Varlamov, A.B.Kaplum.Magn Gidrodin [J],1986, (USSR)No.3:43~49
    [38]何新智,李德才,孙明礼.磁性液体倾角传感器的实验研究[J].计量学报:30(5):464-467.
    [39]梁农.金属钴[J].江西冶金,1997,17(5):52-54.
    [40]胡伟,朱正吼,万里鹏.超声电解法制备超细金属钻粉[J].材料导报:2007,5(21):147-150.
    [41]东建中.纯钻粉的高压水喷雾法制取工艺[J].硬质合金:1993,10(2):79-81.
    [42]Hee Dong jang, Dae Won Hwang,Dong Pyo Kim,etal.Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase[J].Materials Research Bulletin,2004,39:63-70.
    [43]Liu YP, Zhu YJ, Zhang YH,etal. Preparation of nanocrystalline cobalt powders by a gamma-irradiation method[J].J.Mater.Chem,1997,7(5):787-789.
    [44]Feng Wang,Hongzhou Gu,Zhicheng Zhang.Preparation of cobalt nanocrystals in the homogenous solution with the presence of a static magnetic field[J]. Materials Research Bulletin,2003,38:347-351.
    [45]Baek-Hee Lee,Young Jung Lee,Kyung Ho Min etal.Synthesis of nano-sized Fe-Co alloy powders by chemical solution mixing of metal salts and hydrogen reduction(CSM-HR) [J]. Materials Letters,2005,59:3156-3159.
    [46]Agrawal A,Kumar V, Pandey B D,etal.A comprehensive review on the hydro metallurgical process for the production of nickel and copper powders by hydrogen reduction[J]. Materials Letters,2006,41:879-892.
    [47]SridharKomarneni,RajyalakshmiPidugu,etal.Mater.Res.Soc,1995,10(7):1687-1689.
    [48]王玉棉,李军强,张亮亮等.超细钴粉制备工艺及研究进展[J].甘肃冶金,2004,26(3):60-62.
    [49]GIBSON CP,PUZTER KJ.Synthesis and Characterization of Anisometric Cobalt Nanoclusters[J].Science,1995,267:1338-1340.
    [50]Guo.F,Zheng.HG,Yang.ZP,etal.Synthesis of cobalt nanoParticles in ethanol hydrazine alkaline system(EHAS) at room temperature[J]. Materials Letters,2002,56(6):906-909.
    [51]赵永男,陈向明,李秀宏.微乳液体系中溶剂热合成Co纳米纤维[J].高等学校化学学报,2003,24(6):986-988.
    [52]陈慧玉,汤皎宁,辛剑,张丽玲.联氨还原法制备磁性钻纳米粒子[J].现代化工,2005,25(增刊):219-223.
    [53]段红珍,蔺向阳,刘冠鹏,李凤生.单分散钴纳米粒子的制备及其对儿硝酰胺铵(ADN)的热分解作用[J].固体火箭技术:2008,31(3):255-257.
    [54]李浩,张喜斌,刘全兵.有机溶剂法制备超细钻纳米粒子的研究[J].材料导报:2010,24(8):127-129.
    [55]何林峰.电子束辐照法合成钻纳米粒子的表征[J].上海计量测试:2007,34(3):7-9.
    [56][张茂润,周红梅,李广学.纳米Co粒子的制备及其在硅油基磁性液体中的应用[J].中南大学学报:2006,37(4):720-725.
    [57]王枝花.磁性金属及合金纳米颗粒的控制生长、结构及磁性研究[D].兰州大学博士学位论文.兰州:兰州大学.2008.
    [58]王瑞青.超细金属钻及其复合物的制备和性质研究[D].南京理工大学硕士学位论文.南京:南京理工大学.2009.
    [59]罗振勇,刘志宏.金属钴粉的制备及应用[J].粉末冶金工业:2008,18(2):40-45.
    [60]马光,孙晓亮,郑晶,刘啸峰.钴粉的制备、应用及我国的发展现状[J].稀有金属快报:2008,27(11):6-10.
    [61]R.Massart,B.Rasolonjatovo,S.Neveu,V.Cabuil.Mercury-based cobalt magnetic fluids and cobalt nanoparticles[J].Journal of Magnetism and Magnetic Materials:2007,308:10-14.
    [62]李广学,张茂润Co-Fe3O4磁性流体磁性能的研究[J].合肥工业大学学报(自然科学版):2001,24(2):248-250.
    [63]张茂润,陶昭才.硅油基钻/Fe304复合磁流体的研制及磁性能[J].四川大学学报(工程科学版):2004,36(4):31-35.
    [64]张志杰,贺天民,孙听,杜晓波.用于近代物理教学的振动样品磁强计[J].物理实验:2007,27(4):37-39.
    [65]王富耻.材料现代分析测试方法[M]..北京.北京理工大学出版社.2006.1.
    [66]吕建强.纳米磁性液体的制备及性能研究[D].北京交通大学硕士学位论文.北京:北京交通大学.2006.
    [67]邱星屏.四氧化三铁磁性纳米粒子的合成[J].厦门大学学报:1999,38(5):1-7.
    [68]Massart R.Preparation of magnetite nanoparticles.IEEE Trans.Magn.1981, MAG-17:1247-1250.
    [69]Molday R S.Magnetic iron-dextran microspheres.U.S.,Patent 4 452 7773.1984
    [70]Shen L.Laibinis P E.Hatton T A.Bilayer surfactant stabilized magnetic fluids:Synthesis and interfaces.Langmuir 1999,15:447-453.
    [71]徐华蕊,李凤生,陈舒林,宋洪昌.沉淀法制备纳米级粒子的研究—化学原理及影响因素[J].化工进展,1996(5):29-31.
    [72]黄小忠,周娟娟,周克省,杜作娟.有机基Fe304磁性液体的制备和表征[J].磁性材料及器件,2010,,41(1):36-39.
    [73]Y.Zhu,Flower-like cobalt nanocrystals by a complex precursor reaction route[J].Mater.Chem.Phys,2005,91:293-297.
    [74]S.Sun,Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices(invited) [J].J.Appl.Phys,1999,85:4325-4328.
    [75]Li J G,Qin Y,Kou X Li,He H Y,Song D K.Structure and magnetic properties of cobalt nanoplatelets [J].Materials Letters 58(2004)2506-2509.
    [76]郑虹.磁性纳米颗粒的制备和性能研究[D].兰州大学硕士学位论文.兰州:兰州大学.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700