用户名: 密码: 验证码:
基于“点击化学”的功能糖分子构建与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“点击化学(Click chemistry)"以其生成稳固的“碳-杂-碳(C-X-C)”连接核心为特色,从单个分子构建到组合化学,从结构的多样性到功能的多元化,它开辟出一套集实施简易、模块化、反应快速、收率高、立体选择性好以及对水氧不敏感等优点于一身的,具有广泛适用性和创造力的合成化学新方法。作为点击化学的杰出代表,一价铜离子催化的叠氮与炔的Huisgen1,3-偶极环加成(CuAAC)反应在糖类功能分子的合成中显示出巨大的优势。本论文研究工作以点击化学为合成基础,构建结构多样的“1,2,3-三氮唑型”功能糖分子。根据研究内容,分为以下三个部分:
     第一部分(论文第2章):
     自然界的糖脂,囊括了一切以亲水的糖与疏水的脂通过不同方式连接而成、结构多样、功能复杂的两亲性分子。它们在作为生命体结构物质的同时,也担当信息和调控分子的角色,参与各种生物学过程。此外,种类繁多的糖脂天然产物以及通过化学合成手段获得的糖脂类化合物,具有抗癌、抗菌、免疫调节等广泛多样的生物活性,而出色的表面化学性能也使之在工业等领域得到广泛应用。
     本部分研究工作经由简易的糖基和脂质配体合成策略,以CuAAC为连接手段,“点击”合成多系列、具有规律性结构变化的“1,2,3-三氮唑型”糖脂类似物,并进行了化合物库的体外生物活性和物理化学性质研究。在生物学活性研究中,系列Ⅰ、Ⅱ糖脂对多种人癌肿瘤细胞株表现出具一定“构效关系”规律的体外生长抑制活性;同时,系列Ⅱ糖脂在一定程度上显示了抗肿瘤活性的“类协同效应”现象;而系列Ⅰ糖脂则另表现出一定的抗菌活性规律。在物理化学性质研究中,系列Ⅰ、Ⅱ中部分化合物表现出有趣的“气-液界面”行为及性质规律;而在抗金属腐蚀性能方面,经过对系列Ⅰ、Ⅱ化合物初步抗腐蚀性质探索以及结构改进而得到的系列Ⅲ糖脂化合物,最终达到了提升其金属抗腐蚀性能的目的。
     第二部分(论文第3章):
     自然界结构形式复杂的糖类与其受体蛋白之间的特异识别作用,构成了糖类生物学功能的基础。而多拷贝的糖链与簇集状受体的糖识别位点之间作用的“合力”,是实现这种生物学特异相互作用的有效方式,即所谓“多价效应”(或称“簇效应”)。许多人工合成糖簇及糖聚合物分子,也正是利用这一效应的结合力优势,实现对其特异受体出色的靶向或结合作用。
     本部分研究工作以构建具有“多价糖基”的新型糖簇分子为主要目的,首先经多步反应合成以“肽氧键”串联、具“多价叠氮”修饰的非天然“氧肽”骨架,并选取具有重要生物学意义的单糖经简易合成得到糖炔,进而以CuAAC方法将二者相“点击”,得到“糖价态数”不等的“1,2,3-三氮唑”型“糖氨氧酸”及“糖氧肽”类化合物。所构建化合物具有可供方便修饰的氨基与羧基端头,利于进一步功能化应用:其多价GalNAc糖基使之具备潜在生物学靶向能力及类肿瘤疫苗的结构特征,在生物医学研究中颇具应用潜力。
     第三部分(论文第4章):
     石墨烯这一新型二维纳米碳晶体的出现,引领纳米传感科学步入一个崭新的时代。它出色的光学、电学及结构学性质赋予其十分广阔的应用空间,而良好的生物相容度和低毒性也使它的生物医学应用优势巨大。自石墨烯出现以来不足10年的短暂过程中,以此二维平台为基础的新型纳米传感器的研究与应用被争相报道,并在物质探测和诊断学相关领域显示出尤为突出的应用价值。
     本部分研究工作通过简洁高效的“点击化学”手段,将具有生物特异识别作用的单糖与荧光性质优良的罗丹明相连,合成结构简单的“糖-罗丹明”荧光物,并将其进一步与二维氧化态石墨烯材料以π-π作用相叠合,利用石墨烯-荧光团之间的"FRET效应”,搭建表面簇集糖荧光分子、“荧光关闭”的石墨烯纳米生物传感器。进而,我们通过糖-受体间特异识别、结合作用可干扰FRET过程这一原理,应用该传感体系成功实施了“糖特异凝集素”的“荧光启发式”检测,并首次将这一过程用于癌细胞表面糖蛋白受体的原位识别与荧光标记。该“荧光关开式”生物传感器构建简易、成本低廉、无毒,在生物学、医学诊断领域具有较强的实用价值。
"Click Chemistry" is characteristic of the formation of stable "C-X-C" bonding center. Ranging from unimolecule construction to combinational chemistry, from structural multiformity to functional diversification, click chemistry opens up a series of novel synthetic methods, which is widely applicable and highly creative, with the advantages of convenient implementation, modularization, fast reactivity, high yields, excellent stereoselectivity and insensitivity to water and oxygen. Prominent category as it is, copper(I) catalyzed Huisgen azide-alkyne1,3-dipolar cycloaddition (CuAAC) reaction shows great superiority in the synthesis of functionalized glycomolecules. In this dissertation,"1,2,3-riazole" linked glycomolecules with structural diversity and multifunction were fabricated on the basis of click chemistry, and the research content can be divided into3sections as follows:
     Section One(Chapter2of the dissertation):
     Glycolipids in nature include all amphiphilic compounds with diversified structures and complicated functions, which mainly consist of hydrophilic sugars and hydrophobic lipids connecting with each other in different ways. Besides the constructive roles in life, they functions as informational and regulating molecules, participating in various biological processes. Moreover, numerous natural and synthetic sugar-lipid derivatives possess comprehensive bioactivities such as anticancer, antibiosis and immunoregulating, and their remarkable surface chemical properties endow them with important applications in industry.
     In our research, simple glycosyl and lipidic ligands were "clicked" together via CuAAC method to construct series of1,2,3-triazole linked glycolipids with regular changes in their structures. In the subsequent anticancer activity assessments,"structure-activity relationships" were partly displayed by compound series Ⅰ and Ⅱ, and "synergetic effect" was found in series Ⅱ. Besides, antibacteria results were acquired from series Ⅰ. In the physicochemical study, some interesting interfacial qualities were found on series Ⅰ and Ⅱ, and improved anticorrosion ability was achieved on series Ⅲ, whose structures were based on reformational modifications of series I and II compounds.
     Section Two(Chapter3of the dissertation):
     The specific recognition between multifarious sugars and their corresponding receptor proteins in nature layes the foundation of biological functions of sugars which can be effectively realized via the joint interactions between multicopied glycans and clustered receptors, namely "multivalent effect" or "clustered effect". A large amount of artificial glycoclusters and glycopolymers targeted their receptors successfully by utilizing the effect.
     In this work, we aimed at constructing novel glycoclusters with multiple glycones. Unnatural "oxygen peptido-skeletons" with multiple azides were firstly concatenated by "peptidoxy" bonds. Glycosyl alkynes of biological importance were synthesized thereafter to "click" onto the skeletons via CuAAC in order to abtain1,2,3-triazolyl "glycosyl aminoxy acid" and "glycosyl oxygen peptides". These sugar derivatives possess modifiable carboxyl and amino groups that are convinent for further functionalization. The equipped GalNAc residues endow them with the biological targeting ability and features of tumor vaccine molecules, which is benefit for biological and medical applications.
     Section Three(Chapter4of the dissertation):
     On appearing of the new two dimensional nano material, graphene has been leading the way of sensing nanoscience into a brand-new era. Not only the splendid optical, electrical and structural properties endow it with wide utilizations, but the high biocompatibility and low toxicity also make it advantageous in biological and medical applicabilities. During the short10years since its appearance, innumerable new sensing nanoplatforms based on graphene have been competitively reported, which showed great applicable values in detection and diagnosis.
     In this research, bio-recognizable sugars were connected with excellently fluorescent rhodamine group using click chemistry to get glycosyl rhodamine fluorophors which were stacked onto graphene oxide through π-π interaction in order to obtain clustered glycosyl fluorophors on the surface and FRET effect driving "light off" biological sensing platforms. Then, we conveniently conducted the "light on" detection of sugar specific lectins by the mechanism that sugar-protein interaction can impede the FRET effect. On the basis of this system, in suit recognition and fluorescent labeling of sugar receptors on cancer cell surface was successfully achieved for the first time. This fluorescent "OFF-ON" biosensing platform is simple, economical and non-toxic, which can be practically used in biological and medical diagnosis.
引文
[1]Kolb, H. C.; Sharplss, K. B. The growing impact of click chemistry on drug discovery [J]. Drug Discov. Today 2003.8,1128-1137.
    [2]Hein, C. D.; Liu, X.-M.; Wang. D. Click chemistry, a powerful tool for pharmaceutical sciences [J]. Pharm. Res.2008,25.2216-2230.
    [3]Huisgen, R. In 1.3-Dipolar cycloaddition chemistry [M]. Padwa, A. Ed. New York: Wiley.1984.
    [4]a) Rostovtsev, V. V.; Green, L. G; Fokin, V. V. et al. A stepwise huisgen cycloaddition process:copper(I) catalyzed regioselective "ligation" of azides and terminal alkynes [J]. Angew. Chem. Int. Ed.2002.41,2596-2599. b) For original definition of'click' chemistry, see:Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry:diverse chemical function from a few good reactions [J]. Angew. Chem. Int. Ed.2001.40. 2004-2021.
    [5]Tornoe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1.2,3]-triazoles by regiospecific copper(I)-catalyzed 1.3-dipolar cycloadditions of terminal alkynes to azides [J].J. Org. Chem.2002,67,3057-3064.
    [6]Lee, B. Y.; Park, S. R.; Jeon, H. B. et al. A new solvent system for efficient synthesis of 1.2.3-triazoles [J]. Tetrahedron Lett.2006.47.5105-5109.
    [7]Aragao-Leoneti. V.; Campo, V. L.; Gomes. A. S. et al. Application of copper(I) catalysed azide/alkyne cycloaddition (CuAAC)'click chemistry" in carbohydrate drug and neoglycopolymer synthesis [J]. Tetrahedron 2010,66.9475-9492
    [8]Perez-Balderas. F.; Ortega-Munoz. M.; Morales-Sanfrutos. J. et al. Multivalent neo-glycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts [J]. Org. Lett.2003,5,1951-1954.
    [9]Zhang. L.:Chen, X.:Xue. P. et al. Ruthenium-catalyzed cycloaddition of alkynes and organic azides [J].J. Am. Chem. Soc.2005.127,15998-15999.
    [10]Wilkinson, B. L.; Bornaghi, L. F.; Poulsena, S. et al. Synthetic utility of glycosyl triazoles in carbohydrate chemistry [J]. Tetrahedron 2006.62,8115-8125
    [11]Schriver, Z.; Raguram. S.:Sasisekharan. R. Glycomics:a pathway to a class of new and improved therapeutics [J]. Nat. Rev. Drug Discov.2004.3,863-873.
    [12]Houston. T. A.; Blanchfield. J. T. Back to (non)-basics:recent developments in neutral and charge-balanced glycosidase inhibitors [J]. Mini Rev. Med. Chem.2003.5.669-678.
    [13]Weiwer. M.; Chen. C.-C; Kemp, M. M. et al. Evaluation of non-hydrolyzable 1.2.3-triazole-linked sialic acid derivatives as neuraminidase inhibitors [J]. Eur. J. Org. Chem. 2009,16.2611-2620.
    [14]Lee, L. V.; Mitchell, M. L.; Huang, S.-J. et al. A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry [J]. J. Am. Chem. Soc.2003, 125,9588-9589.
    [15]Diot, J.; Garcoa-Moreno, M. I.; Gouin, S. G. et al. Multivalent iminosugars to modulate affinity and selectivity for glycosidases [J]. Org. Biomol. Chem.2009,7,357-363.
    [16]van der Peet, P.; Gannon, C. T.; Walker, I. et al. Use of click chemistry to define the substrate specificity of Leishmania beta-1,2-mannosyltransferases [J]. ChemBioChem 2006,7,1384-1391.
    [17]Chabre, Y. M.; Roy, R. Design and creativity in synthesis of multivalent neoglyco-conjugates [J].Adv. Carbohydr. Chem. Biochem.2010,63,165-393.
    [18]Simon Ting, S. R.; Chen, G.-J.; Stenzel, M. H. Synthesis of glycopolymers and their multivalent recognitions with lectins [J]. Polym. Chem.2010,1,1392-1412.
    [19]Muthukrishnan, S.; Zhang, M.; Burkhardt, M. et al. Molecular sugar sticks:cylindrical glycopolymer brushes [J]. Macromolecules 2005,38,7926-7934.
    [20]Ladmiral, V.; Mantovani, G.; Clarkson, G. J. et al. Synthesis of neoglycopolymers by a combination of "click chemistry" and living radical polymerization [J]. J. Am. Chem. Soc. 2006,128,4823-4830.
    [21]Ambrosi, M.; Cameron, N. R.; Davis, B. G. Lectins:tools for the molecular under-standing of the glycocode [J]. Org. Biomol. Chem.2005,3,1593-1608.
    [22]Wan, Q.; Chen, J.; Chen, G. et al. A potentially valuable advance in the synthesis of carbohydrate-based anticancer vaccines through extended cycloaddition chemistry [J]. J. Org. Chem.2006,71,8244-8249.
    [23]Wu, P.; Malkoch, M.; Hunt, J. N. et al. Multivalent, bifunctional dendrimers prepared by click chemistry [J]. Chem. Commun.2005,5775-5777.
    [24]张恒.生物化学与分子生物学[M].郑州:郑州大学出版社,2007年第1版,19-26.
    [25]Jung, M.; Lee, Y.; Moon, H.-I. et al. Total synthesis and anticancer activity of highly potent novel glycolipid derivatives [J]. Eur. J. Med. Chem.2009,44,3120-3129.
    [26]周晴中.生命化学基础[M].北京:北京大学出版社,2011年第1版,186.
    [27]Hakomori, S. The glycosynapse. Enzyme variability in the Drosophila willistoni group, I. Genetic differentiation among sibling species [J]. Proc. Natl. Acad. Sci. USA 2002,99, 225-232.
    [28]马林,古练权.化学生物学导论[M].北京:化学工业出版社,2006年第1版,107-108.
    [29]王艳萍,王征,朱健.鞘糖脂研究进展[J].生命科学,2011,23,583-591.
    [30]蒋志国,杜琪珍.甘油糖脂生物活性最新研究进展[J].中国粮油学报.2009,24.163-168.
    [31]刘湘,汪秋安.天然产物化学[M].北京:化学工业出版社,2010年第2版,85-125.
    [32]Xie, M.; Ujjinamatada, R. K.; Sadowska, M. el al. A novel, broad-spectrum anticancer compound containing the imidazo[4.5-e][1.3]diazepine ring system [J]. Bioorg. Med. Chem. Lett.2010,20,4386-4389.
    [33]Park, S. M.; Yang, H.; Park, S.-K. et al. Design, synthesis, and anticancer activities of novel perfluoroalkyltriazole-appended 20-deoxyuridines [J]. Bioorg. Med. Chem. Lett. 2010.20.5831-5834.
    [34]Janakiram. N. B.; Mohammed, A.; Zhang, Y. et al. Chemopreventive effects of frondanol A5, a cucumaria frondosa extract, against rat colon carcinogenesis and inhibition of human colon cancer cell growth [J]. Cancer. Prev. Res.2010,3,82-91.
    [35]Hossain, Z,; Kurihara, H.; Masashi, H. et al. Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in CACO-2 cells with algal glycolipid [J]. In Vitro Cell. Dew Biol. Animal.2005,41.154-159.
    [36]El-Baroty, G. S.; El-Baz, F. K.; Abd-Elmoein, I. et al. Evaluation of glycolipids of some Egyptian marine algae as a source of bioactive substances [J]. Int. Res. J. Pharm. Res. 2011.2.165-174.
    [37]Bhaskar, N.; Hosakawa, M.; Miyashita, K. Growth inhibition of human pro-myelocytic leukemia HL-60 cells by lipid extracts of marine alga Sargassum marginatum Fucales, Phaeophyta harvested off Goa west coast of India with special reference to fatty acid composition [J]. Indian J. Mar. Sci.2004,33.355-360.
    [38]Kitamoto. D.; Isoda. H.; Nakahara. T. Functions and potential applications of glycolipid biosurfactants [J].J.Biosci. Bioeng.2002,94,187-201.
    [39]Wakamatsu. Y; Zhao. X.: Jin, C. et al. Mannosylerythritol lipid induces characteristics of neuronal differentiation in PCI2 cells through an ERK-related signal cascade [J]. Eur. J. Biochem.2001.268,374-383.
    [40]Zhao, X.-X.; Murata, T.; Ohno, S. et al. Protein kinase Ca plays a critical role in mannosylerythritol lipid-induced differentiation of melanoma B16 cells [J].J. Biochem. 2003.134,441-445.
    [41]Singh. P.; Cameotra. S. S. Potential applications of microbial surfactants in biomedical sciences [J]. Trends Biotechnol.2004.22,142-146.
    [42]Li. X.-Q.:Roginsky. A. Ding, X.-Z. et al. The triterpenoid Frondoside A from the sea cucumber Cucumaria frondosa inhibits proliferation of human pancreatic cancer cells in vivo and in vitro [J].J. Nutr.2004.134.3521S-3547S.
    [43]a) Maeda. N.:Kokai. Y.; Ohtani. S. et al. Anti-tumor effects of the glycolipids fraction from spinach which inhibited DNA polymerase activity [J]. Nutr. Cancer.2007.57. 216-223. b) Maeda, N.; Hada, T.; Yoshida, H. et al. Inhibitory effect on replicative DNA polymerases. human cancer cell proliferation, and in vivo anti-tumor activity by glycolipids from spinach [J]. Curr. Med. Chem.2007,14,955-967.
    [44]Maeda, N.; Kokai, Y.; Ohtani, S. et al. Anti-tumor effect of orally administered spinach glycolipid fraction on implanted cancer cells, colon-26, in mice [J]. Lipids 2008,43, 741-748.
    [45]Perez Gutierrez, R. M.; Lule P, R. et al. Cytotoxic constituents from daphnia pulex [J]. Pharm. Biol.2005,43,313-316.
    [46]Nagano, T.; Pospsil, J.; Chollet, G. et al. Total synthesis and biological evaluation of the cytotoxic resin glycosides ipomoeassin A-F and analogues [J]. Chem. Eur. J.2009,15, 9697-9706.
    [47]a) Cao, S.; Guza, R. C.; Wisse, J. H. et al. Ipomoeassins A-E, cytotoxic macrocyclic glycoresins from the leaves of Ipomoea squamosa from the Suriname rainforest [J]. J. Nat. Prod.2005,68,487-492. b) Cao, S.; Norris, A.; Wisse, J. H. et al. Ipomoeassin F, a new cytotoxic macrocyclic glycoresin from the leaves of Ipomoea squamosa from the Suriname rainforest [J]. Nat. Prod. Res.2007,21,872-876.
    [48]a) Hu, W.-P.; Yu, H.-S.; Chen, Y.-R. et al. Synthesis and biological evaluation of thiobenzanilides as anticancer agents [J]. Bioorg. Med. Chem.2008,16,5295-5302. b) Kemnitzer, W.; Jiang, S.; Wang, Y. et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Part 5: modifications of the 2- and 3- positions [J]. Bioorg. Med. Chem. Lett.2008,18, 603-607.
    [49]Samadder, P.; Bittman, R.; Byun, H.-S. et al. A glycosylated antitumor ether lipid kills cells via paraptosis-like cell death [J]. Biochem. Cell Biol.2009,87,401-414.
    [50]Ruiter, G. A.; Zerp, S.F.; Barttelink, H. et al. Anti-cancer alkyl-ysophospholipids inhibit the phosphatidylinositol 3 kinase-Akt/PKB survival pathway [J]. Anticancer Drugs, 2003,14,167-173.
    [51]Garcia-Alvarez, I.; Corrales, G.; Doncel-Perez, E. et al. Design and synthesis of glycoside inhibitors of glioma and melanoma growth [J]. J. Med, Chem.2007,50, 364-373.
    [52]Van Kaer, L.; Parekh, V. V.; Wu, L. Invariant NK T cells:potential for immuno-therapeutic targeting with glycolipid antigens [J]. Immunotherapy 2011,3,59-75.
    [53]Raju, R.; Castillo, B. F.; Richardson, S. K. et al. Synthesis and evaluation of 3"-and 4" deoxy and fluoro analogs of the immunostimulatory glycolipid, KRN7000 [J]. Bioorg. Med. Chem. Lett.2009,19.4122-4125.
    [54]Cerundolo, V.; Salio, M. Harnessing NKT cells for therapeutic applications [J]. Curr. Top. Microbiol. Immunol.2007,314,325-340.
    [55]Braun, N. A.; Mendez-Fernandez, Y. V.; Covarrubias, R. et al. Development of spontaneous anergy in invariant natural killer T cells in a mouse model of dyslipidemia [J]. Arterioscler. Thromb. Vase. Biol.2010,30,1758-1765.
    [56]Kinjo, Y.; Wu, D. Y.; Kim, G. et al. Recognition of bacterial glycosphingolipids by natural killer T cells [J]. Nature 2005,434,520-525.
    [57]Franchini, L.; Matto, P.; Ronchetti, F. et al. Synthesis and evaluation of human T cell stimulating activity of an α-sulfatide analogue [J]. Bioorg. Med. Chem.2007,15, 5529-5536.
    [58]a) Terabe, M.:Berzofsky, J. A. The role of NKT cells in tumor immunity [J]. Adv. Cancer Res.2008,101.277-348. b) Haeryfar, S. M. Invariant natural killer T cells in immune surveillance and tumor immunotherapy:perspectives and potentials [J]. Arch. Iran. Med. 2008,11:186-195.
    [59]Velmourougane,G.; Raju, R.; Bricard, G. et al. Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH [J]. Bioorg. Med. Chem. Lett.2009,19,3386-3388.
    [60]Goff, R. D.; Gao, Y.; Mattner, J. et al. Effects of lipid chain lengths in alpha-galactosylceramides on cytokine release by natural killer T cells [J]. J. Am. Chem. Soc. 2004,126,13602-13603.
    [61]a) Li, Q.; Ndonye, R. M.; Illarionov, P. A. et al. Rapid identification of immuno-stimulatory alpha-galactosylceramides using synthetic combinatorial libraries [J]. J. Comb. Chem.2007,9,1084-1093. b) Fujio, M.; Wu, D.; Garcia-Navarro, R. et al. Structure-based discovery of glycolipids for CD1d-mediated NKT cell activation: tuning the adjuvant versus immunosuppression activity [J].J. Am. Chem. Soc.2006,128, 9022-9023.
    [62]Abdel-Motal, U. M.;Wigglesworth, K.;Galili. U. Intratumoral injection of α-gal glycolipids induces a protective anti-tumor T cell response which overcomes Treg activity [J]. Cancer Immunol. Immunother.2009.58.1545-1556.
    [63]Maccioni, H. J. F.;Quiroga. R.;Spessott, W. Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex [J]. FEBS Lett.2011,585,1691-1698.
    [64]a) Ingale, S.; Wolfert, M. A.:Buskas, T. et al. Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors [J]. ChemBioChem 2009,10,455-463. b) Bay. S.;Fort, S.;Birikaki. L. et al. Induction of a melanoma-specific antibody response by a monovalent. but not a divalent, synthetic GM2 neoglycopeptide [J]. ChemMedChem 2009,4.582-587.
    [65]Tang. S.-C.; Wang. Q.-L.;Guo, Z.-W. Synthesis of a monophosphoryl derivative of Escherichia coli lipid A and its efficient coupling to a tumor-associated carbohydrate antigen. Chem. Eur. J.2010,16,1319-1325.
    [66]Su. Z.-M.; Ycagley, A. A.;Su, R. et al. Structural studies on 4.5-disubstituted 2-aminoimidazole-based biofilm modulators that suppress bacterial resistance to β-lactams [J]. ChemMedChem 2012,7,2030-2039.
    [67]van Bogaert, I. N. A.; Saerens, K.; De Muynck, C. et al. Microbial production and application of sophorolipids [J].Appl. Microbiol. Biotechnol. 2007,76,23-34.
    [68]Kitamoto, D.; Morita, T.; Fukuoka, T. et al. Self-assembling properties of glycolipid biosurfactants and their potential applications [J]. Curr. Opin. Colloid Interf. Sci.2009, 14,315-328.
    [69]Linington, R. G; Robertson, M.; Gauthier, A. et al. Caminosides B-D, antimicrobial glycolipids isolated from the marine sponge Caminus sphaeroconia [J]. J. Nat. Prod. 2006,69,173-177.
    [70]a) Smith, A.; Nobmann, P.; Henehan, G. et al. Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated non-carbohydrate fatty acid ester and ether derivatives [J]. Carbohydr. Res.2008,343,2557-2566. b) Nobmann, P.; Smith, A.; Dunne, J. et al. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms [J]. Int. J. Food. Microbiol.2009,128,440-45.
    [71]Shah, V.; Doncel, G. F.; Seyoum, T. et al. Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities [J]. Antimicr. Agents Chemother.2005,49,4093-4100.
    [72]Ferreras, J. A.; Stirrett, K. L.; Lu, X.-Q. et al. Mycobacterial phenolic glycolipid virulence factor biosynthesis:mechanism and small-molecule inhibition of polyketide chain initiation [J]. Chem. Biol.2008,15,51-61.
    [73]Roeske-Nielsen, A.; Dalgaard, L. T.; Mansson, J.-E. et al. The glycolipid sulfatide protects insulin-producing cells against cytokine-induced apoptosis, a possible role in diabetes [J]. Diabetes. Metab. Res. Rev.2010,26,631-638.
    [74]Kent, R.; Walters, Jr.; Anthony, S. et al. A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa [J]. J. Comp. Physiol.B 2011,181,631-640.
    [75]Khan, A. A.; Cheng, J. M. H.; Stockerb, B. L. et al. Glycolipids and CD1:the crossroad between chemistry and immunology [J]. Chem. New Zealand 2010,57-62.
    [76]Mukherjee, S.; Das, P.; Sen, R. Towards commercial production of microbial surfactants [J]. Trends Biotechnol.2006,24,509-515.
    [77]Queneau, Y.; Chambert, S.; Besset, C. et al. Recent progress in the synthesis of carbohydrate-based amphiphilic materials:the examples of sucrose and isomaltulose [J]. Carbohydr. Res.2008,343,1999-2009.
    [78]Neto, V.; Granet, R.; Krausz. P. Novel class of non-ionic monocatenary and bolaform alkylglycoside surfactants. Synthesis by microwave-assisted glycosylation and olefin cross-metathesis or by'click-chemistry":physicochemical studies [J]. Tetrahedron 2010, 66,4633-4646.
    [79]de Almeida, M. V.; Hyaric, M. L. Carbohydrate-derived surfactants [J]. Mini-Rev. Org. Chem.2005.2,283-297.
    [80]Pilakowska-Pietras, D.; Lunkenheimer, K.; Piasecki, A. Synthesis of novel N. N-di-n-alkylaldonamides and properties of their surface chemically pure adsorption layers at the air/water interface [J]. J. Colloid Interf. Sci.2004.271,192-200.
    [81]Niraula, B. B.; Chun, T.-K.; Othman, H. el al. Dynamic-interfacial properties of dodecyl-p-D-maltoside and dodecyl-β-D-fructofuranosyl-a-D-glucopyranoside at dodecane/water interface [J]. Colloid. Surface. A:Physicochem. Eng. Aspects 2004.248, 157-166.
    [82]Yoshihiko, H.:Mizuyuki. R.; Yuka. O. et al. Novel characteristics of sophorolipids. yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants [J].J. Biosci. Bioeng.2009,108,142-146.
    [83]Morita. T.; Kitagawa. M.; Yamamoto, S. eT al. Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids [J].J. Oleo. Sci.2010,59, 451-455.
    [84]Morita, T.; Kitagawa. M.; Yamamoto. S. et al. Glycolipid biosurfactants, mannosyl-erythritol lipids, repair the damaged hair [J].J.Oleo Sci.2010.59,267-272.
    [85]Reddy. S. A.; Chen, C. Y; Baker, S. C. et al. Synthesis of silver nanoparticles using surfactin:a biosurfactant as stabilizing agent [J]. Mater. Lett.2009,63,1227-1230.
    [86]Biswas. M.; Raichur. A. M. Electrokinetic and rheological properties of nano zirconia in the presence of rhamnolipid biosurfactant [J].J. Am. Ceram. Soc.2008,91,3197-3201.
    [87]Kiran. G. S.; Sabua, A.; Selvin. J. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19 [J]. J. Biotechnol. 2010,148.221-225.
    [88]Makkar, R. S.; Cameotra. S. S. An update on the use of unconventional substrates for biosurfactant production and their new applications [J]. Appl. Microbiol. Biotechnol. 2002.58,428-434.
    [89]Ferlin. N.; Grassi, D.:Ojeda. C. et al. Synthesis of new chelating surfactants from octyl D-glucopyranosiduronic acid and amino acids for metal flotation [J]. Carbohydr. Res. 2010,345,598-606.
    [90]Sabah. K.; Heidelberg. T.: Hashim. R. et al. Novel crown ethers on glucose based glycolipids [J]. Carbohydr. Res.2011.346.891-896.
    [91]Shimizu. T. Self-assembled lipid nanotube hosts:the dimension control for encapsulation of nanometer-scale guest substances [J]. J. Polym. Sci. A: Polym. Chem.2006.44, 5137-5152.
    [92]John. G.:Masuda. M.:Okada. Y. et al. Nanotube formation from renewable resources via coiled nanofibers [J]. Adv. Mater.2001,13,715-718.
    [93]Zhou, Y.; Kamiya, S.; Minamikawa, H. et al. Controlled sheathing of CuO nanowires by a self-assembled tubular glycolipid [J]. Adv. Mater.2007,19,4194-4197.
    [94]Chae, P. S.; Laible, P. D.; Gellman, S. H. et al. Tripod amphiphiles for membrane protein manipulation [J]. Mol. BioSyst.2010,6,89-94. For a continuously updated database of membrane protein structures, see:http://blanco.biomol.uci.edu/MEmbrane_Proteins_xtal. html.
    [95]Kawakami, S.; Higuchi, Y.; Hashida, M. et al. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide [J]. J. Pharm. Sci.2008,97,726-745.
    [96]von Rybinski, W.; Hill, K. In Novel surfactants:preparation applications and bio-degradability [M].2nd Ed., Holmberg, K., Ed. New York:Marcel Dekker,2003.
    [97]Paul, K. J. V.; Loganathan, D. Synthesis of novel glycolipids derived from glyco-pyranosyl azides and N-((3-glycopyranosyl)azidoacetamides [J]. Tetrahedron Lett.2008, 49,6356-6359.
    [98]Lian, S.; Su, H.; Zhao, B.-X. et al. Synthesis and discovery of pyrazole-5-carbohydrazide N-glycosides as inducer of autophagy in A549 lung cancer cells [J]. Bioorg. Med. Chem.2009,17,7085-7092.
    [99]Kren, V.; Rezanka, T. Sweet antibiotics-the role of glycosidic residues in antibiotic and antitumor activity and their randomization [J]. FEMS Microbiol. Rev.2008,32,858-859.
    [100]Garcia-Alvarez, I.; Garrido, L.; Doncel-Perez, E. et al. Detection of metabolite changes in C6 glioma cells cultured with antimitotic oleyl glycoside by 1H MAS NMR [J]. J. Med. Chem.2009,52,1263-1267.
    [101]Al-Fadhli, A.; Wahidulla, S.; D'Souza, L. Glycolipids from the red alga Chondria armata (Kutz.) Okamura [J]. Glycobiology,2006,16,902-915.
    [102]Mizuno, M.; Shioiri, T. Efficient method for the one-pot azidation of alcohols using bis(p-nitrophenyl) phosphorazidate [J]. Chem. Comm.1997,22,2165-2166.
    [103]Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D. C-glycosyl aldehydes:synthons for C-linked disaccharides [J].J. Org. Chem.1996,61,1894-1897.
    [104]Li, S.-C; Meng, X.-B.; Cai, M.-S. et al. Optimized procedure for the synthesis of 6-azido-6-deoxy-galactopyranosides from 6-O-tosyl-galactopyranosides [J]. Syn. Comm.2006,36,637-643.
    [105]Masaki, Y.; Tanaka, N.; Miura, T. Mild esterification and transesterification of carboxylic acids catalyzed by tetracyanoethylene and dicyanoketene dimethyl acetal [J]. Chem. Lett.1997,1,55-56.
    [106]Mahon, E.; Aastrup T.; Barboiu, M. et al. Dynamic glycovesicle systems for amplified QCM detection of carbohydrate-lectin multivalent biorecognition [J]. Chem. Commun. 2010,46,2441-2443.
    [107]Fekry, A.M.; Mohamed, R. R. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium [J]. Electrochimica. Acta.2010,55, 1933-1939.
    [108]Wardrop, D. J.; Fritz, J. Total synthesis of (±)-Magnofargesin [J]. Org. Lett.2006,8, 3659-3662.
    [109]Peto, C.; Batta, G.; Gyorgydeak. Z. el al. Synthesis of the anomers of hepta-O-acetylcellobiosyl.-lactosyl,-maltosyl, and-melibiosyl azide [J]. Liebigs Annalen der Chemie 1991,5,505-507.
    [110]Gouin, S. G.; Kovensky. J. et al. Direct azidation of unprotected carbohydrates with PPh3/CBr4/NaN3. Modulation of the degree of substitution [J]. Tetrahedron Lett.2007. 48.2875-2879.
    [111]Ghorab, M. M.:Ragab, F. A.; Hamed, M. M. et al. Design, synthesis and anticancer evaluation of novel tetrahydroquinoline derivatives containing sulfonamide moiety [J]. Eur. J. Med. Chem.2009,44,4211-4217.
    [112]Lopez, M.; Bornaghi. L. F.; Innocenti. A. el al. Sulfonamide linked neoglyco-conjugates - a new class of inhibitors for cancer-associated carbonic anhydrases [J].J. Med. Chem.2010.53.2913-2926.
    [113]Stanly Jacob. K.; Parameswaran. G. Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone [J]. Corros. Sci. 2010,52, 224-228.
    [114]Baron, A.; Bleriot, Y.; Sollogoub, M. el al. Phenylenediamine catalysis of "click glycosylations" in water:practical and direct access to unprotected neoglycoconjugates [J]. Org. Biomol. Chem.2008.6,1898-1901.
    [115]Smokal. V.; Krupka, O.; Kolendo. A. Modification and bio-testing of polyethylene films [J]. Materialwiss. Werkst.2011,42.147-150.
    [116]Nikitin. V. I.; Glazunova. E. M.; Potapova, I. M. et al. Synthesis of acetylenic ethers and their pharmacological properties [C]. Khim. Atselilena, Tr. Vses. Konf..3rd.1972,73-76.
    [117]Kappe, C. O.; van der Eycken, E. Click chemistry under non-classical reaction conditions [J]. Chem. Soc. Rev.2010.39,1280-1290.
    [118]岑涛.周成,武秀明.微波辐射在多肽合成中的研究进展[J].化学世界,2009,7,439-442.
    [119]Zu, K.; Ip, C. Synergy between selenium and vitamin E in apoptosis induction is associated with activation of distinctive initiator caspases in human prostate cancer cells [J]. Cancer Res.2003,63.6988-6995.
    [120]Kim. M. J.; Hwang. J. J.:Choi. J. el al. RDEA119 synergy the anti-tumor effect of sorafenib in renal cell carcinoma cells [J]. Cancer Res.2011.71.2011-3828.
    [121]Wu, J.-B.; Wu. X.-Y; Lei, F. el al. Design, synthesis and antibacterial activities of a series of new 2-oxaisocephems [J]. Bioorg. Med. Chem. Lett.2012.22.5293-5296.
    [122]Todeschini, A. R.:Dos Santos. J. N.; Handa. K. el al. Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway [J]. Proc. Nat. Acad Sci. USA 2008.105,1925-1930.
    [123]Chen, Q.; Liang, X.; Wang, S. et al. Cationic gemini surfactant at the air/water interface [J]. J. Colloid Interf. Sci.2007,314,651-658.
    [124]Vollhardt, D.; Fainerman, V. B. Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers [J]. Adv. Colloid Interf. Sci.2000, 86,103-151.
    [125]祁庆琚.金属腐蚀数据库的研究进展与展望[J].四川化工,2006,1,31-34.
    [126]Hegazy, M. A.; El-Tabei, A. S.; Bedair, A. H. et al. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4 [J]. Corros. Sci.2012,54,219-230.
    [127]Al-Sabagh, A. M.; Elsabee, M.; Elazabawy, O. E. et al. Corrosion inhibition efficiency of polytriethanolamine surfactants for pipe-lines carbon steel in 1 M HCl [J]. J. Disper. Sci. Technol.2010,31,1288-1297.
    [128]a) Mahdavian, M.; Tehrani-Bagha, A. R.; Holmberg, K. Comparison of a cationic gemini surfactant and the corresponding monomeric surfactant for corrosion protection of mild steel in hydrochloric acid [J]. J. Surfact. Deterg.2011,14,605-613. b) Migahed, M.A.; Farag, A. A.; Elsaed, S. M. et al. Synthesis of a new family of Schiff base nonionic surfactants and evaluation of their corrosion inhibition effect on X-65 type tubing steel in deep oil wells formation water [J]. Mater. Chem. Phys.2011,125, 125-135.
    [129]Deng, Q.; Shi, H. W.; Ding, N. N. et al. Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl [J]. Corros. Sci.2012,57,220-227.
    [130]Kissi, M.; Bouklah, M.; Hammouti, B. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution [J]. Appl. Surf. Sci.2006,252,4190-197.
    [131]Ashassi-Sorkhabi, H.; Majidi, M. R.; Seyyedi, K. Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution [J]. Appl. Surf. Sci.2004,225, 176-185.
    [132]Hegazy, M. A. A novel Schiff base-based cationic gemini surfactants:Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution [J]. Corros. Sci.2009,51,2610-2618.
    [133]Miura, Y. Synthesis and biological application of glycopolymers [J]. Polym. Sci. A Polym. Chem.2007,45,5031-5036.
    [134]金城.糖生物学:基因组学和蛋白质组学的延伸[J].世界科技研究与发展,2001,2,31-34.
    [135]Narla, S. N.; Nie, H.; Li, Y. et al. Recent advances in the synthesis and biomedical applications of chain-end functionalized glycopolymers [J]. J. Carbohydr. Chem.2012, 31,67-92.
    [136]Varki A. In Essentials of glycobiology [M]. Varki, A., Cummings, R., Esco, J., Freeze, H., Hart, G. Marth. J. Eds. New York:Cold Spring Harbor Laboratory Press,1999.
    [137]Ernst. B.; Magnani, J. L. From carbohydrate leads to glycomimetic drugs [J]. Nat. Rev. Drug. Discov.2009,8.661-677.
    [138]Gamblin, D. P.; Scanlan. E. M.; Davis, B. G. Glycoprotein synthesis:an update [J]. Chem. Rev.2008,109.131-163.
    [139]Becer, C. R. The glycopolymer code:synthesis of glycopolymers and multivalent carbohydrate-lectin interactions [J]. Macromol. Rapid Commun.2012,33,742-752.
    [140]Cecioni. S.; Faure, S.; Darbost, U. el al. Selectivity among two lectins:probing the effect of topology, multivalency and flexibility of "clicked" multivalent glycoclusters [J]. Chem. Eur. J.2011.77,2146-2159.
    [141]Lahmann, M. Architectures of multivalent glycomimetics for probing carbohydrate-lectin interactions [J]. Top. Curr. Chem.2009.288,17-65.
    [142]Deniaud. D.; Julienne, K.; Gouin, S. G. Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands [J]. Org. Biomol. Chem.2011.9.966-979.
    [143]Bertozzi, C. R.; Kiessling, L. L. Chemical glycobiology [J]. Science 2001.291, 2357-2364.
    [144]Gestwieki. J. E.:Cairo. C. W.:Strong. L. E. et al. Influencing receptor-ligand binding mechanisms with multivalent ligand architecture [J].J. Am. Chem. Soc.2002.24, 14922-14933.
    [145]Andre, S.; Kaltner, H.; Furuike, T. Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets [J]. Bioconjug. Chem.2004,15.87-98.
    [146]Hecht. M.; Seeberger. P. H.; Silva, D. V. el al. Recent advances in carbohydrate-based vaccines [J]. Curr. Opin. Chem. Biol.2009.13.354-359.
    [147]Martinez-Avila, O.; Hijazi, K.:Marradi, M. el al. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN [J]. Chem. Eur. J.2009.15.9874-9888.
    [148]Werz. D. B.; Seeberger. P. H. Carbohydrates as the next frontier in pharmaceutical research [J]. Chem. Eur.J.2005.11.3194-3206.
    [149]Bernardes, G. J. L.; Kikkeri. R.:Maglinao. M. el al. Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte-speciflc targeting [J]. Org. Biomol. Chem.2010.8.4987-4996.
    [150]Kobayashi, K.:Tsuchida. A.:Usui. T. el al. A new type of artificial glycoconjugate polymer:a convenient synthesis and its interaction with lectins [J]. Macromolecules 1997.50.2016-2020.
    [151]Miura. Y.; Yasuda. K.; Yamamoto, K. et al. Inhibition of Alzheimer amyloid aggregation with sulfated glycopolymers [J]. Biomacromolecules 2007,8.2129-2134.
    [152]Shamay. Y.; Paulin. D.:Ashkenasy. G. el al. Multivalent display of quinic acid based ligands for targeting E-selectin expressing cells [J]. J. Med. Chem.2009,52, 5906-5915.
    [153]Khorev, O.; Stokmaier, D.; Schwardt, O. et al. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor [J]. Bioorg. Med. Chem.2008,16, 5216-5231.
    [154]Medina, S. H.; Tekumalla, V.; Chevliakov, M. V. et al. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers [J]. Biomaterials 2011,32,4118-4129.
    [155]Imberty, A.; Chabre, Y. M.; Roy, R. Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins [J]. Chem. Eur. J.2008,14,7490-7499.
    [156]Pieters, R. J. Toward multivalent carbohydrate drugs [J]. Drug Discov. Today: Technologies 2009,6,1-4.
    [157]Pukin, A. V.; Branderhorst, H. M. Sisu, C. et al. Strong inhibition of cholera toxin by multivalent GM1 derivatives [J]. ChemBioChem 2007,8,1500-1503.
    [158]Shiao, T. C.; Roy, R. Glycodendrimers as functional antigens and antitumor vaccines [J]. New J. Chem.2012,36,324-339.
    [159]a) von Mensdorff-Pouilly, S.; Moreno, M.; Verheijen, R. H. M. Natural and induced humoral responses to MUC1 [J]. Cancers 2011,3,3073-3103. b) Westerlind, U.; Kunz, H. Synthetic vaccines from tumor-associated glycopeptide antigens [J]. Chimia 2011, 65,30-34.
    [160]Westerlind, U. Synthetic glycopeptides and glycoproteins with applications in biological research [J]. Beilstein J. Org. Chem.2012,8,804-818.
    [161]a) Kaiser, A.; Gaidzik, N.; Westerlind, U. et al. A synthetic vaccine consisting of a tumor-associated sialyl-TN-MUCl tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response [J]. Angew. Chem., Int. Ed. 2009,48,7551-7555. b) Hoffmann-Roder, A.; Kaiser, A.; Wagner, S.; et al. Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen- Friedenreich antigen and a fluorine-substituted analogue [J]. Angew. Chem., Int. Ed.2010,49,8498-8503.
    [162]Cai, H.; Huang, Z.-H.; Shi, L. et al. Towards a fully synthetic MUCl-based anticancer vaccine:efficient conjugation of glycopeptides with mono-, di-, and tetravalent lipopeptides using click chemistry [J]. Chem. Eur. J.2011,17,6396-6406.
    [163]Buskas, T.; Ingale, S.; Boons, G. J. Towards a fully synthetic carbohydrate-based anticancer vaccine:synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated Tn antigen [J]. Angew. Chem. Int. Ed.2005,44, 5985-5988.
    [164]Ju, T.-Z.; Otto, V. I.; Cummings, R. D. The Tn antigen - structural simplicity and biological complexity [J]. Angew. Chem. Int. Ed.2011,50,1770-1791.
    [165]Galonic, D. P.; Gin, D. Y. Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines [J]. Nature 2007,446,1000-1007.
    [166]Li, X; Wu, Y. D.; Yang, D. a-Aminoxy acids:new possibilities from foldamers to anion receptors and channels [J]. Acc. Chem. Res.2008,41,1428-1438.
    [167]a) Appella, D. H.; Christianson, L. A.; Karle, I. L. et al. β-Peptide foldamers:robust helix formation in a new family of (3-amino acid oligomers [J].J. Am. Chem. Soc.1996, 118,13071-13072. b) Appella. D. H.; Christianson, L. A.; Klein, D. A. et al. Residue-based control of helix shape in beta-peptide oligomers [J]. Nature 1997.387, 381-384.
    [168]Yang, D.; Zhang, D.-W.; Zhu, N.-Y. et al. β2.3-Cyclic aminoxy acids:rigid and ring-size-independent building blocks of foldamers [J]. Angew. Chem. Int. Ed.2004, 43,6719-6722.
    [169]Zhang, Y.-H.; Song, K.-S.; Yang, D. et al. The effect of backbone stereochemistry on the folding of acyclic [3-2,3-aminoxy peptides [J]. Chem. Eur. J.2010,16,577-587.
    [170]Swamy, K. C.; Kumar, N. N.; Balaraman, E. et al. Mitsunobu and related reactions: advances and applications [J]. Chem. Rev.2009,109.2551-2651.
    [171]Miller, N.; Williams, G. M.; Brimble, M. A. Synthesis of fish antifreeze neoglyco-peptides using microwave-assisted "click chemistry" [J]. Org. Lett.2009,11, 2409-2412.
    [172]Arnaud, O.:Koubeissi, A.; Falson, P. et al. Potent and fully non-competitive peptido-mimetic inhibitor of multidrug resistance P-glycoprotein [J]. J Med Chem.2010,53, 6720- 6729.
    [173]Yu, S.-M.; Hong, W.-X.; Yao. Z.-J. et al. Total synthesis of chloptosin, a potent apoptosis-inducing cyclopeptide [J]. Org. Lett.2010.12,1124-1127.
    [174]Gong, Y.-C; Sun, H.-B.; Xie,.1. Synthesis of Oligosaccharide mimetics with glycoaminoxy acids [J]. Eur. J. Org. Chem.2009,34,6027-6033
    [175]McDermott. T. S.; Bhagavatula. L.; Wittenberger. S. J. Development of a scalable synthesis of dipeptidyl peptidase-4 inhibitor ABT-279 [J]. Org. Process Res. Dev 2009. 13,1145-1155.
    [176]Mathias. L. J. Esterification and alkylation reactions employing isoureas [J]. Synthesis 1979.8.561-576.
    [177]任新锋.徐菁利.陈思浩.Mitsunobu反应研究进展[J].有机化学,2006,26,454-461.
    [178]Gibson, F. S.; Bergmeier, S. C.; Rapoport, H. Selective removal of an N-BOC protecting group in the presence of a tert-butyl ester and other acid-sensitive groups [J]. J. Org. Chem.1994,59.3216-3218.
    [179]Morales-Narvaez, E.; Merkoci, A. Graphene oxide as an optical biosensing platform [J]. Adv. Mater.2012,24,3298-3308.
    [180]Liu, Y.-X.; Dong, X.-C; Chen, P. Biological and chemical sensors based on graphene materials [J]. Chem. Soc. Rev.2012,41,2283-2307.
    [181]Wan, X.-J.; Huang, Y.; Chen, Y.-S. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale [J]. Accounts Chem. Res.2012, 45,598-607.
    [182]Chen, D.; Feng, H.-B.; Li, J.-H. Graphene oxide:preparation, functionalization, and electrochemical applications [J]. Chem. Rev.2012,112,6027-6053.
    [183]a) Eda, G; Chhowalla, M. Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics [J]. Adv. Mater.2010,22,2392-2415. b) Kim, F.; Cote, L. J.; Huang, J. X. Graphene Oxide:Surface Activity and Two-Dimensional Assembly [S].Adv. Mater.2010,22,1954-1958.
    [184]Wang, Z.; Huang, P.; Bhirde, A. et al. A nanoscale graphene oxide-peptide biosensor for real-time specific biomarker detection on the cell surface [J]. Chem. Commun.2012,48, 9768-9770.
    [185]Xu, H. F.; Dai, H.; Chen, G. N. Direct electrochemistry and electrocatalysis of hemo-globin protein entrapped in graphene and chitosan composite film [J]. Talanta,2010,81, 334-338.
    [186]Kang, X. H.; Wang, J.; Wu, H. et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J]. Biosens. Bioelectron. 2009,25,901-905.
    [187]Luo, Z. T.; Vora, P. M.; Mele, E. J. et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett.2009,94,111909-11911.
    [188]Kim, J.; Cote, L. J.; Kim, F.; et al. Visualizing graphene based sheets by fluorescence quenching microscopy [J]. J. Am. Chem. Soc,2010,132,260-267.
    [189]Morales-Narvaez, E.; Perez-Lopez, B.; Pires, L. B. et al. Simple Forster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structure [J]. Carbon 2012,50,2987-2993.
    [190]Chen, J.-L.; Yan, X.-P.; Meng, K. et al. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine [J]. Anal. Chem. 2011,83,8787-8793.
    [191]Chang, H. X.; Tang, L. H.; Wang, Y. et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection [J]. Anal. Chem.2010,82,2341-2346.
    [192]Chen, L.; Zhang, X.; Zhou, G. et al. Simultaneous determination of human Enterovirus 71 and Coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay [J]. Anal. Chem.2012,84,3200-3207.
    [193]a) Peng, C; Jiang, B.-W.; Liu, Q. et al. Graphene-templated formation of two- dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols [J]. Energy Environ. Sci.2011,4.2035-2040. b) Hu. W.-B.; Peng. C; Lv. M. et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide [J]. ACS Nano 2011.5,3693-3700.
    [194]Wang, L.-H.; Pu, K.-Y.; Li, J. et al. A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia Coli [J]. Adv. Mater.2011,23.4386-4391.
    [195]Madsen, J.; Warren. N. J.; Armes, S. P. Synthesis of rhodamine 6G-based compounds for the ATRP synthesis of fluorescently labeled biocompatible polymers [J]. Biomacromolecules 2011,12,2225-2234.
    [196]Goncalves, M. S. Fluorescent labeling of biomolecules with organic probes. [J]. Chem. Rev.2009,109,190-212.
    [197]Chen, X.; Wu, Q.; Henschke. L. An efficient and versatile approach for the preparation of a rhodamine B ester bioprobe library [J]. Dyes Pigm.2012,94,296-303.
    [198]Kovtyukhova. N. I.; Ollivier, P. J.; Martin, B. R. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J]. Chem. Mater.1999.11,771-778.
    [199]Song. W.; Li, D.-W.; Li. Y.-T. Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles [J]. Biosens. Bioelectron.2011, 26.3181-3186.
    [200]Bissessur. R.; Scully. S. F. Intercalation of solid polymer electrolytes into graphite oxide [J]. Solid State Ionics,2007,178:877-882.
    [201]Kudin, K. N.; Ozbas, B.; Schniepp. H. C. et al. Raman spectra of graphite oxide and functionalized graphene sheets [J]. Nano lett.2008,8,36-41.
    [202]Zhao. H. M.; Chang, Y.-Y.; Liu. M. et al. A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots [J]. Chem. Commun.2013.49.234-236
    [203]Liao. K.-H.:Lin, Yu.-S.:Macosko. C. W. et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts [J]. ACS Appl. Mater. Interf.2011, 3.2607-2615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700