用户名: 密码: 验证码:
沙柳沙障腐蚀过程及防腐抗蚀效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙柳沙障在设置一段时间以后会发生不同程度的腐蚀,从根本上影响了其生态效益的发挥。本文针对沙柳沙障的腐蚀现象,通过室内和野外试验结合的方法,分析沙柳沙障腐蚀过程和腐蚀规律,以及对不同环境因子对沙柳沙障腐蚀的作用进行研究,揭示出沙柳沙障腐蚀的机理,采用环保型化学防腐剂氨溶烷基胺铜和铜唑对沙柳沙障进行防腐试验,针对实际铺设沙柳沙障过程中的施工设计,提出一套防腐机理上的合理配置模式,以期延长沙柳沙障的使用寿命,对沙柳沙障的防护效益长久发挥具有重要的建设意义。主要结论如下:
     (1)当沙柳沙障铺设年限为5a时,其倒伏率已经达到80%以上,抗弯强度损失率达到63.16%,失重率达到50.87%,防风固沙的作用基本丧失。沙柳沙障垂直位置的腐蚀规律为:从地上最顶端到地面分界处逐渐降低,从地面分界处到地下最底端逐渐升高的趋势。地下部分的沙柳沙障腐蚀比地上部分严重。通过对沙柳沙障腐蚀前后红外光谱的分析,沙柳沙障腐蚀过程中,半纤维素、纤维素及木质素均发生变化,在铺设5a后化学组成基本稳定。沙柳沙障腐蚀过程中化学成分含量的变化规律和FTIR分析结果相一致。利用扫描电子显微镜对沙柳沙障微观构造进行观察得出,沙柳沙障腐蚀的主要途径是,木腐菌通过沙障两段的暴露部分,从导管进入薄壁细胞,破坏细胞壁,并向外蔓延,最后导致壁上孔穴数目增多变大,致使细胞壁瓦解崩溃。细菌、放线菌、纤维素分解菌及真菌对沙柳沙障的腐蚀均具有促进的作用。
     (2)沙柳沙障在30℃的温度下腐蚀较严重,高温和低温处理对沙柳沙障的腐蚀影响相对较小;土壤含水率越大沙柳沙障的腐蚀越严重;在偏酸性的土壤中能够促进沙柳沙障的腐蚀,pH=6的处理下,沙柳沙障的抗弯强度损失率和失重率最大;土壤有机质含量越大沙柳沙障的腐蚀越严重。
     (3)ACQ防腐剂处理后沙柳沙障吸药量达到标准,且耐腐等级达到A级的最佳处理为:浓度为2.5%浸泡时间为24h的处理;CuAz防腐剂处理后沙柳沙障吸药量达到标准,且耐腐等级达到A级的最佳处理为:浓度为2.0%浸泡时间为24h的处理。通过灰色GM(1,1)模型对经防腐处理后沙柳沙障的使用年限进行预测,结果得出,经防腐剂处理后沙柳沙障的使用年限可以延长至20年。CuAz防腐剂的处理成本略高于ACQ防腐剂。防腐剂处理后每公顷沙柳沙障的年运行成本均可减半。
     (4)沙丘不同部位沙柳沙障的腐蚀程度不同。丘间低地沙柳沙障的腐蚀最为严重,背风坡坡中沙柳沙障的腐蚀最轻。不同直径沙柳沙障的腐蚀程度存在差异,直径越小腐蚀越严重。根据沙丘部位及不同沙柳沙障直径沙柳沙障的腐蚀情况,对沙柳沙障今后的铺设提出以下的配置方案:沙柳沙障经防腐处理后,在腐蚀较严重的丘间低地、背风坡坡底以及迎风坡坡底铺设直径较粗的沙柳沙障;在腐蚀最轻的背风坡坡中及阳坡,铺设直径较细的沙柳沙障,其它坡位铺设直径居中的沙柳沙障。这样的配置在理论上搭配更合理,更有利于沙柳沙障的综合效益的最大发挥。
After a period of setting. Salix sand barriers have different degrees of corrosion, it affect the play of its ecological benefits fundamentally. The paper contrapose the corrosion phenomenon of the Salix sand barrier, through a combination of laboratory and field test methods, analysis the corrosion processes and law of Salix sand barrier, research on the the role of different environmental factors on Salix sand barrier corrosion, revealing the corrosion mechanism of Salix sand barrier, and make an antiseptic experiment by using the environmentally friendly chemical preservatives ACQ and CuAz to test the Salix sand barrier corrosion, putting forward a rational allocation with the corrosion mechanism for the actual laying the Salix sand barrier in the process of construction design, in order to extend the service life of the the Salix sand barrier, it has an important construction meaning of long-term play of Salix sand barrier protective effect. The main conclusions were shown as follows:
     (1) When Salix sand barrier laying period is5a. the lodging rate has reached80%. and the flexural strength loss rate of63.16%, the weight loss rate of50.87%, the effect of its prevention of wind and sand was mainly loss. The corrosion law in vertical position of Salix sand barrier was as follows:it is gradually reduced from the top to the boundary between the floor and the ground. and gradually increased to the bottom of the underground. And the corrosion of underground sections of Salix sand barrier were severe than the aerial parts. Analysis by infrared spectroscopy showed that, hemicellulose, cellulose and lignin changed during its corrosion process. And the chemical composition of Salix sand barrier was basically stable after the laying of5a. The variation of chemical composition of Salix sand barrier was the same as FTIR analysis results. Observable using scanning electron microscopy of the Microscopic Structure. the main way of corrosion of Salix sand barrier is wood-decay fungi through the expose parts of the sand barrier, enter into the parenchyma cells from the catheter. damage the cell wall. spread out. and lead to an increase of the number of larger wall cavity, then made the cell wall collapse eventually Bacteria, actinomyces. cellulose decomposition bacteria and fungus all has the function of promoting of the corrosion of Salix sand barrier.
     (2) Salix sand barrier corrosion more serious is in the30℃temperature. the effect of high and low temperature is relatively small:corrosion of Salix sand barrier serious with the greater soil moisture content. in acidiccan soil promote the corrosion of Salix sand barrier; and the corrosion of Salix sand barrier was serious with the increase of soil organic matter content.
     (3) The best treatment of ACQ preservative treatment, which retention was up to standard and corrosion-resistant reached to grade A level, is the concentration of the soaking time of2.5%for24h processing; The best treatment of CuAz preservative treatment, which retention was up to standard and corrosion-resistant reached to grade A level, is the concentration of the soaking time of2.0%for24h processing. Through the gray GM (1,1) model to predict the useful life of the the Salix sand barrier, the results showed that, the service life of the Salix sand barrier after the preservative treatment may be extended to20years. The cost of CuAz was slightly higher than ACQ. The operation cost of per hectare can all by half after treated with preservative.
     (4) Corrosion degree of Salix sand barrier was different in different parts of sand dunes. Corrosion of Salix sand barrier in interdune lowlands is the most severe, and corrosion in middle leeward slope is the most lightest. Corrosion of different diameter Salix sand barrier are different, the smaller the diameter the more serious corrosion. According to the parts of sand dunes and different Salix sand barrier diameter, the paper put forward following configurations:after treated by preservatives, in more serious corrosion sand parts such as interdune lowland, the bottom of leeward and bottom of windward slope laying bigger diameter Salix sand barrier:in the lightest corrosion parts such as the middle leeward slope and sunny slope, laying smaller diameter Salix sand barrier, the other slope laying middle diameter sand barrier. Such a configuration in theory, is a more reasonable, and more conducive to the effective play of Salix sand barrier.
引文
1朱震达.中国沙漠化研究的进展[J].中国沙漠,1989,9(1):27-31
    2马世威,马玉明等.沙漠学[M].呼和浩特:内蒙古人民出版社,1998:22-23
    3祝列克.中国荒漠化和沙化动态研究[M].中国农业出版社,2006.
    4朱俊凤,朱震达.中国沙漠化防治[M].北京:中国林业出版社,1999:167-168
    1吴波.我国荒漠化现状、动态与成因[J].林业科学研究,2001,14 (2):195-202
    6卢琦,吴波.中国荒漠化灾害评估及其经济价值核算[J].中国人口·资源与环境,2002,12(2):29-33
    7高尚武.治沙造林学[M].北京:中国林业出版社,1984
    8丁国栋.区域荒漠化评价中植被的指示性及盖度分级标准研究[J].水土保持学报,2004,18(1):158-160
    9高永,邱国玉,丁国栋等.沙柳沙障的防风固沙效益研究[J].中国沙漠,2004,24(3):365-370
    10回良玉.在治理荒漠化国际会议开幕式上强调[N].人民日报,2008,1 (23)
    11张奎壁,邹受益.治沙原理与技术[M].北京:中国林业出版社,1990
    12朱震达,赵兴梁,凌裕泉等.治沙工程学[M].北京:中国环境科学出版社,1998.96-116
    13成俊卿.木材学[M].北京:中国林业出版社,1985
    14周慧明.木材防腐[M].北京:中国林业出版社,1991
    15唐麓君,杨忠岐.治沙造林工程学[M].中国林业出版社,2005,4,84-90
    16董智,李红丽,汪季等.土工格栅沙障防风积沙效应风洞模拟实验[J].中国水土保持科学,2007,5(1):35-39
    17孙保平.荒漠化防治工程学[M].北京:中国林业出版社,2000
    18王淘,赵哈林.中国沙漠化研究的进展[J].中国沙漠,1999,12(19):299-311
    19王振亭,郑晓静.草方格沙障尺寸分析的简单模型[J].中国沙漠,2002,8(22):299-232
    20凌裕泉.草方格沙障的防护效益一腾格里沙漠沙坡头地区流沙治理研究[M].银川:宁夏人民出版社,1980.49-53
    21屈建军,凌裕泉,俎瑞平等.半隐蔽格状沙障的综合防护效益观测研究[J].中国沙漠,2005,5:329-335
    22孙显科,郭志中.沙障固沙原理的研究[J].甘肃林业科技,1996,6(24):7-12
    23胡春元,崔琳,罗俊宝等.库布齐沙漠公路沙害综合防护技术[J].内蒙古公路与运输,2003(78):30-33
    24刘世增,蔡宗良.荒漠化地区活沙障建植技术研究防护林科技[J].1997.(93):1-6
    25马全林,王继和,詹科杰等.塑料方格沙障的固沙原理及其推广应用前景[J].水土保持学报,2005,2(19):6-10
    26董智,李红丽,左合君等.土壤凝结剂沙障防沙机理的风洞模拟实验研究[J].干旱区资源与环境,2004,5(18):35-38
    27孙中峰,荣建东,李英杰等.应用沙障作用治理流动沙地的试验研究[J].黑龙江:黑龙江水专学报,199,12(24):54-55
    28韩致文,刘贤万,姚正义等.复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验[J].中国沙漠,2000,3(20):40-44
    30曹显军,刘玉山,斯钦昭日格.踏郎、黄柳植物再生沙障治理高大流动沙丘技术的探讨[J].呼和浩特:内蒙古林业科技,1999:7-9
    31胡春元,杨茂,杨存良等,库布齐沙漠穿沙公路沙害综合防治技术[J].干旱区资源与环境,2003,9(16):71-77
    32韩致文,陈广庭,胡英娣等.塔里木沙漠公路防沙体系建设几个问题的探讨[J].干旱区资源与环境,2000,6(16):35-41
    33郭景山,朱玉明,武占河.乌吉线沙害治理机械沙障设置的研究[J].呼和浩特:内蒙古大学学报,2002,5(3):324-327
    34刘艳军,刘明义,修竹奇等.新发流动沙丘治理措施研究及效益分析[J].中国水土保持,1995,8:10-12
    35刘艳军,刘明义,张力等.花棒带状沙障防风固沙试验研究[J].中国水土保持,1997(4):23-26
    36柴发盛.土方格沙障在防沙治沙造林中的作用[J].青海农林科技,2001(3):58-59
    37汪季.乌兰布和沙漠东北源植被抑制沙尘机理的研究[D].北京:北京林业大学,2004
    38马立鹏,罗万银.甘肃省沙漠化土地封禁保护区建设研究[J].中国沙漠,2005,25(4):593-594
    39赵建新.国内外荒漠化状况与西藏防沙治沙[J].林业建设,2007,(2):25-27
    40刘瑛心.沙坡头流动沙丘固沙植物引种栽培三十五年[J].中国沙漠,1991,11(1):24-31
    41米志英,周丹丹,吴亚东.风蚀沙埋对沙柳形态特征的影响[J].内蒙古林业科技,2005(2):10-13
    42高宝山,高国雄,朱首军.煤矸石沙障小气候效应调查研究[J].陕西师范大学学报,1999,5(27):159-163
    43常兆丰,韩福贵,仲生年.不同沙面地被物增温效应的初步研究干旱区资源与环境[J].2001,6(15):55-59
    44郭连生.荒漠化防治理论与实践[M].内蒙古大学出版社,1998
    45赵廷宁,曹子龙,郑翠玲等.平行高立式沙障对严重沙化草地土壤有机质含量及颗粒组成的影响[J].中国水土保持科学,2004,12(2):73-77
    46高国雄,李广毅,高宝山.煤矸石障蔽对沙地土壤的改良作用研究[J].水土保持学报,2001,3(15):102-104
    47刘阳宣,张民力.拓万全极端干旱地区清绿线 K170段铁路沙害机械措施治理[J].中国沙漠,1997,9(17):280-285
    48李生宇,雷加强.草方格沙障的生态恢复作用—以古尔班通古特沙漠油田公路扰动带为例[J].干旱区研究,2003,3(20):7-10
    49于淑萍.土地荒漠化的成因、危害及防治对策[J].环境科学与管理,2006,(2):16-17
    50高永,周丹丹.荒漠化:一个不容回避的问题[J].中国社会导刊,2005,100:13-15
    51孙明忠,武润虎.华能东煤矿区防沙护矿措施选择[J].内蒙古林学院学报,1996,9(18):40-44
    52刘贤万.草方格沙障的风洞实验[A].流沙治理研究(二)[C].银川:宁夏人民出版社,1988.326-334
    53曹显军.治理高大流动沙丘技术介绍植物再生沙障[J].内蒙古林业,2000,(2):31
    54武凤鸣.278-1.45型沙障建植播种机[J].农机科技推广,2004,(7):4
    55王颖,孟和,张玮等.毛乌素沙地北沙柳形态特征与花序分布习性研究[J].西北植物学报,2009,29(4):775-780
    56冯利群,高晓霞,王喜明.沙柳木材显微构造及其化学成分分析[J].内蒙古林学院学报,1996,18(1):38-42
    57许凤,钟新春,孙润仓等.沙柳的超微结构及其木素微区分布的研究[J].中国造纸学报,2005,20(1):6-9
    58董智,李红丽,胡春元等.沙漠公路不同固沙措施防风固沙效益和成本比较研究[J].水土保持研究,2006,13(2):128-130
    59 Yang, A., Closing sandy land to establish vegetation along a desert railway line. Journal of Desert Research[J].1995,15 (3),308-311
    60 Buckley, R. The effect of sparse vegetation on the transport of dune sand by wind. Nature [J].1987,325:426-428.
    61周丹丹,胡生荣,韩敏等.沙柳沙障内植被恢复影响因子探究[J].水土保持研究,2008,15(6):115-118
    62 Guo Yu Qiu,In-Bok Lee,Hideyuki Shimizu,Yong Gao,Guodong Ding. Principles of sand dune fixation with straw checkerboard technology and its effects on the environment,Journal of Arid Environments [J].2004,56(3):449-464.
    63 Han, Z., Chen, W., Chen, G., Liu, X., Dong, Z.The protective efficiency of the drifting-sand-dunecontrol system along a test section of the Tarim Desert Highway. Journal of Desert Research[J].1993,13(4),44-51
    64李琉祥.沙柳种植利用专著[M].鄂尔多斯:鄂尔多斯林业处,1986:1-6
    65 Kacira, M. A CFD evaluation of natural ly vent i la ted, multi-span, sawtooth greenhouses. Transactions of the ASAE [J].1998,41:833-836
    66孙明忠,武润虎.华能东煤矿区防沙护矿措施选择[J].内蒙古林学院学报,1996,9(18 ):40-44
    67杨树林.沙柳集束沙障固沙技术探讨[J].内蒙古林业科技,2004(3):27-28
    68高永,邱国玉,丁国栋等.沙柳沙障的防风固沙效益研究[J].中国沙漠,2004,5(24):365-370
    69康世勇,夏素华,李志忠等.鄂尔多斯沙区飞播杨柴固沙技术的研究[J].中国沙漠,1998,3(18):57-63
    70高菲.沙柳沙障对土壤理化性质的影响[D].呼和浩特:内蒙古农业大学,2006
    71任余艳,胡春元,贺晓等.毛乌素沙地巴图塔沙柳沙障对植被恢复作用的研究[J].水土保持研究:2007:14(2):13-15
    72赵国平,胡春元,张勇等.高立式沙柳沙障防风阻沙效益的研究[J].内蒙古农业大学学报,2006,27(1):59-63
    73张亚玲,王翔宇,高函等.沙柳沙障防风效益模拟试验研究[J].水土保持应用技术,2007(6):3-5
    74赵国平,左合君,徐连秀等.沙柳沙障防风阻沙效益的研究[J].水土保持学报,2008,22(2):38-41
    75王翔宇,丁国栋,高函等.带状沙柳沙障的防风固沙效益研究[J].水土保持学报,2008,22(2):42-46
    76曹波,孙保平,高永等.高立式沙柳沙障防风效益研究[J].中国水土保持科学,2007,5(2):40-45
    77张瑞麟.浑善达克沙地黄柳活沙障的设置及防风固沙作用研究[D].内蒙古农业大学2008,3
    78乔万福.浑善达克沙地活立式沙障的栽培及其效益分析[J].内蒙古林业科技,2007,33(2):47-49
    79高菲,高永,高强等.沙柳沙障对土壤理化性质的影响[J].内蒙古农业大学学报,2006,5:329-335
    80杨忠,江泽慧,费本华.木材初期腐朽研究综述[J].林业科学,2006,42(3):99-102
    81王蕴忠,马玉明.内蒙古伊克昭盟毛乌素沙地飞播固沙植物试验[J].中国沙漠,1983,(01):26-31
    82 Griffin D M. Soil moisture and the ecology of soil fungi [J]. Biological Reviews,1963,38:141-166
    83 Griffin D M. Ecology of soil Fungi [M]. London, Chapman and Hall,1972:89-91
    84 Griffin D M. Soi 1 water in the ecology of fungi [J]. Annual Review of Phytopathology, 1969,7:289-310
    85池玉杰,邹莉,赵科研.杨树冰核细菌溃疡病寄主树栖细菌种群相互拮抗关系的研究[J].林业科学研究,2002,15(4):499-502
    86池玉杰,刘智会,鲍甫成.木材上的微生物类群对木材的分解及其演替规律[J].菌物研究,2004,2(3):51-57
    87黄镇亚.木材微生物及其利用[M].北京:中国林业出版社,1985:1-8
    88池玉杰.木材腐朽与木材腐朽菌[M].北京:科学出版社,2003:18-52
    89程东升.森林微生物生态学[M].哈尔滨:东北林业大学出版社,1993:103-121
    90尹思慈.木材品质和缺陷[M].中国林业出版社,1990:140-141
    91李坚,木材保护学[M].东北林业大学出版社,1998:44-46
    92池玉杰,于钢.6种木材白腐菌对山杨木质素分解能力的研究[J].林业科学,2002,38 (5):115-120
    93 Yalinkilic MK. Enhancement of Biological and Physical Propertise of Wood by Boric Acid-vinyl Monmer Combination Treatrnent [J]. Kolzfochung,1998,52 (6):667-672
    94 Christine S E. Enzyme Secretion by Wood-rot ing Basidiomycetes, Genetics and Cellular Biology of Basidiomycetes III [J], June 1995:67-69
    95陈敏忠,王传槐等.白腐菌云芝腐朽杨木的超微结构研究[J].南京林业大学学报,1996,(1):48-52
    96江泽慧,覃道春,傅峰.人工林木材剪切强度的研究[J].环境材料:532-535
    97 Curling S F, Clausen C A, Winandy J E.2002. Relationship between mechanical properties, weight loss, and chemical compositions of wood during incipient brown-rot decay.Forest Product Journal[J],52 (7-8):34-39.
    98 Winandy J E, Morrell J J Relationship between incipient decay strength and chemical composition of Douglas-fir hear twood. Wood and Fiber Science [J],1993,25(3):278-288.
    99梁宏温,徐峰,牟继平.马占相思木材物理力学性质研究[J].广西农业生物科学,2004,23(4):325-328
    100 Iwaasa A D, Beachenmin K A, Buchanan-Smith J G, Acharya S N. Assessment of stem shearing force for three alfalfa cultivars grown under dryland and irrigated conditions. Can J Anim Sci[J],1995,75:53-58
    101 Iwaasa A D, Beachenmin K A, Buchanan-Smith J G, Acharya S N. A shearing technique measuring Resistance properties of plant stems. Anim Feed Sic Technol [J],1996, 57:34-39
    102 Volenec J J, Cherney J H, Johnson K D, Yield components, plant morphology, and forage quality of alfalfa as influenced by plant population. Crop Sci[J],1987,27:68-74
    103 Mowat D N, Fulkerson R S, Camble E E Relationship between stem diameter and in vi tro digestibility of forages. Can J Plant Sci [J],1967,47:68-76
    104南京林学院.森里病理学[M],1958:92-105
    105齐华春,程万里,刘一星.高温高压过热蒸汽处理木材的力学特性及化学成分变化[J].东北林业大学学报,2005,33(3):44-46
    106李晓琴,徐煜.软腐——一种特殊的木材腐朽[J].林业科技,2003,28 (3):56-58
    107杨芳,胡成功.浅谈木材防腐处理[J].内蒙古民族大学学报,2007;13(5):15
    108 Wilcox W W. Review of literature on the effects of early stages of decay on wood strength. Wood and Fiber [J],1978,9 (4):252-257
    109胡英娣.方格沙障麦草致腐因素与防腐方法的研究[J].干早区资源与环境,1988,2(1):82-91
    110李坚.木材科学研究[M].北京:科学出版社,2009
    111方桂珍.木材防腐剂使用与环境安全性[J].中国安全科学学报,2004,14(2):66-70
    112苗建才.林木化学保护[M].哈尔滨:东北林业大学出版社,1995:17-18
    113李玉栋.木材防腐一延长木材使用寿命的有效措施[J].人造板通讯,2001,(11):3-5
    114李玉栋.我国木材防腐工业的状况、问题与对策[J].木材业,2004,18(1):20-23
    115岳孔,夏炎.木质材料防腐朽菌败坏研究综述[J].木材加工机械,2007,(6):50--52.24
    116蒋明亮,费本华.木材防腐的现状及研究开发方向[J].世界林业研究,2002,15(3):44-48
    117卫民,崔卫宁.木材防腐的现状与发展[J].林产化工通讯,1997,(6):10-13
    118贺蓉.沙柳材霉菌的生物学特性及化学防治的研究[D].呼和浩特:内蒙古农业大学,2010
    119郑兴国,姜卸宏,曹金珍等.新型纳米防腐剂在木材防腐中的应用[J].林业机械与木工设备,2008,36(7):9-11
    120中华人民共和国林业行业标准LY/T 1635-2005木材防腐剂[S]
    121曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-126
    122蒋明亮.国内外木材防腐新技术的开发与应用[J].木材业,2006,20(2):23-25
    123方桂珍,任世学,金钟玲.木材防腐剂的研究进展[J].东北林业大学学报,2001,29(5):88-90
    124姜卸宏,曹金珍.新型木材防腐剂的开发和利用[J].林产工业,2008,35 (2):10-12
    125王平,姜笑梅,秦特夫等.木材防腐技术在山海关镇东楼木结构中的应用[J].木材工业,2000,14(4):33-35
    126蒋明亮.铜防腐剂及百菌清处理3种木材的野外耐久性能[J].木材工业,2006,20(5):11-13
    127余丽萍.抗流失硼基木材防腐剂配方遴选及优选配方处理材的性能[D].北京林业大学,2009
    128任世学.季铵盐类木材防腐剂的应用研究[D].东北林业大学,2001
    129肖忠平,张苏俊,陆继圣.戊唑醇和IPBC防腐处理材的FTIR分析[J].木材加工机械,2009,(2):15-16.30
    130眭亚萍.壳聚糖铜盐与有机杀菌剂复配用于木竹材防腐防霉的初步研究[D].西北农林科技大学,2008
    131苏文强.槐树提取物对木材的防腐作用研究[D].东北林业大学,2006
    132李素英.强耐腐性树种心材提取物对木材防腐作用的研究[D].河北农业大学,2009
    133李素英,王伦,刘连新等.4种耐腐性树种心材提取物抑菌作用的研究[J].河北农业大学学报,2009,32(3):76-80
    134崔兆玉,于钢,钱学仁等.壳聚糖引入桦木的防腐处理[J].东北林业大学学报,2002,30(2):107-108
    135杨冬梅.长白落叶松提取物对木材防腐作用的研究[D].东北林业大学,2006
    136李坚,杨冬梅,苏文强.长白落叶松提取物对木材防腐作用的研究[J].林产化学与工业,2007,27(5):49-52
    137张玲.银杏树木提取物对木材防腐作用的研究[D].南京林业大学,2009
    138高峰,郭锦棠,王博等.木材防腐剂氨溶烷基铜铵的制备和防腐性能研究[J].化工进展,2005,24(5):532-536
    139 Cihat Tascioglu Paul Cooper Tony Ung. Effects of delayed drying and C02 application on copper amine fixat ion in ACQ treated red pine[J]. Eur. J. Wood Prod.2009,67:7-12
    140 Jun Li Shi-Duygu Kocaefe Terry Amburgey-Jilei Zhang. Acomparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C treated wood[J].Holz Roh Werkst.2007,65:353-358
    141于丽丽,郭宁,曹金珍.通风条件对ACQ-D处理杉木中铜固着的加速作用[J].北京林业大学学报,2008,30(5):123-128
    142 Y. Tony Ung. Paul A. Cooper. Copper stabilization in ACQ-D treated wood:retention, temperature and species effects [J].Holz als Roh-und Werkstoff 2005,63:186-191
    143 Teruhisa Miyauchi-Mitsunori Mori-Yuji Imamura. Leaching characteristics of homologues of benzalkonium chloride from wood treated with ammoniacal copper quaternary wood preservative[J].J Wood Sci 2008,54:225-232
    144金重为,施振华,张祖雄.ACQ木材防腐剂及防腐处理木材[J].木材工业,2004,18(4):34-36
    145方桂珍,任世学.铜-季铵盐复配木材防腐剂的防腐性能[J].林产化学与工业,2002,22(1):71-73
    146毛佳,曹金珍.户外用压缩防腐木ACQ-D木材的处理技术初探[J].北京林业大学学报,2009,31(3):100-105
    147 Md. Nazrul Islam·Keisuke Ando·Hidefumi Yamauchi·Nobuaki Kattori. Preservative treatment of Douglas-fir lumber by the passive impregnation methodwith copper azole[J].Eur. J. Wood Prod.2009,67:77-81
    148张颖.铜唑木材防腐剂的抗流失性及金属腐蚀性能[D].中国林业科学研究院,2007
    149 Ikuo Momohara·Shuetsu Saito·Wakako Ohmura Makoto Kiguchi. Effect of drying method as a pretreatment on CUAZ preservative impregnation in Japanese cedar logs[J].J Wood Sci 2009,55:441-445
    150 Crumiere,et al. Impact of leachates from CCA-and Copper azole-treated pine decking on soil-dwelling invertebrates [C]. International Research Group on Wood Preservation,2002,IRG/WP 02-50183
    151 Valcke A. R.,Leemput Van L. Current models used by the European Health Authorities to evaluate the volatilization of act ive ingredients from treated wood used inside dwellings. A case study:Volatilization of azaconazole and propiconazole from treated wood[C]. International Research Group on Wood Preservation,1990, RG/WP 3565
    152 Hughes A.S.Connell M. Occupational exposure risk assessment at a commercial treatment plant using copper azoie preservative [C]. Internationa Research Group on Wood Preservation,1998,IRG/WP 98-50101-15
    153 Wegen H. W.Organic solvent preservatives. Essays on the ecotoxicology of new-formulations [C].International Research Group on Wood Preservation,1991, IRG/WP 3642
    154 AWPA Standard P8-02, Standard for oil-borne preservatives [S]
    155覃道春.铜唑类防腐剂在竹材防腐中的应用基础研究[D].中国林业科学研究院,2004
    156王雅梅,刘君良,王喜明等.ACQ和CuAz防腐剂处理对竹材力学性能的影响[J].内蒙古农业大学学报,2007,28(1):87-89
    157何勇.ACQ防腐剂处理杉木小径材的研究[J].林业科技,2006,31(6):43-44.52
    158于丽丽,高巍,曹金珍等.微波后处理对ACQ--D处理杉木抗水流失性的影响[J].北京林业大学学报,2009,31 (6):90-96
    159于丽丽,曹金珍,唐镇忠.蒸汽后处理对ACQ-D处理杉木中铜的抗水流失性的影响[J].北京林业大学学报,2009,31(增刊1):1-5
    160李晓文.三唑类木材防腐剂防腐和抗流失性能的研究[D].中国林业科学研究院,2009
    161王朝晖,吴玉章,费本华等.ACQ和CuAz防腐处理对木材力学性能的影响[J].木材工业,2004,18(3):17-18.22
    162陈人望,李惠明,张祖雄等.铜唑木材防腐剂的性能[J].木材工业,2009,23(6):46-48
    163邢嘉琪.木材生物防腐研究的现状与展望[J].世界林业研究,2004,17(3):32-35
    164 By Alan Bruce, Bernard King. Decay Resistance of Wood Removed from Poles Biological ly Treated with Trichoderma [J]. Holzforschung.1991,45:307-311
    165张雨,徐峰,罗建举.木材蓝变色生物控制研究的现状[J].广西农业生物科学,2007,26(增刊):145-149
    166 Barnes H M, Murphy R J. Wood preservation:the classics and the new age. For. Prod. J.1995,45(9):16-26.
    167 JackR. W, TaggJR, RayB. MicrobiolRev,1995, (59):171-200.
    168 Bruce A, Fairnington A,King B. Biological control of decay in creosote treated distribution poles. III. Control of decay in poles by immunizing commensal fungi after extended incubation perlod. Material und Organismen.1990,25:15-28.
    169 Mattick a. T. et al. Lancet,1997,2:5-7.
    170 Hrish A. Nature (London),1951,167:1031-1032.
    171中华人民共和国国家标准GB 1928一91木材物理力学试验方法总则[S]
    172宋志博.沙柳沙障化学防腐作用研究[D].呼和浩特:内蒙古农业大学,2011
    173那钦.沙柳沙障的腐蚀规律及土壤致腐因子研究[D].内蒙古农业大学,2010
    174 Behrendt C J. Blanehet te R A, Farrell R L. Biological control of blue-stain in wood [J]. Phytopathology.1995,85 (1):92-97.
    175 Benjamin. HW. Albino Strains ophiostoma Species for Biological Control of Sapstain Fungi [J]. Holzforschung.2003, (57):237-242.
    176吕文华,肖绍琼,木乔英.2002.西南桦木材变色的主要原因.北京林业大学学报.24(4):107-110
    177 AWPA StandardP5-02, Standard for waterborne preservatives [S]
    178 GB/T 13942.2-92,木材天然耐腐性野外试验方法[S]
    179 LY/T1636-2005,防腐木材的使用分类和要求[S]
    180刘思峰,邓聚龙.GM(1,1)模型的适用范围,系统工程理论与实践,2000,5(5):121-124
    181邓聚龙.灰色系统(社会与经济)[M].北京:国防工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700