用户名: 密码: 验证码:
有机电致发光器件的界面性能及激子复合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)不仅是新一代平板显示技术中的一个亮点,而且是21世纪首选的绿色照明光源之一。目前阻碍OLED走上大批量实用化的关键性问题在于其工作寿命短,稳定性差。而OLED的界面性能直接影响到它们的稳定性和工作寿命,它是目前OLED研究的重点,全面而系统地研究界面特性包括界面形成机制是非常重要的,它的研究对OLED的应用开发和有机发光材料的设计具有理论和实际指导意义。
     本博士论文介绍和总结了本人在读博期间所作的关于OLED的主要研究成果,其主要内容和结论如下:
     1.首先详细研究了金属/有机界面(MOI)和金属/聚合物界面(MPI)的性能。
     (1)建立了器件界面达到平衡态后的MOI内秉势的理论模型。把在光照下所产生电流与暗电流相等时所加的电压称为补偿电压,得出了内秉势与补偿电压之间关系是斜率为1的一次函数,且内秉势只与材料本身参数和温度有关。在温度较低时,内秉势即为补偿电压;在室温情况下,因受扩散运动的影响,补偿电压低于内秉势。
     (2)通过芯电子XPS谱测量了器件开启后的MOI变化情况,以此研究界面上偶极层的形成对能级排列的影响。发现AIq3/A1与Alq3/Mg的O(1s)、C(1s)和N(1s)的结合能比裸Alq3膜的结合能要低,表明了界面上存在大量的电荷转移;Al(2p)XPS谱中新肩峰的出现表明Al已渗入到有机层中,与O和C发生了化学反应并生成了金属碳化物或金属—氧—碳的复合物。Alq3/A1偶极层宽度范围大约为5nm,偶极势的大小由金属功函数变化值与芯电子能级差决定,偶极层的负极指向有机层Alq3而正极指向金属,它的存在使金属费米能级升高,并且通过减少静电势能使有机层的LUMO能级降低,表明了偶极层的形成使电子注入势垒高度降低,形成了良好的电子注入界面。
     (3)利用密度泛函理论和芯电子轨道在自洽场中逐步逼近法计算了Alq3/A1界面由于吸附引起的能级改变和金属功函数之间的关系:物理吸附引起的金属偶极势能△Dmet总是负值,化学偶极势Dchem是决定总偶极势方向的唯一重要因素。电荷转移较多时,化学偶极势|Dchem|大于金属表面偶极的变化△Dmet,偶极层产生的总效果使金属功函数升高,不利于电子的注入;当电荷转移份额较少时,Dchem<|△Dmet|,偶极层的存在使金属功函数降低,有利于电子的注入。
     (4)采用蒸发法制备了4种器件:ITO/Alq3/A1,ITO/Alq3/LiF(1nm):Al,ITO/Alq3/LiF(1.5nm):Al,ITO/Alq3/LiF(2nm):Al,详细探讨了LiF缓冲层的插入对器件界面形貌、界面能级和发光特性的影响;建立了较为符合实际情况的金属+缓冲层/有机层界面的载流子隧穿理论模型,首次考虑了因电荷转移形成的偶极层对界面能级的改变和漏电流对注入电流的影响。采用WKB近似方法,得出了缓冲层的厚度、有机材料与缓冲层的电阻率之比,有机材料的最低电子未被占有轨道与缓冲层导带能级最小值之差是影响器件性能的主要参数,理论与实验结果非常接近。
     (5)建立了载流子在金属/聚合物界面(MPI)的广义Monte-Carlo理论模型,载流子的注入效率与有机材料陷阱电荷密度及其空间和能量的无序度等参数有关,注入势垒
Organic electroluminescence device (OLED) is one of the spotlights in the modern flat panel displays and it will be served as a kind of green illuminating sources in the 21st century. But its shortcomings of not long lifetime and unstable properties need solving urgently for use. Nowadays, the interfacial properties and exciton recombination luminous characteristics are the key problems. Thus a systematic and comprehensive study of the physics involved the formation of the interfacial states is very important. The investigation on interfacial problems can be served as a guide to devices and electroluminescent materials design, which is beneficial to making all relative science mutual progress.The main theory models and their research results of this dissertation are as following: 1. Both metal/small organic material interface (MOI) and metal/polymer interface (MPI) have been researched in detail.(1) A model for calculation the built-in potential (V_(bi)) in OLED was presented. The voltage at which the current under illumilation in OLED is equal to the dark current, namely the net photocurrent is zero, which we term the compensation voltage (V_0). The relation between the V_(bi) and V_0 was maintained. It is only dependent of material parameters and the temperature. At low temperature, V_(bi) is equal to V_0. However, because of diffusion of thermally injected charges at room temperature, V_0 is lower than V_(bi).(2) The evolution of the core XPS intensity of C1s, N1s, and O1s for Alq3/Mg, and Alq3/Al have shown that the core banding energy is lower than that of bare Alq3, which means that there are a lot of charge carriers transfer at the interface. The new shoulder of A12p confirms that the Al have passed through the organic material, reacted with C, O, finally formed C-Al and C-O-Al bonds. The width of dipole layer for Alq3/Al is about 5nm. The dipole potential is equal to the difference of the change of metal function and the core energy level. The charge transfer at the interface results in a lower electron injection barrier, thus forming a good electron injection interface.(3) Based on the density function theory and the self-consistent field iterations, we obtained the relation between organic energy change and metal work function. For a large charge transfer, the chemical dipole potential D_(chem) can be larger than ΔD_(met) in absolute value, the resulting interface dipole is characterized by an increase in metal work function, which is against electron injection. While for a small charge transfer, D_(chem)<ΔD_(met), and the resulting interface dipole leads to a net work function decrease, which is beneficial to electron injection. Those factors include (a) the image potential including polarization of the organic material;(b) formation of the interface state;(c) the electric field resulting in alignment of the permanent dipole of the organic material.(4) Inserting 1.5nm LiF into four kinds of devices: ITO/Alq3/Al, ITO/Alq3/LiF(1nm):Al,
    ITO/Alq3/LiF(1.5nm): Al, and ITO/Alq3/LiF(2nm):Al, it will improve properties of the devices. The carrier tunneling theory model of the metal buffer/organic interface has been built, which is approach to the performance of real devices. In this model, we have considered firstly both the effect of leakage current on the injection current density and of the interfacial energy levels realignment, which is coming from a dipole layer owing to charge carrier transfer at the interface. By using of WKB approximation method, we have also found out that the buffer layer thickness, the conductivity ratio of the organic to the buffer, the difference between the position of the conductivity band of buffer layers and the lowest unoccupied molecular orbital (LUMO) are the main parameters affecting properties of device, which is very agreement with our experimental results.(5) According to Monte-Carlo model, a generalized Monte-Carlo dynamics model for charge-carrier injection from a metal electrode to polymer materials was presented in detail. The injection efficiency is determined by trapped charge density, the structure of spatial and energy disorder of polymer. The injection barrier is not only determined by the materials wok function, but also by palors ionizable potential and image potential.2. A disorder hopping model for carriers recombination at organic/organic interface (OOI) in double layer organic light emitting diodes (OLEDs) was presented. According to the structure of an OOI as well as spatial and energetic disorder of hopping states, it was more reasonable to use the disorder hopping model than to use the Fowler-Nordheim formalism. It was shown that the carriers hopping distance, the effective barrier height and the electric field contribution had heavy effects on recombination efficiency. Firstly, when the applied voltage was less than 19.5F(in double layer OLEDs ITO/oc-NPD/Alq3/Al), recombination efficiency increased with the increase of hopping distance, while the applied voltage was lager than 19.5F, it decreased with the increase of hopping distance;secondly, it also increased with the increase of effective barrier height at OOI;Finally, it increased with the increase of differences of electric field at OOI, while it decreased when the value of differences of electric field attached 24*lO5V/cm.3. A model for carriers injection, transport and recombination in single layer organic light emitting diodes was presented. The electric field contribution, the relationship between current density and the applied voltage, and the recombination efficiency were obtained by solving the nonlinear Painleve equation. When the majority carriers had lower mobility, the carriers were easy to injection, transport, and the device efficiency could be improved. If the holes mobility was larger than the electron mobility, the recombination zone moved to cathod, and vice versa. The theory model of recombination was presented and the effect of temperature and applied voltage on the recombination efficiency was investigated in double layer organic light-emitting diodes: ITO/PPV/PBD/Ga. At lower applied voltage, two peaks have been observed in the recombination efficiency with temperature. With increasing voltage,
    the two peaks shifted toward each other, and at voltage around 9V the two peaks converged. These phenomena were attributed to the excited deep and shallow trap levels and the change of recombination zone: In the Frenkel exciton model, the temperature dependence of the quantum efficiency depended on the carriers mobilities and carriers densities. The carriers mobilities increased with decreasing temperature, while the carriers densities decreased with decreasing temperature. Therefore, a peak in the quantum efficiency with temperature was expected in the model.The high-temperature peak originated due to the recombination of the deep trap levels, but the low-temperature peak due to shallow ones. On the other hand, as the voltage increased, the recombination zone would be changed, which had some effects on the recombination efficiency.4. Considering the formation and disassociation of polaron-excitons, an analytical model to calculate the width of recombination zone and the external quantum efficiency in single layer OLED was presented. The influences of applied bias and the thickness of the device on the width of recombination zone and the external quantum efficiency were thoroughly studied. Based on the bilayer organic light-emitting diode with ohmic anode and injection limited cathode, we conclude that the width of recombination zone is approximately equal to that of OOI. While one barrier is larger than the other's, the width will be determined by minority. The exciton recombination theory model was built for doped organic thin films. The position of recombination zone will shift in the doped OLED. The width of recombination zone is dependent of trapped charge density, dopant concentration, electric field, temperature, etc.The features of this dissertation embody its prominent utility and its profound mechanism investigation. The main features are as following:(1) The interfacial theory models combine with highlights and heading fields of several sciences such as materials, physics, chemistry, etc. The investigation of the effect of interfacial properties on luminous characteristics of OLED is very important. Density functional theory and Monte-Carlo model are good for systematic and comprehensive understanding of the various luminous dynamics processes.(2) A disorder hopping theory model has been modified by us, and it is suitable for interface theory, which has the characteristics of transient analytical formation and accurate calculation. While the other models such as the tunneling model are difficult to do it.(3) It was first built by us that the exciton recombination theory model for doped multilayer OLED. The change of the positions of recombination zone and its width vs dopant's concentration was analyzed.
引文
[1] Pope M, Kallmann H and Magnante P. Electroluminescence in organic crystals. J Chem Phys, 1963, 38: 2042-2044
    [2] Vincett P S, Barlow W A, Hann R A, et al. Electrical conduction and low voltage blue electroluminescence in vaccum-deposited organic films. Thin Solid Films, 1982, 94: 171-173
    [3] Tang C W and VanSlyke S A. Organic electroluminescence diodes. Appl Phys Lett, 1987, 51: 913-915
    [4] Adachi C, Tokito S, Tsutsui T, et alo Electroluminescence in organic films with three-layer structure. Jpn J Appl Phys, 1988, 27: L269-271
    [5] Adachi C, Tsutsui T and Saito S. Blue light-emitting organic electroluminescent devices. Appl Phys Lett, 1990, 56: 799-781
    [6] Sheats J R, Antoniadis H, Hueschen M, et al. Organic electroluminescent devices. Science, 1996, 273: 884-886
    [7] Burroughes J H, Bardley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymer. Nature, 1990, 347: 539-541
    [8] Braun D and Heeger A J. Visible light emission from semiconducting polymer diodes. Appl Phys Lett, 1991, 58: 1982-1984
    [9] 李文连.有机EL新进展.液晶与显示.1996,11:155-157
    [10] 黄春辉,李富友,黄有岩.光电功能材料超薄膜.北京:北京大学出版社,2001,238-298
    [11] Hong Z R, Li W L, Lian C J, et al. Electron-transport properties of rare earth chelates in organic electroluminescent devices. Synth Met, 1997, 91(1-3): 271-273
    [12] Vissenberg M C J M, de Jong M J M. Theory of exciton migration and field-induced dissociation in conjugated polymers. Phys Rev Lett, 1996, 77(23): 4820-4823
    [13] Kersting R, Lemmer U, Mahrt R F, et al. Femtosecond energy relaxation in π-conjugated polymers. Phys Rev Lett, 1993, 70(34): 3820-3823
    [14] 吴哲夫,黄达诠.有机电致发光研究进展.中国图象图形学报,2000,5(10):877-881
    [15] Hebner T R, Wu C C, Marcy D, et al. Ink-jet printing of doping polymer for organic light-emitting devices. Appl Phys Lett, 1998, 72(5): 519-521
    [16] Partridge R H. Electroluminescence from polyvinylcarbazole film: Electroluminescent devices. Polymer, 1983, 24(6): 748-754
    [17] VanSlyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability. Appl Phys Lett, 1996, 69: 2160-2162
    [18] Ho P K H, Thomas D S, Friend R H, et al. All-polymer optoelectronic device. Science, 1999, 285(5425): 233-236
    [19] 李宏建.有机薄膜发光的研究及多孔硅发光的初步探讨:[湖南大学博士学位论文] .长沙:湖南大学,2002:23.52
    [20] Tsai M L, Liu C Y, Hsu M Y, et al. White light emission from single component polymers fabricated by spin coating. Appl Phys Lett, 2003, 82: 550-552
    [21] Xie Z Y, Huang J S. White light emission induced by confinement in organic multi heterostructures. Appl Phys Lett, 1999, 74: 641-643
    [22] Parker I D. Carriers tunneling and device characteristics in polymer lightemitting diodes. J Appl Phys, 1994, 75(3): 1656-1666
    [23] Ettedgui E, Razafitrimo H, Gao Y, et al. Band bending modified tunneling at metal/conjugated polymer interfaces. Appl Phys Lett, 1995, 67(18): 2705-2707
    [24] Kepler R G, Beeson P M, Jacobs S J, et al. Electron and hole mobility in tris(8-hydroxyquinolindato-N108) aluminum. Appl Phys Lett, 1995, 66(26): 3618-3620
    [25] Brutting W, Berleb S, Muckl A G. Space-charge limited conduction with a field and temperature dependent mobility in Alq_3 light-emitting devices. Synth Met, 2001, 122(1): 99-104
    [26] Burrows P E, Shen Z, Bulouic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting device. J Appl Phys, 1996, 79(10): 7991-8006
    [27] Staudigel J, Sto 13 el M, Steuber F, et al. A quantitative numerical model of multiplayer vapor-deposited organic light emitting diodes. J Appl Phys, 1999, 86 (7): 3895-3910
    [28] Tutis E, Bussac M N, Masenelli B, et al. Numerical model for organic light-emitting diodes. J Appl Phys, 2001, 89(1): 430-439
    [29] Khramtchenkov D V, Arkhipov V I, Bassler H. Charge carrier recombination in organic bilayer electroluminescent diodes. J Appl Phys, 1997, 81(10): 6954—6962
    [30] Crone B K, Davids P S, Campbell I H, et al. Device model investigation of bilayer organic light emitting diodes. J Appl Phys, 2000, 87(4): 1974-1982
    [31] Forrest S R. Active optoelectronics using thin-film organic semiconductors. J. on Selected Topics in Quantum Electronics, 2000, 6(6): 1072-1083
    [32] Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organics thin films. J Appl Phys, 1989, 65(9): 3610-3616
    [33] Adachi C, Baldo M A, Forrest S R. High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine)iridium doped into electron transporting materials. Appl Phys Lett, 2000, 77(6): 904-906
    [34] 陈文彬.有机电致发光器件设计与制作:[电子科技大学博士学位论文] .成都:电子科技大学,2002,12.20
    [35] 陈晓红.聚合物电致发光的性质及机理研究:[中国科学院研究生院长春光学精密机械与物理研究所博士论文] .长春,长春光学精密机械与物理研究所,2002,9.11
    [36] 郝允祥,陈遐举,张保洲,光度学.北京:北京师范大学出版社,1988,226
    [37] Coaton J R,Marsden A M主编.光源与照明.陈大华,刘九昌,徐庆辉等译.第四版.上海:复旦大学出版社,2000,65-67
    [38] Kraft A, Grimsdale A C, and Holms A B. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew Chem Int Ed Engl, 1998, 37: 402-405
    [39] Fried R H, Gymer R W, Holms A B, et al. Electroluminescence in conjugated polymers. Nature, 1999, 397: 121-123
    [40] Wudl F, Allemand P M. Polymers and an unusual molecular-crystal with nonlinear optical properties. ACS Syrup Ser, 1991, 455: 685-685
    [41] Wudl F, Allemand P M. Conducting polymer formed of poly [2-methoxy-5-(2-ethylhexyloxy)-p-phenylene vinylene] . US5189136, 1990
    [42] Braun D, Heeger A J, Kroemer H. Improved efficiency in semiconducting polymer light-emitting diodes. J Eletron Mater, 1991, 20: 945-947
    [43] Heeger A J, Braun D. Visible-light-emitting diodes fabricated from soluble semiconducting polymers and their fabrication. WO92/16023, 1992
    [44] Greenham N C, Moratti S C, Bradley D D C, et al. Efficient polymer-based light-emitting diodes based on polymers with high electron affinities. Nature, 1993, 365: 628-630
    [45] Moratti S C, Bradley D D C, Fried R H, et al. Mat Res Soc Symp Proc, 1994,328: 371-373
    [46] Yang Z, Sokolik I, Karasz F E. A soluble blue-light-emitting polymer. Macromolecules, 1993, 26: 1188-1190
    [47] Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films. JAppl Phys, 1989, 65: 3610-1612
    [48] Chen C H, Tang C W, Fhi J, et al. Macromol Symp, 1997, 125: 49-51
    [49] Zhang Z I, Jiang X Y, Xu S H, et al. The effect of rubrene as a dopant on the efficiency and stability of organic thin film electroluminescent devices. J Phys D: Appl Phys, 1998, 31: 32-34
    [50] Zhang Z I, Jiang X Y, Xu S H, et al. Stability enhancement of organic electroluminescent diode through buffer layer or rubrene doping in hole-transporting layer. Synth Met, 1997, 91:131-133
    [51] Fuji H, Sano T Nishio Y, et al. Macromol Symp, 1997, 125:77-79
    [52] Vestweber H, and Rieb W. Highly efficient and stable organic light emitting diodes. Synth Met, 1997, 91: 181-183
    [53] Arai M, Nakaya K, Onitsuka O, et al. Passive matrix display of organic LEDs. Synth Met, 1997, 91: 21-23
    [54] VanSlyke S A. Blue emitting internal junction organic electroluminescent device US, 1992, 5 (151): 629-631
    [55] Kido J. 1, 2, 4-Triazole derivative as an electron transport layer in organic electroluminescent devices. Jpn J Appl Phys Part2, 1993, 32(7A): L917-L919
    [56] Hamada Y, Adachi C, Tsutsui T, et al. Optoelectronics devices and technologies. Optoelectronics, 1992, 7: 83-85
    [57] Tokailin H, Matsuura M, Higashi H, et al. Characteristics of blue organic electro luminescent devices with distyryl arylene derivatives. Proc SPIE, 1993, 1910: 38-40
    [58] Hosokawa C, Higashi H, Nakamura H, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett, 1995, 67: 3853-3855
    [59] Cao H, Cao X C, Zhang B W, et al. Effect of electric field strength on the electroluminescence spectra of a blue-emitting device. Synth Met, 1998, 96: 191-194
    [60] Chen C H, and Shi J M. Metal chelates as emitting materials for organic electroluminescence. Coordination Chemistry Reviews, 1998, 171:161-163
    [61] Kido J, and Endo J. Orange color electroluminescence from bis (2-styryl-8-quinolinolato)zinc(Ⅱ). Chem Lett, 1997, 7:633-635
    [62] Kido J, and Iizumi Y. Efficient electroluminescence from tris (4-methyl-8-quino linolato) aluminum (Ⅲ). Chem Lett, 1997, 7: 963-965
    [63] Tanaka H, Tokito S, Taga Y, et al. Novel metal-chelate emitting materials based on polycyclic aromatic ligands for electroluminescent devices. J Mater Chem, 1998, 8: 1999-2001
    [64] Bryan P S, Lovecchio F V, and VanSlyke S A. Mixed ligand 8-quinolato aluminum chelate luminophors. US5, 1992, 141: 671-673
    [65] 刘式墉,杨开霞,黄劲松等.有机量子阱电致发光器件.发光学报,2002,23:7-10
    [66] 汤顺青.色度学.北京:北京理工大学出版社,1990,152-153
    [67] 李亨.颜色技术原理及其应用.北京:科学出版社,1994,53-56
    [68] Jenkehe S A, and Osaheni J A. Excimers and exciplexes of conjugated polymers. Science, 1994, 265: 765-767
    [69] 冯晶,刘字,王悦,刘式墉.利用基激复合物发光的有机白光电致发光器件.发光学报,2002,23:25.28
    [70] Shen Z L, Burrow P E, Bulovic V, et al. Three-color, tunable, organic light emitting devices. Science, 1997, 276: 2009-2011
    [71] Shears J R. Stacked organic light-emitting diodes in full color. Science, 1997, 277:191-193
    [72] Cumpston B H, and Jensen K F. Photooxidation of polymers used in electroluminescent devices. Synth Met, 1995, 73: 195-197
    [73] Sutherland D G J, Carlisle J A, et al. Photo-oxidation of electroluminescent polymers studied by core-level photo absorption spectroscopy. Appl Phys Lett. 1996, 68: 2046-2048
    [74] Scurlock R D, Wang B, Ogilby P R, et al. Siglet oxygen as a reactive intermediate in the photo degradation of an electroluminescent polymer. J Am Chem Soc, 1995, 117: 10194-10196
    [75] 闫金良,朱长纯.蓝光聚合物单层薄膜发光器件的退化机理.半导体学报,2001,22:224-227
    [76] Papadimitrakopoulos F, Konstandinidas K, et al. The role of carbonyl groups in the photoluminescence of poly (p-phenylene vinylene). Chem Mater, 1994, 6: 1563-1565
    [77] Deng X Y, Tong S W, Hung L S, et al. Role of ultrathin Alq3 and LiF layers in conjugated polymer light-emitting diodes. Appl Phys Lett, 2003, 82: 3104-3106;Ip J, Nguyen T P. An X-ray photoelectron spectroscopy stydy of the interface formed between ITO and 4, 4'-bis (4-dimethyl amino styryl) benzene based light emitting diode. Synthetic Metals, 2003, 138: 107-111;Akio F, KIDO Junji. Interface formation and energy level alignment of pentacene on SiO_2. J Appl Phys, 2004, 90(6): 1782-1785;Lee J, Park Y, Kim J Y, et al, High efficiency organic light-emittng devices with A1/NaF cathode, Appl Phys Lett, 2003, 82(2): 173-175;Deng X Y, Lau W M, Wong K Y, et al. High efficiency low operating voltage polymer light-emitting diodes with aluminum cathode. Appl Phys Lett, 2004, 84(18): 3522-3524;Tak Y H, Kim K B, Park H G, et al, Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films, 2002, 411: 12-16;Dobbertin T, Becker E, Benstem T, et al, OLED matrix displayers: in-line process technology and fundamentals. Thin Solid Films, 2003, 442: 132-139.
    [78] 许雪梅,彭景翠,李宏建等.有机层界面对双层有机发光二极管复合效率的影响.物理学报,2004,53:287.290
    [79] 赵俊卿,解士杰,韩圣浩等.真空蒸镀双层有机电致发光器件及其稳定性.2001,22:198-202
    [80] Campbell Scott J. Metal-organic interface and charge ijection in organic electronic devices. J Vac Sci Technol A, 2003, 21: 521-530
    [81] Helfrich W, and Sschneider W G. Transients of volume-controlled current and recombination in anthracence. J Chem Phys, 1966, 44: 2902-2905
    [82] Cao Y, Parker I D, Yu G, et al. Improved quantum efficiency for electro luminescence in semiconducting polymers. Natrue, 1999, 397: 414-416
    [83] Shuai Z, Beljonne D, Silbey R J, et al. Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes. Phys Rev Lett, 2000, 84: 131-133
    [84] Wohlgenannt M, Tandon K, Mazumdar S, et al. Formation cross-sections of singlet and triplet excitons in π-conjugated polymers. Nature, 2001, 409: 494-496
    [85] Berggren M. White light from an electroluminescent diode made from poly [3(4-octylphenyl)-2,2'-bithiophene] and an oxzdiazole derivative. J Appl Phys 1994, 76: 7530-7533
    [86] Baldo M A. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395: 151-153
    [87] Carter J C, Grizzi I, et al. Operating stability of light-emitting polymer diodes based on poly (p-phenylene vinylene). Appl Phys Lett, 1997, 71: 34-36
    [88] Bradley D D C. Conjugated polymer electroluminescence. Synth Met, 1993, 54: 401-403
    [89] Braun D, Staring E G J, et al. photoluminescence and electroluminescence efficiency in poly (dialkoxy-p-phenylene vinylene). Synth Met, 1994, 66: 75-77
    [90] Staring E J G, Braun D, et al. photoluminescence and electroluminescence efficiency in soluble poly (dialkyl-p-phenylene vinylene. Adv Mater, 1994, 6: 934-936
    [91] Burrows P E, Forrest S D, Zhou T X, et al. Operating lifetime of phosphorescent organic light emitting devices. Appl Phys Lett, 2000, 76(18): 2493-3496
    [92] Ma Y G, Chao H Y, Wu Y, et al. A blue electroluminescent molecular device from a tetranucluear zinc(ii) compound [Zn40(AID)6] (AID=7-azaindolate. Chem Commun, 1998, 2491-2493
    [93] 阚士董,马於光.“光子—买一赠三”——简评有机三线态电致发光材料与器件进展.材料导报,2001,15:8.10
    [94] Gu G, Garbuzov D Z, Burrows P E, et al. High-external-quantum-efficiency organic light-emitting devices. Optics Letter, 1997, 22: 396-398
    [95] Madigan C F, Lu M H, Sturm J C. Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification. Appl Phys Lett, 2000, 76: 1650-1652
    [96] Yamasaki T, Sumioka K, Tsutsui T. Organic light-emitting device with an ordered mono layer of silica microspheres as a scattering medium. Appl Phys Lett, 2000, 76: 1243-1245
    [97] Sano T, Fujita M, Fujii T. Novel europium complex for eleetroluminescent devices with sharp red emission. Jan J Appl Phys, 1995, 34: 1883-1887
    [98] Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films. J Appl Phys, 1989, 65: 3610-3613
    [99] Chen C H, Tang C W, Shi J, et al. Improved red dopants for organic electroluminescent devices. Macromol Syrup, 1998, 125: 49-58
    [100] Wakimoto T, Yanemoto Y, Funaki M, et al. Strongly modified emission from organic electroluminescent device with a microcavity. Synth Met, 1997, 91: 49-52
    [101] Burrows P E, Sapochak L S, McCarty D M, et al. Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices. Appl Phys Lett, 1994, 64: 2718-2720
    [102] Yamada Y, Sano T, Fujita M, et al. Blue electroluminescence in thin films of azomethin-zinc complexes. Jpn J Appl Phys, 1993, Part2, 32: L511-L513
    [103] Yamada Y, Sano T, Fujita M, et al. Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter. Jpn J Appl Phys, 1993, Part2, 32: L514-L515
    [104] Takeshi Kobayashi, Haruo Naruke, and Toshihiro Yamase. Photoluminescence and molecular structure of tetrakis (N, N-dimethyldithiocarbamato) europate (Ⅲ). Chem Lett, 1993, 169: 907-908
    [105] Yamada Y, Sano T, Fujita M, et al. Influence of the emission site on the running durability of organic electroluminescent devices. Jpn J Appl Phys, 1995, Part2, 34: L824-L826
    [106] Yamada Y, Sano T, Fujita M, et al. White-light-emitting material for organic electroluminescent devices. Jpn J Appl Phys, 1996, 35: L1339-L1341
    [107] Yamada Y, Sano T, Fujita M, et al. Organic light-emitting diodes using 3- or 5-hydroxyflavone-metal complexes. Appl Phys Lett, 1997, 71: 3338-3340
    [108] 黄春辉.稀土配位化学.北京:科学出版社,1997,366-368
    [109] Gao X C, Cao H, Huang C H, et al. Electroluminescence of a novel terbium complex. Appl Phys Lett, 1998, 72: 2217-2219
    [110] Gao X C, Cao H, Huang C H, et al. Photoluminescence and electroluminescence of a series of terbium complexes. Synth Met, 1999, 99: 127-130
    [111] 孙刚,李文连,邓振波等.北京:首届全国有机分子和聚合物发光与激发学术会议论文集.1998,125—126
    [112] Zheng Y X, Shi C Y, Liang Y J, et al. Synthesis and electroluminescent properties of a novel terbium complex. Synth Met, 2000, 114: 321-323
    [113] Kido J, Nagai K, Okamoto Y, et al. Electroluminescence from polysilane film doped with europium complex. Chemistry Letter, 1991, 23: 1267-1270
    [114] Kido J, Hayase H, Hongawa K, et al. Electroluminescence of a novel terbium complex. ADD1 Phvs Lett, 1994, 65(17): 2124-2126
    [115] 彭俊彪,孙润光,马於光等.8—羟基喹啉稀土螯合物有机薄膜电致发光研究.发光学报,1994,15:263-265
    [116] Wudl F, Allemand P M. Polymers and unusual molecular-crystal with nonlinear optical properties. ACS Symp Ser, 1991, 455: 683-686;Conducting polymer formed ofpoly [2-methoxy, 5-(2-ethyl-hexoxy)-p-phenylene vinylene] US5189136, 1990
    [117] Braun D, Heeger A J, Kroemer H. Improved efficiency in semiconducting polymer light-emitting diodes. J Electron Mater, 1991, 20: 945-948
    [118] Heeger A J, Braun D. Visible-light-emitting diodes fabricated from soluble semiconducting polymers and their fabrication. WO92/16023, 1992
    [119] Salbeck J. Electroluminescence with organic compounds. Ber Bunsenges Phys Chem, 1996, 100: 1667—1669
    [120] Greenham N C, Moratti S C, Bradelly D D C, et al. Efficient polymer-based light-emitting diodes based on polymers with high electron affinities. Natrue, 1993, 365: 628-630
    [121] Baigent D R, Greenham N C, Gruner J, et al. Light-emitting diodes fabricated with conjugated polymers-recent progress. Synth Met, 1994, 67: 3-5
    [122] Halls J J M, Baigent D R, Cacialli F, et al. Light-emitting and photoconductive diodes fabricated with conjugated polymers. Thin Solid Films, 1996, 276: 13-16
    [123] Andersson M R, Yu G, Heeger A J. Photoluminescence and electro luminescence of films from soluble PPV-polymers. Synth Met, 1997, 85: 1275-1277
    [124] Hsieh B R, Yu Y, Forsythe E W. A new family of highly emissive soluble poly (p-phenylene vinylene) derivatives. A step toward fully conjugated blue emitting poly (p-phenylene vinylene). J Am Chem Soc, 1998, 120: 231-234
    [125] Hwang D H, Kim S T, Kim H K, et al. Green light-emitting diodes from poly (2-dimethyloctylsilyl-l,4-phenylene vinylene) Chem Commun, 1996, 20: 2241-2243
    [126] Spreitzer H. Soluble phenyl-substituted PPVs-new materials for highly efficient polymer LEDs. Adv Mater, 1998, 10: 1340-1342
    [127] Yu G. High performance photonic devices made with semiconducting polymers. Synth Met, 1996, 80: 143-145
    [128] Ohmori Y, Uchida M, Muro K, et al. visible-light-electroluminescent diodes utilized poly (3-alkylthiophene). Jpn J Appl Phys, 1991, 30: L1938-L1940
    [129] Ohmori Y, Uchida M, Muro K, et al. Effects of alkyl chain-length and carrier confinement layer on characteristics of poly(3-alkylthiophene) electroluminescent diodes. Solid State Comuun, 1991, 80: 605-608
    [130] Braun D, Gustafsson G, Muro K, et al. Electroluminescence and electrical trasportion of poly(3-octylthiophene) diodes. J Appl Phys, 1992, 72: 564-567
    [131] Berggren M, Inganas O, Gustafsson G, et al. Light-emitting diodes with variable colors from polymer blends. Nature, 1994, 372: 444-446
    [132] Inganas O, Andersson M R. Thiophene polymers in light-emitting diodes making multicolor devices. Synth Met, 1995, 71: 2121-2123
    [133] Berggren M, Inganas O, Gustafsson G, et al. White light from an electroluminescent diode made from poly [3(4-octylphenyl)-2, 2'-bithiophene] and an oxzdiazole derivative. J Appl Phys, 1994, 76: 7530-7533
    [134] Cimarova V, Remmers M, Neher D, et al, Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique. Adv Mater, 1996, 8: 146-148
    [135] Jing W X, Kraft A, Moratti S C, et al. Synthesis of a polyphenylene light-emitting copolymers. Synth Met, 1994, 67: 161-163
    [136] Hamaguchi M, Yashino K. Blue electroluminescence from poly (2,5-diheptyloxy-1,4-phenylene). Jpn J Appl Phys, 1995, 34: L587-L590
    [137] Yang Y, Pei Q, Heeger A J. Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s. J Appl Phys, 1996, 79: 934-937
    [138] Yang Y, Pei Q, Heeger A J. Efficient blue light-emitting diodes from a soluble poly (paraphenylene). Internal field emission measurement of the energy gap in semiconducting polymers. Synth Met, 1996, 78: 263-265
    [139] Remmers M, Neher D, Gruner J, et al. The optic electronic and electroluminescent properties of novel poly(p-phenylene)-related polymers. Macromolecules, 1996, 29: 7432-7435
    [140] Scherf U, Mullen K. A soluble ladder polymer via bridging of functionalized poly (p-phenylene) precurors. Macromol Chem Rapid Commun, 1991, 12: 489-491
    [141] Scherf U, Mullen K. poly (arylene)s and poly (arylnevinylene)s. A modified two-step route to soluble phenylene-type ladder polymers precurors Macromolecules, 1992, 25: 3546-3549
    [142] Ohmori Y, Uchida K, Muro K, et al. Blue electroluminescent diodes utilized poly (alkylfluorene). Jpn J Appl Phys, 1991, 30: L1941-L1944
    [143] Fukuda M, Sawada K, Yoshino K. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics. J Polym Sci Poly Chem. 1993,31:2465-2467
    [144] Ohmori Y, Uchida K, Morishima C, et al. Enhancement of emission efficiency in electroluminescent diode utilized vapor-deposited poly (alkylfluorene). Jpn J Appl Phys, 1991, 32: L1663-L1666
    [145] Pei Q, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J Am Chem Soc, 1996, 118: 7416-7419
    [146] Grell M, Bradley D D C, Inbasekaran M, et al. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv Mater, 1997, 7: 798-800
    [147] Feng J, Li F, Gao W B, et al. White light emission from exciplex using tris-(8-hydroxyquinoline) aluminum as chromaticity-tuning layer. Appl Phys Lett, 2001, 78(25): 3947-3949
    [148] Tsai M, Liu L, Hsu C Y, et al. White light emission from single component polymers fabricated by spin coating. Appl Phys Lett. 2003, 82(4): 550-552
    [149] Jordan R H, Dodabalapur A, Strkelj M, et al. White organic electro luminescence devices. Appl Phys Lett, 1996, 68(9): 1192-1194
    [150] Cheng G, Li F, Duan Y, et al. White organic light-emitting devices using a phosphorescent sensitizer. Appl Phys Lett, 2003, 82(24): 4224-4226
    [151] Li F, Cheng G, Zhao Y, et al. White electrophosphorescence devices based on rhenium complexes. Appl Phys Lett, 2003, 83(23): 4716-4718
    [152] Kim C H, and Shinar J. Bright small molecular white organic light-emitting devices with two emission zones. Appl Phys Lett, 2002, 80(12): 2201-2203
    [153] Cheon K O, and Shinar J. Bright white small molecular organic light-emitting devices based on a red-emitting guest-host layer and blue-emitting 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-biphenyl. Appl Phys Lett, 2002, 81(9): 1738-1740
    [154] Li G, and Shinar J. Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4, 4'-bis(2,2'-diphenylviny)-1,1'-biphenyl. Appl Phys Lett, 2003, 83(26): 5359-5361
    [155] Tasch S, List E J W, Ekstrom W, et al. Efficient white light-emitting diodes realized with new processable blends of conjugated polymer. Appl Phys Lett, 1997, 71(20): 2883-2885
    [156] Kawamura Y, Yanagida S, Forrest S R, et al. Energy transfer in polymer electrophosphorescent light emitting with single and multiple doped luminescent layers. J Appl Phys, 2002, 92(1): 87-93
    [157] Yang K Y, Gao W B, Liu H Y, et al. An organic Quantum-well electroluminescent device with enhanced performance. Chin Phys Lett, 2001, 18(12): 1658-1659
    [158] Tessler N, Denton G J, Fried R H. Lasing in conjugated polymer microcavity. Nature, 1996, 382: 695-697
    [159] 张步新,朱文清,蒋雪茵等.两种不同结构及掺杂的白色有机发光二极管.光电子.激光,2001,12(2):112-115
    [160] 许雪梅,李宏建,瞿述等.一种计算有机发光二极管体电势的方法.光电子.激光,2002,13(3):250-252
    [161] Malliaras G G, Salem J R, Brock P J, et al. Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys, 1998, 84: 1584-1587
    [162] 韦丹.固体物理.北京:清华大学出版社,2003,112-113
    [163] Shih F C, and Ching W W. Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes. Appl Phys Lett, 2004, 85: 765-767
    [164] Eremtchenko M, Bauer D, Shnefer J A, et al. Structure, bonding, and growth at a metal-organic interface in the weak chemisorption regime: Perylene-Ag(111). J Mat Res, 2004, 19(7): 2028-2039;Zhao J M, Zhan Y Q, Zhang S T, et al, Mechanisms of injection enhancement in organic light-emitting diodes through insulating buffer, Appl Phys Lett, 2004, 84(26): 5377-5379
    [165] Nguyen T P, Ip J, Jolinat P, et al. XPS and sputtering study of the Alq3/electrode interfaces in organic light emitting diodes. Applied Surface Science, 2001, 172: 75-83
    [166] 赵成大.固体量子化学.北京:高等教育出版社,2003,253-259
    [167] 熊家炯.材料设计.天津:天津大学出版社,2002,14-19
    [168] Kohn W. Density functional theory: fundamental and applications. In: Bassani F, Fumi F and Tos, M Red, Hights of condensed matter theory. North Holland, 1985, 28-30
    [169] Sham L. Density fundamental theory and computational materials physics. In: Chelikowsky JR, Louie SG. Quantum theory of real materials. Kluwer Academic Publishers, 1986, 13-15
    [170] Angela D R and Gustavo E S. Improving self-consistent field convergence by varying occupation numbers. J Chem Phys, 1999, 110(2): 695-700
    [171] Li Y, Yong L G. Interfaces in organic semiconductors devices. Thin Solid film,2002, 417: 101-106;Kim J H, Noh S, Kim K, et al. Blue light emitting diodes with 1, 1, 4, 4-tetraphenyl-1, 3-butadiene(TPB), Synthetic Metals, 2001, 117: 227-228
    [172] Michio M, Yukitoshi J. Analysis of current-voltage characteristic of organie light emitting having a LiF/AI cathode and an Al-hydroxy-quinoline/diamine junction. Appl Phys Lett, 1998, 73: 2872-2874
    [173] 苏艳梅,侯延冰,陈晓红等.Alq3与LiF之间相互作用的研究.发光学报,2002,23(1):37-39
    [174] Huang L S, Tang C W, Mason M G. Enhanced electron injection in organic electroluminescence using an AI/LiF electrode. Appl Phys Lett, 1997, 70: 152-154
    [175] Li C H, Tang C W, Mason M G. Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface. Synth Met, 1997, 91: 125-127
    [176] Li F, Tang H. Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al_2O_3/AI cathode. Appl Phys Lett, 1997, 70: 1233-1235
    [177] 许雪梅,彭景翠,李宏建等.LiF的引入对有机电致发光器件性能的影响.光电子.激光,2004,15(5):572-574
    [178] Konstadinidis K, Papadimitrakopoulos, Galivin M and OPila R L. In situ x-ray photoelectron spectroscopy study of aluminum/poly (p-phenylenevinylene) interface. J Appl Phys, 1995, 77(11): 5642-5645
    [179] Zhang S T, Ding X M, Zhao J M, et al. Buffer-layer-induced barrier reduction: Role of tunneling in organic light-emitting devices. Appl Phys Lett, 2004, 84(19): 425-427
    [180] 彭景翠,黄生祥,张高明等.聚合物电致发光二极管发光层中的电场分布.湖南大学学报,2001,28:24-29
    [181] Wolf U, Arkhipov V I, and Bassler H. Current injection from a metal to a disordered hopping system I. theory. Phys Rev B, 1999, 59: 7507-7513
    [182] Karg S, Meier M, Riess W. Light-emitting diodes based on poly-pophenylenevinylene: 1. Charge-carrier injection and transport. J Appl Phys, 1997, 82(4): 1951-1960
    [183] Davids P S, Campbell I H, Smith D L. Device model for single carrier organic diodes. J Appl Phys, 1997, 82(12): 6319-6325
    [184] Malliaras G G, Scott J C. The roles of injection and mobility in organic light emitting diodes. J Appl Phys, 1998, 83(10): 5399-5403
    [185] Shen Y L, Klein M W, Jacobs D B, et al. Mobility-Dependent Charge Injection into an Organic Semiconductor. Phys Rev Lett, 2001, 86(17): 3867-3870
    [186] Walker A B, Kambili A, Martin S J. Electrical transport modeling in organic electroluminescent devices. J Phys: Condensed Matter, 2002, 14(10): 9825-9876
    [187] 李宏建,彭景翠,许雪梅等.聚合物发光器件中激子的解离与复合效率.物理学报,2001,50(11):2247-225 1
    [188] 李宏建,彭景翠,许雪梅等.有机电致发光器件中载流子的输运和复合发光.物理学报,2002,51(2):430-433
    [189] Karg S, Meier M, Riess W. Light-emitting diodes based on poly-p-phenylenevinylene: 1. Charge-carrier injection and transport. J Appl Phys, 1997, 82(4): 1951-1960
    [190] Baissler H. Charge transport in disordered organic photoconductors. A Monte Carlo simulation study. Physica Status Solidi B, 1993, 175(1): 15-56
    [191] Khramtchenkov D V, Arkhipov V I, and Bassler. Charge carrier recombination in organicbilayer electroluminescent diodes. J Appl Phys, 1997, 81: 6954-6962
    [192] Staudigel J, StoBel M, Steuber M, et al. A quantitative numberical of multilayer vapor-depoisted organic light emitting diodes. J Appl Phys, 1999, 86: 3895-3910
    [193] Xu X M, Peng J C, Li H J, et al. Recombination efficiency in double-layer organic light-emitting devices. Chin Phys Lett, 2005, 22(3): 719-722
    [194] 许雪梅,彭景翠,李宏建等。载流子迁移率对单层有机发光二极管复合效率的影响.物理学报,2002,51(10):2380-2385
    [195] Croell C R. Solid State Electron, 1966, 5: 1035-1038
    [196] Sze S M. Physics of semiconductor devices. Wiley, New York: 1981, 245-247
    [197] Garstein Y N, Conwell E M. Field-dependent thermal injection into a disordered molecular insulator. Chem Phys Lett, 1996, 255: 93-96
    [198] Lumimouni K. Appl Phys Lett, 2001, 78: 2437-2439
    [199] Brown A R, Bradey D D C, Burn P L. Appl Phys lett, 1993, 61: 2793-2795
    [200] Scherbel J, Nguyen P H, Paasch G, et al. Temperature dependent broadband impedance spectroscopy on poly-(p-phenylene-vinylene) light-emitting diodes. J Appl Phys, 1998, 83(10): 5045-5055
    [201] Stoessel M, Wittmann G, Staudigel J, et al. Cathode-induced luminescence quenching in polyfluorenes. J Appl Phys, 2000, 87(9): 4467-4475
    [202] Koehler M, Hummelgen I A. Regional approximation approach to space charge limited tunneling injection in polymeric devices. J Appl Phys, 2000, 87(6): 3074-3079
    [203] Kawabe Y, Morell M M, Jabbour G E, et al. A numerical study of operational characteristics of organic light-emitting diodes. J Appl Phys , 1998, 84(9): 5306-5314
    [204] Nguyen T P, Mansot J L. Metal-oxygen-carbon interaction in the poly (p-phenylene vinylene)-aluminum system: A study by analytical transmission electron microscopy and X-ray photoelectron spectroscopy. Thin Solid Films, 1996, 283(1-2): 135-139
    [205] Koehler M, da Luz M G E, Hummelgen I A. Electrical characteristics in unipolar conjugated polymer devices: the case of modified transport properties in the neighbourhood of the top electrode/polymer interface. J Phys D, 2001, 34(1): 1947-1950
    [206] Nikitenko V, Bassler H. An analytic model of electroluminescence in bilayer organic light emitting diodes with Ohmic injection of charge carriers. J Appl Phys, 2001, 90(4): 1823-1826
    [207] Crone B K, Davids P S, Campbell I H, et al. Device model investigation of bilayer organic light emitting diodes. J Appl Phys , 2000, 87(4): 1974-1982
    [208] Book K, Nikitenko V R, Bassler H, et al. Optical detection of charge carriers in multilayer organic light-emitting diodes: Experiment and theory. J Appl Phys, 2001, 89(5): 2690-2698
    [209] Kalinowski J, Palilis L C, Kim W H, et al. Determination of the width of the carrier recombination zone in organic light-emitting diodes. J Appl Phys , 2003, 94(12): 7764-7767
    [210] Kalinowski J. Space-resolved recombination electroluminescence in organic crystals. Synth Met, 1994, 64(2-3): 123-132
    [211] Vestweber H, Bassler H, Gruner J, et al. Spatial extent of the recombination zone in a PPV/polymer blend light-emitting diode. Chem Phys Lett , 1996, 256(1-2): 37-42
    [212] Gruner J, Remmers M, Neher D. Direct determination of the emission zone in a polymer light-emitting diode. Adv Mater , 1997, 9(12): 964-968
    [213] Kalinowski J, Murata H, Picciolo L C, et al. Voltage evolution of the recombination zone and emission quantum yield in organic light-emitting diodes with doped and undoped emitter layers. J Phys D , 2001, 34 (8): 3130-3138
    [214] Pinner D J, Friend R H and Tessler N. Transient electroluminescene of polymer light emitting diodes using electrical pulses. J Appl Phys, 1999, 879(2): 5116-5129
    [215] 高观志,黄维.固体中的电输运.北京:科学出版社,1991,312-313
    [216] Thomas G, Leif A A P and Olle I. Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements. J Appl Phys, 2001, 89(11): 5897-5902
    [217] Nikitenko V R, Salata O V, Basler H. Comparison of models of electroluminescence in organic double-layer light-emitting diodes. J Appl Phys, 2002, 92(5): 2359-2367
    [218] Kalinowski J, Picciolo L C, Murata H and Kafafi Z H. Effect of emitter disorder on the recombination zone and the quantum yield of organic electroluminescent diodes. J Appl Phys 2001 89(2): 1869-1874
    [219] Bruiting W, Riel H, Beierlein T, et al. Influence of trapped and. interfacial charges in organic multiplayer light-emitting devices. J Appl Phys, 2001, 89(3): 1704-1712
    [220] Nikitenko V R, Salata O V, Bassler H. Comparison of models of electroluminescence in organic double-layer light-emitting diodes. J Appl Phys, 2002, 92(5): 2359-2367
    [221] 杨盛谊.界面效应与体效应在有机复合发光中的相互制约及其对复合发光的影响:[北京交通大学博士学位论文] .北京,北京交通大学,2001,70-76
    [222] Huang Y S, Jou J H, Weng w K. High efficiency white light organic light-emitting devices with dual doped structure. Appl Phys Lett, 2002, 80: 2782-2784
    [223] Khramtehenkov D V, Bassler H,Arkhipov V I. A model of electroluminescence in organic double-1ayer light-emitting diodes. J Appl Phys, 1996, 79(12): 9283-9290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700