用户名: 密码: 验证码:
人工电磁超材料波导的物理特性及其在光子器件上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工电磁超材料是由亚波长的结构单元周期性排列形成的等效介质。它具有强大的调控电磁波的能力,不仅可以支持新奇的电磁效应,如负折射、超分辨成像,还可以设计实现电磁隐身、超高折射率、零折射率,极慢的光波传输等。在本论文中,我们深入挖掘超材料波导的独特性质,并探究了超材料波导在光子器件方面的若干应用。
     首先,我们研究了左手性的超材料中传播的电磁波的动量问题。介质中电磁波的动量问题已经饱受争议长达一个世纪。对于左手超材料中的动量,人们甚至还没有搞清楚光动量的方向。这里我们从宏观的Maxwell方程出发,研究了左手介质中的电磁场动量。最终的计算结果表明,左手介质中电磁波的动量方向是与能流的方向一致,与波矢的方向相反的。计算结果还表明,我们的动量理论与基本的物理规律,动量守恒和能量守恒定律相吻合。
     接下来,我们研究了厚度渐变的超材料慢光波导中的光波传输问题。通过调节超材料波导的厚度到一个关键厚度,波导中的模式的群速度可以达到零。因为不同的光频率对应不同的关键厚度,一篇发表于Nature上的论文认为厚度渐变的慢光波导可以把不同频率的光停止在不同的关键厚度处,形成所谓的“静止彩虹”效应。但我们的研究发现,在关键厚度附近,前向模和后向模接近简并,相互之间非常容易耦合。这种模式之间的耦合,会导致入射的能量被完全地反射回来,使光不可能完全停留在关键厚度处。不过,在这种波导里,光的传播速度确实被显著减小,光的传播时间被大大延长。
     在理论研究之后,我们还尝试着利用超材料波导的独特性质,设计出若干光子器件。
     我们设计了嵌有两个椭圆形金属纳米颗粒的介质波导。两个金属纳米颗粒分别工作在亮态和暗态上。它们之间的近场耦合使得波导的透射谱出现类似于量子系统中出现的电磁感应透明现象。
     我们还研究了由双曲超材料形成的单个波导和耦合波导的模式特性。研究发现,双曲超材料形成的波导可以支持折射率超高的波导模式。利用这种高折射率性质,我们用两根波导耦合形成沟槽结构,实现了极大的光场增强和光力增强。
     我们用损耗强各向异性的超材料实现了深亚波长的无衍射的光束传输。这里亚波长光束传输的能力可以用损耗强各向异性超材料所支持的超平的等频率曲线来解释。我们还利用金属纳米线腔阵列实现了完美的红外吸波器。该结构的谐振模式支持电共振和磁共振,因此能够高效地吸收入射光波。
     最后我们总结了本论文的研究内容,并指出下一步工作的相关研究点。
The emergence of metamaterial with artificially engineered building blocks provides a new perspective on electromagnetic wave manipulation. Metamaterial can not only exhibit novel electromagnetic phenomena such as negative refraction and super-resolution imaging, but also be designed to achieve e.g., invisible cloaking, ultra-high refractive indices, zero refractive indices and light propagation with ultra-small group velocity. In this thesis, some special properties of metamaterials waveguide are thoroughly investigated and their applications to photonic devices are explored.
     First of all, the momentum carried by an electromagnetic wave travelling inside a left-handed metamaterial is studied. The momentum of light in a medium has undergone intense debates for over a century. As to the momentum of light in a metamaterial, even the direction of the light's momentum remains ambiguous. Here we have studied the momentum of electromagnetic waves in a metamaterial based on macroscopic Maxwell's equations. It turns out that the momentum of light in a metamaterial is in the direction of energy flow, instead of wave vectors. Our further analysis shows that our momentum theory is consistent with the requirement of the two fundamental physical laws, namely, the energy conservation and momentum conservation.
     Then the propagation of light in a tapered metamaterial slow light waveguide is studied. A metamaterial waveguide can be designed to support mode with zero group velocity, by tuning the thickness of the metamaterial core layer. Since the critical thickness corresponding to zero velocity is different for different light frequency, an article published in Nature claimed that lights in a broad frequency range can be stopped in the tapered waveguide, forming "trapped rainbow". However, our investigation finds that strong intermodal coupling between the forward mode and the backward mode will occur due to the degeneracy of these two modes at the critical thickness. The mode coupling will lead to the reflection of incident light, breaking down the dream of "trapped rainbow". Despite that, light can indeed be trapped inside the slow light waveguide for a relatively long time.
     Some photonic devices are designed by exploiting the unique properties of metamaterial.
     We have designed a dielectric waveguide with two elliptical silver nanoparticles embedded. The two nanoparticles work as bright state and dark state. The near field coupling between these two resonators results in a transmission spectrum similar to the quantum effect of electromagnetically induced transparency.
     We have also investigated the properties of individual and coupled waveguides made of hyperbolic metamaterials. The hyperbolic metamaterial waveguides are found to support modes with ultra-high refractive indices. The high-index waveguides are then utilized to greatly enhance the optical fields and optical forces by constructing a slot waveguide configuration.
     We have also proposed an extremely loss-anisotropic metamaterial capable of supporting the propagation of a diffraction-free beam with deep subwavelength size and a perfect infrared absorber made of metallic nanowire cavity arrays. The deep subwavelength beam propagation inside the loss-anisotropic metamaterial is due to the ultra-flat iso-frequency contour. The perfect absorption of incident light is explained by examining its electric resonance and magnetic resonance.
     In the end, we give a brief summary of our investigations and discuss some future research directions.
引文
1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305,788-792 (2004).
    2. J. Pendry, "Photonics:Metamaterials in the sunshine," Nat Mater 5,599-600 (2006).
    3. S. A. Ramakrishna, "Physics of negative refractive index materials," Reports on Progress in Physics 68,449 (2005).
    4. V. G Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp.10,509-514 (1968).
    5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Physical Review Letters 76,4773 (1996).
    6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," Microwave Theory and Techniques, IEEE Transactions on 47,2075-2084 (1999).
    7. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292,77-79 (2001).
    8. D. R. Smith, D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Applied Physics Letters 75,1425-1427 (1999).
    9. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters 88,041109 (2006).
    10. R. Liu, A. Degiron, J. J. Mock, and D. R. Smith, "Negative index material composed of electric and magnetic resonators," Applied Physics Letters 90,263504 (2007).
    11. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials:Theoretical and experimental investigations," Physical Review B 75,041102 (2007).
    12. R. Marques, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B 65,144440 (2002).
    13. J. D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B 69,014402 (2004).
    14. W. C. Chen, C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely subwavelength planar magnetic metamaterials," Physical Review B 85, 201104(2012).
    15. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303,1494-1496 (2004).
    16. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306,1351-1353 (2004).
    17. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies," Physical Review Letters 95,223902 (2005).
    18. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Physical Review Letters 95,137404 (2005).
    19. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett.30,3198-3200(2005).
    20. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30,3356-3358 (2005).
    21. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental Observations of a Left-Handed Material That Obeys Snell's Law," Physical Review Letters 90,137401 (2003).
    22. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law," Physical Review Letters 90,107401 (2003).
    23. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. Au Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70,057605 (2004).
    24. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13,4922-4930 (2005).
    25. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett.31, 1800-1802(2006).
    26. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett.32,53-55 (2007).
    27. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455,376-379 (2008).
    28. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical Review Letters 85,3966 (2000).
    29. A. Grbic, and G. V. Eleftheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Physical Review Letters 92,117403 (2004).
    30. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308,534-537 (2005).
    31. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313,1595 (2006).
    32. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312,1780-1782 (2006).
    33. U. Leonhardt, "Optical Conformal Mapping," Science 312,1777-1780 (2006).
    34. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314,977-980 (2006).
    35. J. Li, and J. B. Pendry, "Hiding under the Carpet:A New Strategy for Cloaking," Physical Review Letters 101,203901 (2008).
    36. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband Ground-Plane Cloak," Science 323,366-369 (2009).
    37. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444,597-600 (2006).
    38. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Physical Review Letters 100,207402-207404 (2008).
    39. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared Perfect Absorber and Its Application As Plasmonic Sensor," Nano Letters 10,2342-2348 (2010).
    40. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials," Physical Review Letters 99,063908 (2007).
    41.X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters," Physical Review Letters 107,045901 (2011).
    42. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, "Controlling spontaneous emission with metamaterials," Opt. Lett.35,1863-1865 (2010).
    43. I. V. Shadrivov, A. A. Sukhorukov, and Y S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E 67,057602 (2003).
    44. A. Peacock, and N. Broderick, "Guided modes in channel waveguides with a negative index of refraction," Opt. Express 11,2502-2510 (2003).
    45. A. V. Novitsky, and L. M. Barkovsky, "Guided modes in negative-refractive-index fibres," Journal of Optics A:Pure and Applied Optics 7, S51 (2005).
    46. T. Baba, "Slow light in photonic crystals," Nat Photon 2,465-473 (2008).
    47. J. He, and S. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," Microwave and Wireless Components Letters, IEEE 16,96-98 (2006).
    48. Y. J. Huang, W. T. Lu, and S. Sridhar, "Nanowire waveguide made from extremely anisotropic metamaterials," Physical Review A 77,063836 (2008).
    49. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "Trapped rainbow' storage of light in metamaterials," Nature 450,397-401 (2007).
    50. P. R. Berman, "Goos-Hanchen shift in negatively refractive media," Phys. Rev. E 66,067603 (2002).
    51. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Physical Review Letters 100,256803-256804 (2008).
    52. L. Chen, G. P. Wang, Q. Gan, and F. J. Bartoli, "Trapping of surface-plasmon polaritons in a graded Bragg structure:Frequency-dependent spatially separated localization of the visible spectrum modes," Physical Review B 80,161106-161104 (2009).
    53. E. Feigenbaum, and M. Orenstein, "Backward propagating slow light in inverted plasmonic taper," Opt. Express 17,2465-2469 (2009).
    54. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, "Trapping light in plasmonic waveguides," Opt. Express 18,598-623 (2010).
    55. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaccaronicacute, "Surface-Plasmon-Assisted Guiding of Broadband Slow and Subwavelength Light in Air," Physical Review Letters 95,063901 (2005).
    56. D. R. Smith, and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Physical Review Letters 90, 077405 (2003).
    57. V. A. Podolskiy, and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Physical Review B 71,201101 (2005).
    58. L. V. Alekseyev, and E. Narimanov, "Slow light and 3D imaging with non-magnetic negative index systems," Opt. Express 14,11184-11193 (2006).
    59. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Applied Physics Letters 89,261102 (2006).
    60. E. I. Kirby, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, "FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides," Journal of Optics A:Pure and Applied Optics 11,114027 (2009).
    61. Q. Gan, Y. J. Ding, and F. J. Bartoli, ""Rainbow" Trapping and Releasing at Telecommunication Wavelengths," Physical Review Letters 102,056801-056804 (2009).
    62. T. Jiang, J. Zhao, and Y. Feng, "Stopping light by an air waveguide with anisotropic metamaterial cladding," Opt. Express 17,170-177 (2009).
    63. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, "Trapped rainbow effect in visible light left-handed heterostructures," Applied Physics Letters 95,071111-071113 (2009).
    64. L. Chen, G P. Wang, Q. Gan, and F. J. Bartoli, "Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies," Applied Physics Letters 97, 153115-153113(2010).
    65. Q. Gan, and K. W. Yongkang Gao, Dmitri Vezenov, Yujie J. Ding, and Filbert J. Bartoli, "Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings," PNAS 108,5169-5173 (2011).
    66. Y. Shen, H. Liu, J. Fu, and G. Yu, "Double rainbow trapping of light in one-dimensional chirped metallic?dielectric photonic crystals," J. Opt. Soc. Am. B 28, 2444-2447(2011).
    67. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, "Rainbow Trapping in Hyperbolic Metamaterial Waveguide," Sci. Rep.3 (2013).
    68. C. Zeng, and Y. Cui, "Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide," Optics Communications 290, 188-191 (2013).
    69. J. Zhu, Y. Chen, X. Zhu, F. J. Garcia-Vidal, X. Yin, W. Zhang, and X. Zhang, "Acoustic rainbow trapping," Sci. Rep.3 (2013).
    70. S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, "Observation of slow-light in a metamaterials waveguide at microwave frequencies," Applied Physics Letters 98, 171907-171903 (2011).
    71. J. He, Y. Jin, Z. Hong, and S. He, "Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding," Opt. Express 16,11077-11082 (2008).
    72. S. He, Y. He, and Y. Jin, "Revealing the truth about 'trapped rainbow' storage of light in metamaterials," Sci. Rep.2 (2012).
    73. S. A. Maier, Plasmonics:Fundamentals and Applications (Springer,2007).
    74. W. T. Lu, and S. Sridhar, "Slow light, open-cavity formation, and large longitudinal electric field on a slab waveguide made of indefinite permittivity metamaterials," Physical Review A 82,013811 (2010).
    75. Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, "Controllable optical black hole in left-handed materials," Opt. Express 18,2106-2115 (2010).
    76. M. Silveirinha, and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials," Physical Review Letters 97,157403 (2006).
    77. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies," Physical Review Letters 100,023903 (2008).
    78. S. Enoch, G Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A Metamaterial for Directive Emission," Physical Review Letters 89,213902 (2002).
    79. Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. A. Kong, "Directive emission based on anisotropic metamaterials," Physical Review A 77,053821 (2008).
    80. B. Zhou, and T. J. Cui, "Directivity Enhancement to Vivaldi Antennas Using Compactly Anisotropic Zero-Index Metamaterials," Antennas and Wireless Propagation Letters, IEEE 10,326-329 (2011).
    81. J. T. Shen, P. B. Catrysse, and S. Fan, "Mechanism for Designing Metallic Metamaterials with a High Index of Refraction," Physical Review Letters 94,197401 (2005).
    82. J. Shin, J.-T. Shen, and S. Fan, "Three-Dimensional Metamaterials with an Ultrahigh Effective Refractive Index over a Broad Bandwidth," Physical Review Letters 102,093903 (2009).
    83. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470,369-373 (2011).
    84. T. Campbell, A. P. Hibbins, J. R. Sambles, and I. R. Hooper, "Broadband and low loss high refractive index metamaterials in the microwave regime," Applied Physics Letters 102,091108-091104 (2013).
    85. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930-(2008).
    86. S. Feng, and K. Halterman, "Coherent perfect absorption in epsilon-near-zero metamaterials," Physical Review B 86,165103 (2012).
    87. S. Zhong, and S. He, "Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials," Sci. Rep.3 (2013).
    88. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, "Three-dimensional nanometer-scale optical cavities of indefinite medium," Proceedings of the National Academy of Sciences 108,11327-11331 (2011).
    89. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, "Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws," Nat Photon 6,450-454 (2012).
    90. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, "Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab," Nano Letters 12, 1443-1447(2012).
    91. C. Wu, and G. Shvets, "Design of metamaterial surfaces with broadband absorbance," Opt. Lett.37,308-310 (2012).
    92. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters 100,103506 (2012).
    93. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nat Mater 8,867-871 (2009).
    94. C. A. Barrios, K. B. Gylfason, B. Sanchez, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett.32,3080-3082 (2007).
    95. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing," Nano Letters 10,1103-1107 (2009).
    96. M.-S. Kwon, "Disposable and compact integrated plasmonic sensor using a long-period grating," Opt. Lett.35,3835-3837 (2010).
    97. U. Leonhardt, "Optics:Momentum in an uncertain light," Nature 444,823-824 (2006).
    98. Abraham, M. Rend. Circ. Matem. Palermo 28 (1909).
    99. Minkowski, Nachr. Ges. Wiss. Gottn Math.-Phys. KI.53 (1908).
    100. R. V. Jones, and J. C. S. Richards, "The Pressure of Radiation in a Refracting Medium," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 221,480-498 (1954).
    101. J. P. Gordon, "Radiation Forces and Momenta in Dielectric Media," Physical Review A 8,14(1973).
    102. R. Peierls, "The Momentum of Light in a Refracting Medium," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 347, 475-491 (1976).
    103. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Colloquium:Momentum of an electromagnetic wave in dielectric media," Reviews of Modern Physics 79,1197 (2007).
    104. B. Kemp, T. Grzegorczyk, and J. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express 13,9280-9291 (2005).
    105. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field in magnetic media," Opt. Express 15,13502-13518 (2007).
    106. R. V. Jones, "Radiation Pressure of Light in a Dispersive Medium," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 360,365-371 (1978).
    107. M. Mansuripur, "Radiation pressure and the linear momentum of light in dispersive dielectric media," Opt. Express 13,2245-2250 (2005).
    108. M. Scalora, G D'Aguanno, N. Mattiucci, M. J. Bloemer, M. Centini, C. Sibilia, and J. W. Haus, "Radiation pressure of light pulses and conservation of linear momentum in dispersive media," Phys. Rev. E 73,056604 (2006).
    109. A. D. Yaghjian, "Internal Energy, Q-Energy, Poynting's Theorem, and the Stress Dyadic in Dispersive Material," IEEE Transactions on Antennas and Propagation 55,1495-1505 (2007).
    110.B. A. Kemp, J. A. Kong, and T. M. Grzegorczyk, "Reversal of wave momentum in isotropic left-handed media," Physical Review A 75,053810 (2007).
    111. V. G Veselago, "Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium," Physics-Uspekhi 52,649-654 (2009).
    112.Z. Mikura, "Variational formulation of the electrodynamics of fluids and its application to the radiation pressure problem," Physical Review A 13,2265 (1976).
    113.Y. N. Obukhov, and F. W. Hehl, "Electrodynamics of moving magnetoelectric media:Variational approach," Physics Letters A 371,11-19 (2007).
    114.S. M. Barnett, "Resolution of the Abraham-Minkowski Dilemma," Physical Review Letters 104,070401 (2010).
    115.M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12,5375-5401 (2004).
    116.T. F. Krauss, "Why do we need slow light?," Nat Photon 2,448-450 (2008).
    117. J. M. Reiter, and F. Arndt, "Rigorous analysis of arbitrarily shaped H-and E-plane discontinuities in rectangular waveguides by a full-wave boundary contour mode-matching method," Microwave Theory and Techniques, IEEE Transactions on 43,796-801 (1995).
    118.S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, "Modal analysis and coupling in metal-insulator-metal waveguides," Physical Review B 79,035120 (2009).
    119.S. He, and S. Strom, "The electromagnetic scattering problem in the time domain for a dissipative slab and a point source using invariant imbedding," Journal of Mathematical Physics 32,3529-3539 (1991).
    120. A. Snyder, and J. D. Love, Optical waveguide theory Ch.19 (Chapman and Hall,1983).
    121. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003).
    122. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305,847-848 (2004).
    123. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, "Domino plasmons for subwavelengthterahertz circuitry," Opt. Express 18,754-764 (2010).
    124. A. Reza, M. M. Dignam, and S. Hughes, "Can light be stopped in realistic metamaterials?," Nature 455, E10-E11 (2008).
    125. S. E. Harris, "Electromagnetically Induced Transparency," Physics Today 50, 36-42 (1997).
    126. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397,594-598 (1999).
    127. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency," Physical Review Letters 96,123901 (2006).
    128. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-Induced Transparency in Metamaterials," Physical Review Letters 101,047401-047404 (2008).
    129. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial Analog of Electromagnetically Induced Transparency," Physical Review Letters 101,253903 (2008).
    130. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-Coupled Plasmon-Induced Transparency," Physical Review Letters 104, 243902(2010).
    131. M. I. Tribelsky, and B. S. Luk'yanchuk, "Anomalous Light Scattering by Small Particles," Physical Review Letters 97,263902 (2006).
    132. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons,1998).
    133. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Niisse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, "Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling," Nano Letters 10,891-895 (2010).
    134. R. Ameling, and H. Giessen, "Cavity Plasmonics:Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by a Photonic Microcavity," Nano Letters 10,4394-4398 (2010).
    135. L. Chen, G P. Wang, Q. Gan, and F. J. Bartoli, "Trapping of surface-plasmon polaritons in a graded Bragg structure:Frequency-dependent spatially separated localization of the visible spectrum modes," Physical Review B 80,161106-161104 (2009).
    136. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat Mater 9,707-715 (2010).
    137. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, "Bulk photonic metamaterial with hyperbolic dispersion," Applied Physics Letters 94,151105 (2009).
    138. Y. He, S. He, J. Gao, and X. Yang, "Nanoscale metamaterial optical waveguides with ultrahigh refractive indices," J. Opt. Soc. Am. B 29,2559-2566 (2012).
    139. Y. Liu, G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express 16, 15439-15448(2008).
    140. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens:Far-field imaging beyond the diffraction limit," Opt. Express 14,8247-8256 (2006).
    141. A. Salandrino, and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals:Theory and simulations," Physical Review B 74, 075103-075105 (2006).
    142. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315,1686-1686 (2007).
    143. Z. Jacob, J. Y. Kim, G Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, "Engineering photonic density of states using metamaterials," Applied Physics B: Lasers and Optics 100,215-218 (2010).
    144. A. A. Govyadinov, and V. A. Podolskiy, "Metamaterial photonic funnels for subdiffraction light compression and propagation," Physical Review B 73,155108 (2006).
    145. M. Yan, L. Thylen, and M. Qiu, "Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering," Opt. Express 19,3818-3824 (2011).
    146. J. Sun, J. Zhou, B. Li, and F. Kang, "Indefinite permittivity and negative refraction in natural material:Graphite," Applied Physics Letters 98,101901 (2011).
    147. G-d. Xu, T. Pan, T.-c. Zang, and J. Sun, "Characteristics of guided waves in indefinite-medium waveguides," Optics Communications 281,2819-2825 (2008).
    148. F.-Y. Meng, Q. Wu, and L.-W. Li, "Transmission characteristics of wave modes in a rectangular waveguide filled with anisotropic metamaterial," Applied Physics A:Materials Science & Processing 94,747-753 (2009).
    149. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, "Surface-plasmon polaritons on metal-dielectric nanocomposite films," Opt. Lett.34, 3535-3537 (2009).
    150. C. H. Gan, and P. Lalanne, "Well-confined surface plasmon polaritons for sensing applications in the near-infrared," Opt. Lett.35,610-612 (2010).
    151. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, "Template-Synthesized Nanoscopic Gold Particles:Optical Spectra and the Effects of Particle Size and Shape," The Journal of Physical Chemistry 98,2963-2971 (1994).
    152. A. Sihvola, Electromagnetic mixing formulas and applications (Institution of Electrical Engineers,1999).
    153. P. B. Johnson, and R. W. Christy, "Optical Constants of the Noble Metals," Physical Review B 6,4370-4379 (1972).
    154. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer," Opt. Express 18,5124-5134 (2010).
    155. A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, "Metal-dielectric-metal surface plasmon-polariton resonators," Physical Review B 85, 085416 (2012).
    156. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic Nanolayer Composites:Coupled Plasmon Polaritons, Effective-Medium Response, and Subdiffraction Light Manipulation," Journal of Nanomaterials 2007 (2007).
    157. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Applied Physics Letters 90,191109(2007).
    158. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature 466,735-738(2010).
    159. X. Ni, S. Ishii, M. D. Thoreson, V. Shalaev, S. Han, S. Lee, and A. Kildishev, "Gain-Assisted Hyperbolic Metamaterials," in CLEO(Optical Society of America, San Jose,2012), p. QTu1G.3.
    160. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,' Nat Photon 2,496-500 (2008).
    161. M. A. Noginov, G Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature 460,1110-1112 (2009).
    162. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett.29,1209-1211 (2004).
    163. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457,71-75 (2009).
    164. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, "Harnessing optical forces in integrated photonic circuits," Nature 456,480-484 (2008).
    165. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photonic-crystal optomechanical cavity," Nature 459, 550-555 (2009).
    166. M. Li, W. H. P. Pernice, and H. X. Tang, "Tunable bipolar optical interactions between guided lightwaves," Nat Photon 3,464-468 (2009).
    167. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical Wavelength and Energy Conversion in High-Q Double-Layer Cavities of Photonic Crystal Slabs," Physical Review Letters 97,023903 (2006).
    168. S. Mandal, X. Serey, and D. Erickson, "Nanomanipulation Using Silicon Photonic Crystal Resonators," Nano Letters 10,99-104 (2009).
    169. M. Povinelli, S. Johnson, M. Lonear, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators," Opt. Express 13,8286-8295 (2005).
    170. G S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, "Controlling photonic structures using optical forces," Nature 462,633-636 (2009).
    171. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett.30,3042-3044 (2005).
    172. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, "Optical Forces in Hybrid Plasmonic Waveguides," Nano Letters 11,321-328 (2011).
    173. J. D. Jackson, Classical electrodynamics (Wiley,1999).
    174. W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, "Modeling of the optical force between propagating lightwaves in parallel 3D waveguides," Opt. Express 17, 16032-16037(2009).
    175. W.-P. Huang, "Coupled-mode theory for optical waveguides:an overview," J. Opt. Soc. Am. A 11,963-983 (1994).
    176. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray Optics at a Deep-Subwavelength Scale:A Transformation Optics Approach," Nano Letters 8, 4243-4247 (2008).
    177. P. B. Catrysse, and S. Fan, "Deep sub-wavelength beam propagation, beam manipulation and imaging with extreme anisotropic meta-materials," presented at the CLEO2012.
    178. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, "Topological Transitions in Metamaterials," Science 336,205-209 (2012).
    179. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat Commun 1,143 (2010).
    180. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime:design, fabrication and characterization," Opt. Express 16,7181-7188 (2008).
    181. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, "Highly Confined Hybrid Spoof Surface Plasmons in Ultrathin Metal-Dielectric Heterostructures," Physical Review Letters 105,176803 (2010).
    182. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Physical Review B 79,045131 (2009).
    183. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat Commun 2,517 (2011).
    184. C. Wu, B. Neuner, Ⅲ, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, "Large-area wide-angle spectrally selective plasmonic absorber," Physical Review B 84,075102(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700