用户名: 密码: 验证码:
半导体/金属微纳结构的设计、制备和光电场下输运特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在探索银、镍金属纳米线制备工艺的基础上,进一步设计、制备了基于银、镍纳米线及其氧硫化物半导体纳米材料的异质结构,深入研究了各种类型异质结构在光场和电场作用下的输运特性。利用扫描电子显微镜、透射电子显微镜等设备对纳米结构的微观形貌、化学成分和晶体结构进行了详细观察和表征。
     首先,尝试采用AgNO_3溶液法直接制备制备银纳米结构,通过改变溶液浓度以及电场强度,可以得到形态各异的银纳米结构。通过氧化铝模板法制备出了银纳米线阵列,其直径200 nm,长度约为10μm。采用本实验组的固态离子学方法生长的宏观长银纳米线簇,用电镀法制备镍壳/银芯纳米异质结,其长度可达微米量级,镍壳厚度约为100 nm,测试结果表明该微纳结构具有很好的光电响应特性。
     其次,采用氧化铝模板法制备了镍纳米线阵列,纳米线直径200 nm,长度可超过50μm。放置于空气中自然氧化12小时后,在镍纳米线表层形成氧化镍纳米层,厚度约为5 nm。使用扫描电子显微镜、透射电子显微镜对镍纳米线及氧化层进行了详细表征,通过测量氧化镍吸收谱得到了氧化镍纳米层的禁带宽度。利用原子力显微镜,实现了对单个NiO-Ni肖特基结的测量,观测到了半导体-金属转变,并在理论上进行了分析。在此基础上,制备了Au-NiO-Ni双肖特基纳米结阵列,两个肖特基结呈“面对面”结构,可以很好地抑制半导体-金属转变前的正向电流,增大开/关状态下的电流比值。通过调控电压,我们得到了可重复的、转变迅速的开关器件。
     最后,利用气-固反应法对宏观长银纳米线簇进行硫化处理,得到具有不同厚度比值的硫化银壳/银芯同轴纳米结构,研究发现样品的光电导行为强烈依赖于硫化层厚度,其光电导变化值可以从负转为正,从而为调控纳米材料光电导提供了一种新的途径。
The main topics of this dissertation are about the fabrication of silver and nickel nanowires and the heterojunctions formed by metals and corresponding oxysulfides. The heterojunctions were undergone by exterior laser lighting as well as electric field to study their transport characteristics. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to study the morphologies, components and crystal structures of the nanowires detailedly.
     Firstly, attempts to fabricate silver nanowires in AgNO_3 solution show some interesting silver nanostructures, like nanoflakes and dendritic shapes, under different AgNO_3 concentration as well as electronic field. Silver nanowires with diameter of 200 nm and length about 10μm were also made in alumina oxide template through electrochemical deposition. Macro-long Ni/Ag heterojunctions with excellent photo-response were got with the as-prepared silver nanowire bundles by state-ionic method.
     Secondly, nickel nanowire arrays were synthesized by the electrochemical deposition method using an anodic aluminum oxide template with a mean diameter of 200 nm and a length of 60μm. Oxidized in the atmosphere for about 12 h, the exposed surface of the Ni nanowire was oxidized and formed a Ni core/NiO shell architecture. SEM and TEM were introduced to characterize the sample and the band gap of NiO nanolayer could be calculated from the absorbance spectrum. With the help of Atomic Force Microscopy (AFM), single NiO-Ni Schottky nanojunction was studied and semiconductor-metal transition was observed. Furthermore, Au-NiO-Ni dual Schottky nanojunctions were formed, manifesting a replicable, fast-responded switch trait after certain treatments. Due to the face-to-face Schottky contact, forward current was restrained and high ratio of ON/OFF current was available.
     Finally, through sulfurization of the micro-long silver nanowire bundles, silver sulfide/silver nano-heterojunction was obtained. Unlike the negative photocon- ductivity of silver nanowires, its photoconductivity can change from negative to positive gradually with different silver sulfide thickness, which implies a new approach to manipulate the photoconductivity of nanomaterials.
引文
[1] Taniguchi N. Proc. of International Conference on Precision Engineering (ICPE), Tokyo, Japan, 1974:18-23.
    [2] Huang S, Chen Y. Ultrasensitive Fluorescence Detection of Single Protein Molecules Manipulated Electrically on Au Nanowire. Nano Lett., 2008, 8(9):2829-2833.
    [3] Yoo D, Seo K, Han S, et al. Steering Epitaxial Alignment of Au, Pd, and AuPd Nanowire Arrays by Atom Flux Change. Nano Lett., 2010, 10:432-438.
    [4] Sun J L, Xu J, Zhu J L. Oxidized macroscopic-long Cu nanowire bundle photoconductor. Appl. Phys. Lett., 2007, 90(20):201119.
    [5] Duan J L, Liu J, Yao H J, et al. Controlled synthesis and diameter-dependent optical properties of Cu nanowire arrays. Mater. Sci. Eng., B, 2008, 147:57-62.
    [6] Wang X W, Fei G T, Zheng K, et al. Size-dependent melting behavior of Zn nanowire arrays. Appl. Phys. Lett., 2006, 88(17):173114.
    [7] Cheng C L, Lin J S, Chen Y F. Fabrication and growth mechanism of metal (Zn, Sn) nanotube arrays and metal (Cu, Ag) nanotube/nanowire junction arrays. Mater. Lett., 2008, 62:1666-1669.
    [8] Zach M P, Ng K H, Penner R M. Molybdenum Nanowires by Electrodeposition. Science, 2000, 290:2120.
    [9] Yang Y, Meng G, Liu X, Zhang L, Hu Z, He C, Hu Y, et al. Aligned SiC Porous Nanowire Arrays with Excellent Field Emission Properties Converted from Si Nanowires on Silicon Wafer. J. Phys. Chem., C, 2008, 112:20126-20130.
    [10] Shim H Y, Zhang Y F, Huang H C. Twin formation during SiC nanowire synthesis. J. Appl. Phys., 2008, 104(6):063511.
    [11] Shrestha N K, Yang M, Nah Y C, et al. Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. Electrochem. Commun., 2010, 12:254-257.
    [12] Wu T S, Wang K X, Li G D, et al. Montmorillonite-Supported Ag/TiO2 Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material. Appl. Mater. Interfa., 2010, 2(2):544-550.
    [13] Hwang S O, Kim C H, Myung Y, et al. Synthesis of Vertically Aligned Manganese-Doped Fe3O4 Nanowire Arrays and Their Excellent Room-Temperature Gas Sensing Ability. J. Phys. Chem., C, 2008, 112:13911-13916.
    [14] Xue D S, Zhang L Y, Gui A B, et al. Fe3O4 nanowire arrays synthesized in AAO templates. Appl. Phys. A, 2005, 8(2):439-442.
    [15] Paladugu M, Zou J, Guo Y N, et al. Crystallographically driven Au catalyst movement during growth of InAs/GaAs axial nanowire heterostructures. J. Appl. Phys., 2009, 105(7):073503.
    [16] Ghoshal T, Biswas S, Kar S, et al. Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process. Nanotechno., 2008, 19:065606.
    [17] Ahn S E, Ji H J, Kim K, et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Appl. Phys. Lett., 2007, 90(15):153106.
    [18] Bjork M T, Thelander C, Hansen A E, et al. Few-Electron Quantum Dots in Nanowires. Nano Lett., 2004, 4(9):1621-1625.
    [19] Lilly G D, Chen Y, Pan X, et al. Effect of CdSe Nanoparticles on the Growth of Te Nanowires: Greater Length and Tortuosity and Nonmonotonic Concentration Effect. J. Phys. Chem. C, 2010, 114:2428-2433.
    [20] Yamamoto H, Wilkinson J, Long J P, et al. Nanoscale Organic Light-Emitting Diodes. Nano Lett., 2005, 5(12):2485-2488.
    [21] Kim S H, Nederberg F, Zhang L, et al. Hierarchical Assembly of Nanostructured Organosilicate Networks via Stereocomplexation of Block Copolymers.Nano Lett., 2008, 8(1):294-301.
    [22] Massuyeau F, Duvail J L, Athalin H, et al. Elaboration of conjugated polymer nanowires and nanotubes for tunable photoluminescence properties. Nanotechno., 2009, 20:155701-155709.
    [23] Mehdinia A, Kazemi S H, Bathaie S Z, et al. Electrochemical DNA nano-biosensor for the study of spermidine-DNA interaction. J. Pharm. Biomed. Anal., 2009, 49:587-593.
    [24] Chen V J, Ma P X. Nano-fibrous poly (l-lactic acid) scaffolds with interconnected spherical macropores. Biomater., 2004, 25:2065-2073.
    [25] Yang S, Zeng X, Liu X, et al. Electrocatalytic reduction and sensitive determination of nitrite at nano-copper coated multi-walled carbon nanotubes modified glassy carbon electrode. Electroanal. Chem., 2010, 639:181-186.
    [26] Solanki P R, Dhand C, Kaushik A, et al. Nanostructured cerium oxide film for triglyceride sensor. Sens. Actua., B: Chem, 2009, 141(2):551-556.
    [27] Huang M, Yanik A A, Chang T Y, et al. Sub-wavelength nanofluidics in photonic crystal sensors. Opt. Expr, 17(26):24224-24233.
    [28] Mane R B, Hengne A M, Ghalwadkar A A, et al. Cu:Al Nano Catalyst for Selective Hydrogenolysis of Glycerol to 1, 2-Propanediol. Catal. Lett, 2010, 135:141-147.
    [29] Nazari A, Montazer M, Rashidi A, et al. Nano TiO2 photo-catalyst and sodium hypophosphite for cross-linking cotton with poly carboxylic acids under UV and high temperature. Appl. Catal A: Generl., 2009, 371:10-16.
    [30] Zhang F, Wong S S. Ambient Large-Scale Template-Mediated Synthesis of High-Aspect Ratio Single-Crystalline, Chemically Doped Rare-Earth Phosphate Nanowires for Bioimaging. ACS Nano, 2010, 4(1):99-112.
    [31] Tang X, Jonas A M, Nysten B, et al. Direct protein detection with a nano-interdigitated array gate MOSFET. Biosens. Bioelectron, 2009, 24:3531-3537.
    [32] Park J S, Cho M K, Lee E J, et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature. Nanotech, 2009, 4:259.
    [33] Bandara T M W J, Dissenayake M A K L, Albinsson I, et al. Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile): MgI2 plasticized electrolyte. J. Power. Sources, 2010, 195(11):3730-3734.
    [34] Centi G, Perathoner S. Problems and perspectives in nanostructured carbon-based electrodes for clean and sustainable energy. Catalysis Today, 2010, 510:151-162.
    [35] Facci T, Huguenin F. Spectroelectrochemical Properties and Lithium Ion Storage in Self-Assembled Nanocomposites from TiO2. Langmuir, 2010, 26(6):4489-4496.
    [36] Rahmani A, Mousavi HZ, Fazli M. Effect of nanostructure alumina on adsorption of heavy metals. Desalination, 2010, 253: 94-100.
    [37] Zhang F, Ali Z, Amin F, et al. Ion and pH Sensing with Colloidal Nanoparticles: Influence of Surface Charge on Sensing and Colloidal Properties. Chemphyschem, 2010, 11(3):730-735.
    [38] Lee S J, Baik J M, Moskovits M. Polarization-Dependent Surface-Enhanced Raman Scattering from a Silver-Nanoparticle-Decorated Single Silver Nanowire. Nano Lett., 2008, 8(10):3244-3247
    [39] Prokes S M, Alexson D A, Glembocki O J, et al. Effect of crossing geometry on the plasmonic behavior of dielectric core/metal sheath nanowires. Appl. Phys. Lett., 2009, 94(9):093105.
    [40] Fang Y, Wei H, Hao F, et al. Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Lett., 2009, 9(5):2049-2053.
    [41] Hu M S, Chen H L, Shen C H, et al. Photosensitive gold-nanoparticle-embedded dielectric nanowires.Nat. Mater., 2006, 5:102.
    [42] Zhang L, Webster T J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nanotoday, 2009, 4:66-80.
    [43] Sato M. Nanophase hydroxyapatite coatings for dental and orthopedic applications[博士学位论文]. West Lafayette: Purdue University School of Materials Engineering, 2006.
    [44] Liu P, Li Z, Zhao B, et al. Template-free synthesis of nickel nanowires by magnetic field. Mater. Lett., 2009, 63:1650-1652.
    [45] Gu Q, Jin H, Dai K. Fabrication of nickel and gold nanowires by controlledelectrodeposition on deoxyribonucleic acid molecules. J. Phys. D: Appl. Phys., 2009, 42:015303.
    [46] Ertan A, Tewari S N, Talu O. Electrodeposition of nickel nanowires and nanotubes using various templates. J. Exp. Nanosci., 2008, 3(4):287.
    [47] Liu C M, Tseng Y C, Chen C, et al. Superparamagnetic and ferromagnetic Ni nanorod arrays fabricated on Si substrates using electroless deposition. Nanotechno., 2009, 20:415703.
    [48] Kim E U, Baeg K J, Noh Y Y, et al. Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication. Nanotechno., 2009, 20:355302.
    [49] Wang H, Qi L. Controlled Synthesis of Ag2S, Ag2Se, and Ag Nanofibers by Using a General Sacrificial Template and Their Application in Electronic Device Fabrication. Adv. Funct. Mater., 2008, 18:1249-1256.
    [50] Mohanty P, Yoon I, Kang T, et al. Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering. J. Am. Chem. Soc., 2007, 129(31):9576-9577.
    [51] Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater., 2002, 14(11):4736-4745.
    [52] Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater., 2002, 14(11):833-837.
    [53] Kang K, Kim S K, Kim C J, et al. The Role of NiOx Overlayers on Spontaneous Growth of NiSix Nanowires from Ni Seed Layers. Nano Lett., 2008, 8(2):431-436.
    [54] Lu C K, Tu K N, Wu W W, et al. Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si. Appl. Phys. Lett., 2007, 90(25):253111.
    [55] Chueh Y L, Ford A C, Ho JC, et al. Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction. Nano Lett., 2008, 8(12):4528-4533
    [56] Sun C L, Lam K H, Chao C, et al. Fabrication and characterization of Ni/P(VDF-TrFE) nanoscaled coaxial cables. Appl. Phys. Lett., 2007, 90(25):253107.
    [57] Luo J, Zhu J, Huang Z, et al. Arrays of Ni nanowire/multiwalled carbon nanotube/amorphous carbon nanotube heterojunctions containing Schottky contacts. Appl. Phys. Lett., 2007, 90(3):033114.
    [58] Tian X K, Zhao X Y, Zhang L D, et al. Performance of ethanol electro-oxidation on Ni–Cu alloy nanowires through composition modulation. Nanotechno., 2008, 19:215711.
    [59] Lai C H, Huang K W, Cheng J H, et al. Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications. J. Mater. Chem., 2009, 19:7277-7283.
    [60] Borras A, Barrance A, Yubero F, et al. Supported Ag-TiO2 core-shell nanofibres formed at low temperature by plasma deposition. Nanotechno., 2006, 17:3518-3522.
    [61] Lazzara T D, Bourret G R, Lennox R B, et al. Polymer Templated Synthesis of AgCN and Ag Nanowires. Chem. Mater., 2009, 21:2020-2026.
    [62] Gates B, Wu Y, Yin Y, et al. Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se. J. Am. Chem. Soc., 2001, 123:11500-11501.
    [63] Wen X G, Wang S H, Xie Y T, et al. Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates. J. Phys. Chem. B, 2005, 109(20):10100-10106.
    [64] Du J M, Zhang J L, Liu Z M, et al. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir, 2006, 22(3):1307-1312.
    [65] Hunyadi S E, Murphy C J. Tunable one-dimensional silver-silica nanopeapod architectures. J. Phys. Chem. B, 2006, 110(14):7226-7231.
    [66] Cao Y, Liu W, Sun J L, et al. A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology, 2006, 17(9):2378-2380.
    [67] Zhang J H, Sun J L, Liu W, et al.Synthesis of copper nanowires under a direct current electric field. Nanotechnology; 2005,16(10):2030-2032.
    [68] Sun J L, Zhang J H, Liu W, et al. Shape-controlled synthesis of silver nanostructures. Nanotechnology, 2005, 16(10):2412-2414.
    [69] Wang J G, Tian M L, Kumar N, et al. Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition. Nano Lett., 2005, 5(7):1247-1253.
    [70] Rahman S, Yang H. Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates. Nano Lett., 2003, 3(4):439-442.
    [71] Miao Z, Xu D S, Ouyang J H, et al. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett., 2002, 2(7):717-720.
    [72] Gao J H, Zhan Q F, He W, et al. Synthesis and magnetic properties of Fe3Pt nanowire arrays fabricated by electrodeposition. Appl. Phys. Lett., 2005, 86(23): 232506.
    [73] Ding J X, Zapien J A, Chen W W, et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett., 2004, 85(12):2361-2363.
    [74] Liu Z W, Bando Y. Oxidation behaviour of copper nanorods. Chem. Phys. Lett., 2003, 378(1-2):85-88.
    [75] Liu X M, Zhou Y C. Electrochemical synthesis and room temperature oxidation behavior of Cu nanowires. J. Mater. Res., 2005, 20(9):2371-2378.
    [76] Fitzpatrick P R, Wang T, Heitsch A T, et al. Oxidation resistance of thin boron carbo-nitridefilms on Ge(100) and Ge nanowires. Thin Solid Films, 2009, 517(13):3686-3694.
    [77] Lavin R, Denardin J C, Escrig J, et al. Angular dependence of magnetic properties in Ni nanowire arrays. J. Appl. Phys., 2009, 106(10):103903.
    [78] Chen W, Zhou W, He L, et al. Surface magnetic states of Ni nanochains modified by using different organic surfactants. J. Phys.: Condens. Matter, 2010, 22: 126003.
    [79] Salhi H, Chafai K, Benkirane K, et al. Magnetic studies of spin wave excitations in Ni/Au multilayers. Phys. B: Condens. Matter, 405(5):1312-1315.
    [80] Suzuki T, Fukami S, Nagahara K, et al. Evaluation of Scalability for Current-Driven Domain Wall Motion in a Co/Ni Multilayer Strip for Memory Applications. IEEE. Trans. Magnet., 2009, 45(10):3776-3779.
    [81] Fukami S, Nakatani Y, Suzuki T, et al. Relation between critical current of domain wall motion and wire dimension in perpendicularly magnetized Co/Ni nanowires. Appl. Phys. Lett., 2009, 95(23):232504.
    [82] Hultgren A, Tanase M, Chen C S, et al. Cell manipulation using magnetic nanowires. J. Appl. Phys., 2003, 93:7554.
    [83] Hultgren A, Tanase M, Felton E J, et al. Optimization of yield in magnetic cell separations using nickel nanowires of different lengths. Biotechnol. Prog., 2005, 21:509.
    [84] Gao N, Wang H, Yang E H. An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation. Nanotechnology, 2010, 21:105107.
    [85] Vassal N, Salmon E, Fauvarque J F, et al. Nickel/Metal Hydride Secondary Batteries Using an Alkaline Solid. J. Electrochem. Soc., 1999, 146(1): 20-26.
    [86] Zong R L, Zhou J, Li Q, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina Membrane. J. Phys. Chem. B, 2004, 108(43):16713-16716.
    [87] Kottmann J P, Martin O J F. Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires. Appl. Phys. B., 2001, 73(4):299-304.
    [88] Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B., 2001, 64(23):235402.
    [89] Weeber J C, Dereux A, Girard C, et al. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B., 1999, 60(12):9061-9068.
    [90] Sun J B, Lee C, Choi I S, et al. Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: surface-enhanced Raman scattering study. J. Phys. Chem. B., 2002, 106(28):7076-7078.
    [91] Kim K L, Lee S J, Kim K. Surface-enhanced Raman scattering of benzyl phenyl sulfide in silver sol: excitation-wavelength-dependent surface-induced photoreaction. J. Phys. Chem. B., 2004, 108(26):9216-9220.
    [92] Rivas L, Sanchez-Cortes S, Garcia-Ramos J V, et al. Growth of silver colloidal particlesobtained by citrate reduction to increase the Raman enhancement factor. Langmuir, 2001, 17(3):574-577.
    [93] Hildebrandt P, Stockburger M. Surface enhanced resonance Raman spectroscopy of Rrhodamine 6G adsorbed on colloid silver. J. Phys. Chem., 1984, 88(24):5935-5941.
    [94] Chan S, Kwon S, Koo T W, et al. Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv. Mater., 2003, 15(19):1595-1598.
    [95] Golab J T, Sprague J R, Carron K T, et al. A surface enhanced hyper-raman scattering study of pyridine adsorbed onto silver: experiment and theory. J. Chem. Phys., 1988, 88(12):7942-7951.
    [96] Sockalingum G D, Beljebbar A, Morjani H, et al. Characterization of island films as surface-enhanced Raman spectroscopy substrates for detecting low antitumor drug concentrations at single cell level. Biospectroscopy, 1998, 4(5):S71-S78.
    [97] Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297(5586):1536-1540.
    [98] Drachev V P, Thoreson M D, Khaliullin E N, et al. Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures. J. Phys. Chem. B., 2004, 108(46):18046-18052.
    [99] Moore B D, Stevenson L, Watt A, et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat. Biotechnol., 2004, 22(9):1133-1138.
    [100] Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, 298(5601):2176-2179.
    [101] Sun J L, Wei J, Zhu J L, et al. Photoinduced currents in carbon nanotube/metal heterojunctions. Appl. Phys. Lett., 2006, 88:131107.
    [102] Sun J L, Xu J, Zhu J L, et al. Disordered multiwalled carbon nanotube mat for light spot position detecting. Appl. Phys. A, 2008, 91:229-233.
    [103] Rhoderick E H, Williams R H. Metal-semiconductor Contact. Clarendon, Oxford, 1988.
    [104] Cui Y, Leiber C M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science, 2001, 291: 851-853.
    [105] Smit G D J, Rogge S, Klapwijk T M. Scaling of nano-Schottky-diodes. Appl. Phys. Lett., 2002, 81(20):3852.
    [106] Park W I, Yi G C, Kim J Y, et al. Schottky nanocontacts on ZnO nanorod arrays. Appl. Phys. Lett., 2003, 82(24):4358.
    [107] Lien D H, Hsu W K, Zan H W, et al. Photocurrent Amplification at Carbon Nanotube–Metal Contacts. Adv. Mater., 2006, 18:98-103.
    [108] Léonard F, Talin A A. Size-Dependent Effects on Electrical Contacts to Nanotubes andNanowires. Phys. Rev. Lett., 2006, 97:026804.
    [109] Bj(?)rk M T, Knoch J, Schmid H, et al. Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett., 2008, 92(19):193504.
    [110] Ho J C, Yerushalmi R, Jacobson Z A, et al. Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Mater., 2008, 7:62-67.
    [111] Lew K K, Pan L, Bogart T E, et al. Structural and electrical properties of trimethylboron-doped silicon nanowires. Appl. Phys. Lett., 2004, 85(15):3101.
    [112] Li H Y, Wunnicke O, Borgstr?m M T, et al. Remote p-Doping of InAs Nanowires. Nano Lett., 2007, 7(5):1144-1148.
    [113] Hang Q, Wang F, Buhro W E, et al. Ambipolar conduction in transistors using solution grown InAs nanowires with Cd doping. Appl. Phys. Lett., 2007, 90:062108.
    [114] Chen X, Lee S J, Moskovits M. Modification of the electronic properties of GaN nanowires by Mn doping. Appl. Phys. Lett., 2007, 91(8):082109.
    [115] Yuan G D, Zhang W J, Jie J S, et al. Tunable n-Type Conductivity and Transport Properties of Ga-doped ZnO Nanowire Arrays. Adv. Mater., 2008, 20:168-173.
    [116] Xiao B, Wang P, Zhang X, et al. Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition. Nano Lett., 2007, 7(2):323-328.
    [117] Zhu J L, Song H F, Hu X. Transverse-field and defect-azimuth effects in achiral carbon nanotubes. J. Phys.: Condens. Matter., 2005, 17:4629-4636.
    [118] Zhang X W, Li S S, Xia J B. Semiconductor-metal transition in InSb nanowires and nanofilms under external electric field. Appl. Phys. Lett., 2006, 89(17):172113.
    [119] Kim S, Winograd N. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Suf. Sci., 1974, 43(2):625-643.
    [120] Mclntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem., 47(13):2208-2213.
    [121] Kim H T, Chae B G, Youn D H, et al. Raman study of electric-field-induced first-order metal-insulator transition in VO_2-based devices. Appl. Phys. Lett., 2005, 86:242101.
    [122] Kim H T, Chae B G, Youn D H, et al. Mechanism and observation of Mott transition in VO_2-based two- and three- terminal devices. New. J. Phys., 2004, 6:52.
    [123] Fors R, Khartsev S I, Grishin A M. Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Phys. Rev. B, 2005, 71:045305.
    [124] Sun Z G, Muzuguchi M, Manago T, et al. Magnetic-field-controllable avalanche breakdown and giant magnetoresistive effects in Gold/semi-insulating-GaAs Schottky diode. Appl. Phys. Lett., 2004, 85(23):5643.
    [125] Watanabe Y, Bednorz J G, Bietsch A, et al. Current-driven insulator–conductor transitionand nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett., 2001, 78:3738.
    [126] Chung S Y, Kim I D, Kang S J L. Strong nonlinear current-voltage behaviour in perovskite- derivative calcium copper titanate. Nature Mater., 2004, 3:774-778.
    [127] Luo J, Xing Y J, Yu D P, et al. Structure and Electrical Properties of Ni Nanowire/Multiwalled-Carbon Nanotube/Amorphous Carbon Nanotube Heterojunctions. Adv. Funct. Mater., 2006, 16(8):1081-1085.
    [128] Vanalme G M, Goubert L, Van Meirhaeghe R L, et al. A ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/III-V semiconductor Schottky barrier contacts by chemical pretreatments. Semicond. Sci. Technol. 1999, 14(9):871.
    [129] Zhao X C, Sun J L, Zhu J L. Field-induced semiconductor-metal transition in individual NiO-Ni Schottky nanojunction. Appl. Phys. Lett., 2008, 93(15):1521073.
    [130] Tyagi M S. Metal-Semiconductor Schottky Barrier Junctions and Their Applications ed B L Sharma. Plenum, New York, 1984, Chapter 1.
    [131] Arizumi T, Hirose M. Transport Properties of Metal-Silicon Schottky Barriers. Jpn. J. Appl. Phys., 1969, 8:749-754.
    [132] Lunkenheimer P, Loidl A, Ottermann C R, et al. Correlated barrier hopping in NiO films. Phys. Rev. B, 1991, 44:5927-5930.
    [133] Huang H M, Chen R S, Chen H Y, et al. Photoconductivity in single AlN nanowires by subband gap excitation. Appl. Phys. Lett., 2010, 96(6):062104.
    [134] Sreekumar R, Jayakrishnan R, Sudha Kartha C, et al. Anomalous photoconductivity in gamma In2Se3. J. Appl. Phys., 2006, 100(3):033707.
    [135] Wan Q, Wang T H, Lin C L. Third-order optical nonlinearity and negative photoconductivity of Ge nanocrystals in Al2O3 dielectric. Nanotechnol., 2003, 14:L15-L17.
    [136] Wei P C, Chattopadhyay S, Yang M D, et al. Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation. Phys. Rev. B, 2010, 81(4):045306.
    [137] Sadofyev Y G, Ramamoorthy A, Bird J P, et al. Large negative persistent photoconductivity in InAs/AlSb quantum wells. Appl. Phys. Lett., 2005, 86(19):192109.
    [138] Laio M, Koide Y, Alvarez J, et al. Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors. Phys. Rev. B, 2008, 78(4):045112.
    [139] Cava R J, Reidinger F, Wuensch B J. Single-crystal neutron diffraction study of the fast-ion conductorβ-Ag2S between 186 and 325°C. J. Solid State Chem., 1980, 31(1):69-80.
    [140] Cave R J, Mcwhan D B. Diffuse-X-Ray-Scattering Study of the Fast-Ion Conductorβ-Ag2S. Phys. Rev. Lett., 1980, 45(25):2046-2050.
    [141] Wang Z C, Gu T K, Kadohira T, et al. Migration of Ag in low-temperature Ag2S from firstprinciples. J. Chem. Phys., 2008, 128(1):014704.
    [142] Sun J L, Zhang W, Zhu J L, et al. Negative photoconductivity induced by surface plasmon polaritons in Ag nanowire macrobundles. Opt. Exp., 18(5):4066-4073.
    [143] Wang D, Hao C, Zhang W, et al. Ultralong Single-Crystalline Ag2S Nanowires: Promising Candidates for Photoswitches and Room-Temperature Oxygen Sensors. Adv. Mater., 2008, 20:2628-2632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700