用户名: 密码: 验证码:
金属材料高能喷丸表面纳米化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程上绝大多数零件的失效都是从表面开始的,因此开发新的表面强化技术对提高机械零件的使用寿命具有重要的意义。表面纳米化被认为是最具前景的表面技术之一。
     本文利用高能振动喷丸技术对低碳钢和工业纯钛进行了表面纳米化处理。通过光学显微镜、扫描电镜(SEM)、X-射线衍射仪(XRD)、透射电镜(TEM),显微硬度计和表面粗糙度仪等对样品进行观察测试,分析了喷丸强度与喷丸时间、喷丸距离、输入的频率、弹丸尺寸和数量等喷丸工艺参数之间的关系,以及样品的硬度、粗糙度的变化。
     实验结果表明,高能喷丸处理可在低碳钢和工业纯钛表面得到一定深度的纳米层和剧烈塑性变形层。喷丸时间越长,样品表面的形变层越深。表面硬度随喷丸时间的延长而提高,并且硬度由表面到心部逐渐降低。喷丸过程中,样品的表面粗糙度刚开始时增加很快,最后将在某一值附近波动。平板样品喷丸后的翘曲高度与表面变形层深度有较好的对应关系,可以用来衡量喷丸强度的大小。喷丸工艺参数对样品喷丸后的翘曲高度有很大的影响;随着喷丸距离的增加,喷丸相同时间后样品的翘曲高度也逐渐增加,达到最大值后开始下降;弹丸的装入数量也有类似的规律,即先随着装入量的提高不断提高,达到一定量后下降;采用较大的弹丸直径和较高的输入频率,喷丸后样品的翘曲高度也将提高。
     对表面变形层的微观分析表明,经纳米化处理后,低碳钢表层变形层深度随喷丸时间的延长而增加,但在喷丸开始阶段增加较快,然后趋于平缓。经2小时喷丸后深度可达80微米,表层纳米晶粒可以细化到20纳米左右。高能喷丸也可以使密排六方金属表面纳米化。工业纯钛经喷丸处理后,表面变形层深度可达200多微米,表层晶粒尺寸也可以细化到22纳米左右。
In industry,most of failures of machine parts begin from their surface,so it is important to explore new surface-strengthening technologies in order to improve their durability. Surface nanocrystallization has been regarded as one of the most prosperous surface technologies.
    The surface nanocrystallization of a low carbon steel and commercial pure titanium was realized by using high-energy shot peening technique. The relationships of the buckling height as a peening intensity measurement with the peening time,the peening height,the inputting frequency,the size and the number of balls,and the variation of hardness and roughness were analyzed by means of optical microscope,scanning electronic microscope(SEM),transmission electronic microscope(TEM),X-ray diffraction(XRD),microhardness testing machine and surface roughness testing machine .
    Experimental results showed that the layers of severe plastic deformation with nanocrystalline structures were gotten.on low carbon steel surface and on commercial pure titanium after the high-energy shot peening treatment. The longer the peening time,the thicker the deformation layers. The surface-hardness of the samples increased greatly after the treatment,and decreased gradually from the surface to the centre. During the peening,the surface-roughness was enhanced rapidly in the beginning,and finally it would wave around certain value. The depths of plastic deformation were well coincided with the buckling heights of the plane samples,and the buckling height was influenced greatly by the peening processing parameters. The buckling height increased little by little with the increment of the peening hight in some periods and then decreased.,that is,the buckling height increased with the peening height first,and then decreased after the peening height was over a critical value. The effect of the number of in
    putted balls on the buckling hight was similar to the influence of the peenig height,that is,it
    
    
    increased first and then decreased over a certain number. The buckling was high when the bigger balls in size and higher input frequency were employed.
    The microstructure analyses of surface deformation layers showed that the depth of plastic deformation increased with peening time,but the increase was fast in the starting stage and then slow during peening. After peening for 120 minutes,the depth was over 80 micron and grainsize was fined to about 20 nanometers from micron size. The metals with hep structure were nanocrystallizationed in surface layer by means of high-energy shot peening. The plastic deformation depth of commercial pure titanium would reach to over 200 micron and the grainsize would reach to 20 nanometers.
引文
[1] Gleiter H.,"Nanocrystalline Materials", Prog. Mater. Sci., 33 (1989) 223.
    [2] Gleiter H, Hansen N, Horsewell A, Leffers T and Liholt H. (eds.). "Deformation of Polycrystals: Mechanism and Microstructures", Riso National Laboratory, enmark, 1981,15.
    [3] 张立德,牟继美,纳米材料和纳米结构,第一版,北京:科学出版社,2001年.
    [4] 张志琨,崔作林,纳米技术和纳米材料,第一版,国防工业出版社,2000年:45.
    [5] Thomas G.J, Siegel R.W and Eastman J.A, Scripta Metall. Mater., 24(1990) 201.
    [6] Trudeau M.L, Neste A.Van and chultz R.S, Mater. Res. Soc. Symp. Proc., 206(1991) 487.
    [7] .Li D.X, Ping D.H, Ye H.Q, Qin X.Y and Wu X.J, "HREM study of the microstructure in nanocrystalline materials", Mater.Lett.,18(l),1993,29.
    [8] Eastman J.A, Fitzsimmons MR., Muller-StachM ,etal., "Characterization of nanocrystalline Pd by X-raydiffration and EXAFS", Nanostructud Mater.;l(l),1992,47.
    [9] Wunderlich W, Ishida, MaurerR, "HERM-studies of the microstructure of anocrystalline palladium", Scripta Metall. Et Mater.,24(2) , 1990,403.
    [10] Lupo JA, Sabochick MJ,, "Structure and elastic properties of nanophase silicon", Nanostructured Mater., 1(2) , 1992,131.
    [11] Zhang K, Alexandrov I.V, Vzliev R.Z and Lu K, "Structural characterization of nanocrystalline copper by means of X-ray diffraction", J.Appl.Phy,80(10) ,1996,5617.
    [12] Sui M.L and Lu K, "Variation in lattice parameters with grain size of a nanophase Ni3P compound", Mater.Sci.Eng. A,179-180,1993,541.
    [13] Skandan G, Rlahn H., Roddy M. and Cannon W, "Ultrafine-grained dense monoclinic and tetragonal Zirconia", J. Am. Ceram.Soc., 77(7) , 1994,1706.
    [14] Ganqvist C.G and Buhrman R.A, J. Appl. Phys., 47,1996,2200.
    [15] Fetch N.J, Iron J. and Steel Inst., 164,1953,25.
    [16] Song H.W, Guo S.R. and Hu.Z.Q., "A coherent polycrystal model for the inverse hali-petch relation in nanocrystalline materials", Nanostruc. Mater,2(2) , 1999,203.
    [17] 卢柯,卢磊,“金属纳米材料力学性能的研究进展”,金属学报, 36(2000) ,8,785.
    [18] Jang J.S.C. and Koch C.C, "The Hall-petch relationship in nanocrystalline iron produced by ball milling", Script.Metall.Mater,,24(8) ;1990;1599.
    
    
    [19] Lu K, Wei W.D, Wang J.T, "Microhardness and fracture properties of nanocrystalline Ni-P alloy", Script.Metall.Mater.,24(12) ;1990;2319.
    [20] Chokshi A.H, Rosen A, Karch J. and Gleiter H, "On the validity of the Hall-petch relationship in nanocrystalline materials", Scripta.Metall.Mater.,23(10) ,1989,1679.
    [21] Wang J.T, Hu Z.Q, Ding B.Z, "Structure and properties of Fe-based nanocrystalline alloys containing a small amout of transition elements", Mater.Sci.Eng.A169(l-2) ; 1993;L17.
    [22] . ohn R,.Haubold T, Birringer R., Gleiter H, "Nanocrystalline intermetallic compounds-an approach to ductility", Script.Mater,25(4) , 1991,811.
    [23] Karch J., Birringer R., Gleiter H., Nature,1987,330,556.
    [24] Koch C, Morris D.G, Lu K, Inoue A, "Ductility of nanostructure materials", MRS Bull, 24(2) , 1999, 54-59.
    [25] Schumacher S and Gleiter H, "Diffusion of silver in nanocrystalline copper between 303-373K", Acta.Metall.,37(9) , 1989,2485.
    [26] Wurschum R.,et.al, "Structure and diffusional properties of nanocrystalline Pd", Philo.Mag.B,76(1997) ,407.
    [27] Wurschum R and Shaefer H.E, "Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocomposite alloys", Phys.Rev.Lett.,79(l 1) ,1997,4918.
    [28] Arantes D.R, Huang X.Y, Marte C and Kircheim R, "Hydrogen diffusion and permeation in micro-and nanocrystalline nickel", Acta Metall. Mater., 41(11) ,1993,3215.
    [29] Marte C. and Kircheim R, ''Hydrogen diffusion in nanocrystalline Nickel indicating a structure-change within the grain-boundries after annealing", Scripta Mater.,37(8) , 1997, 1171.
    [30] Hellster, Fecht H,.Fu Z and Johnson W.L, J.Appl. Phys.,65( 1992) 929.
    [31] Tong H.Y, Wang J.T andDingB.Z. J.Non-cryst.Sol.,150(1992) 444.
    [32] Liu X.D, Wang J.T and Zhu J, "Composition of structure and properties of alloys in amorphous. Nanocrystalline and coarse-grained polycrystalline states", J.Mater.Sci., 29(4) , 1994,929.
    [33] Birringer R, Mater.Sci.Eng.A,117(1989) 33.
    [34] Lu K, Wang J.T and Wei W.D, "Thermal-expansion and specific-heat capacity of nanocrystalline Ni-P alloy", Scripta Metall.Mater., 25(3) , 1991,619.
    [35] ..Lu L, Sui M.L, Lu K, "Superplastic extensibility of nanocrystalline copper at room
    
    temerature", Science, 287; 2000; 1463.
    [36] Birringer R.,.Gleiter H, Klein H.P andMarquardt P, Phys.Lett. A, 102 (1984) 365.
    [37] Siegel R.W and Hahn H, in Current Trends in Physics of Materials, M. Yussouff (ed.), World Scientific Publ. Co., Singapore, 1987,403.
    [38] Nieman G.W, Weertman J.R, Siegel R.W, "Mechanical-behavior of nanocrystalline Cu and Pb", J.Mater.Res., 6(5) ,1991,1012.
    [39] Fougere G.E,.Weertman J.R, Siegel R.W, "On the hardening and softening of annocrystalline materials", Nanostr. Mater.,3(l), 1993,379.
    [40] SchaeferH.E., Wurschum R,.Birringer R., GleiterH., Phys.Rev.B, 38(1988) 9545.
    [41] Lackey W.J, Nucl.Tech., 49, (1980) 321.
    [42] Valiev.R.Z.,Korznikov A.V and.Mulyukov R.R, "Structure and properties of ultrafine-grained materials produced by severe plastic deformation", Mater.Sci.Eng.A,168(2) ,1993,141.
    [43] Gertsman V.Y, Birringer R,.Valiev R.Z and Gleiter H, "On the structure and strength of ultrafine-grained copper produced by severe plastic deformation", Scripta Metall. Mater.,30(2) ,1994, 229.
    [44] Shabashov V.A, Ovchinnikov V.V, Mulyukov R.R, Valiev R.Z and.Filippova N.P, "Deformation-induced nonequilibrium grain-boundary phase in submicrocrystalline iron", Nanostruct. Mater., 11(8) ,1999, 1017.
    [45] Gray III G.T, Lowe T.C, Cady C.M, Valiev R.Z and Alexandrov I.V, "Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu. Ni and Al-4Cu-0. 5Zr", Nanostruct.Mater.,9(1997) 477.
    [46] Valiev R.Z, Islamgaliev R.K and.Alexanderov I.V, "Bulk nanostructured materials from severe plastic deformation", Prog.Mater.Sci., 45(2000) ,103.
    [47] Valiev R.Z, aibyshev O.A.K, uznetsov R.I.K, Musalimov R.Sh, Tsenev N.K, DAN SSSR,301(1988) 864
    [48] Calka A, "Formation of titanium and zirconium nitrides by mechnical alloying", Appl. Phys.Lett.,1991,59(13) ,1568.
    [49] Fecht. H-J ,"Nanostructure formation by mechanical attrition", Nanostruc.Mater., 6(1) , 1999,33.
    [50] Shen T.D and Koch C.C, "Formation and hardness effects in nanocrystalline Ti-N alloys prepared by mechanical alloying", Nanostruc.Mater.,5(6) ,1995,615.
    [51] Schwarz R.B, Petrich R.R, Saw C.K, J.Non-Cryst.Solids, 76 (1985) 281.
    [52] Eckert J, Schultz L and Urban K, Appl.Phys.Lett.,55, 117 (1989) .
    
    
    [53] Shingu P.H, Huang B, Nishitani S.R and Nasu S, Suppl.Trans.JIM,29,3(1988) .
    [54] McDermott B.T.and Koch C.C, "Preparation of beta brass by mechanical alloying of elemental copper and zinc", Scripta.Metall.Mater.,20 (5) ,1986,669.
    [55] Coch. C.C, "Synthesis of nanostructured materials by mechanical milling: problems and opportunities", Nanostr.Mater.,9( 1) , 1995,13.
    [56] Coch C.C. "The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review",2( 1993) , 109.
    [57] Coch C.C, in Materials Science and Technology, R.W.Cahn,P.Haasen and E.J.K.ramer(eds), vol15,VCH Verlagsgesellschaft mbH, Weinheim and VCH Publisher Inc, New York, 1991,193
    [58] Nagarajan R and Chattopadhyay K, "Intermetallic TiO2/TiNi nanocomposite by rapid solidification", Acta.Metall.Mater., 42(3) , 1994,947.
    [59] Lu K, "Nanocrystalline metals crystsallized from amorphous solids: nanocrystallization, structure,and properties", Mater.Sci.Eng.R16,(1996) ,161.
    [60] Tong H.Y, Wang J.T and Ding B.Z, Jiang H.G and Lu K, "The structure and properties of nanocrystalline Fe78B13Si9 alloy", J.Non-Cryst.Sol.,150, (1992) 444.
    [61] Nicolaus M.M, Sinning H.R and haessner F,"Crystallization behaviour and generation of nanocrystalline state from amorphous Co33Zr67", Mater.Sci.Eng.A,150,( 1992) , 101.
    [62] Liu X.D, Wang J.T and Ding B.Z, "Preparation and properties of nanocrystslline (Fe0. 99Mo001) 78Si9B13 alloys", Scripta Metall.Mater., 28,(1993) ,59.
    [63] He Y.L and Liu X.N, Acta.Electronics (in Chinese), 4,(1982) ,70.
    [64] Zhang H.Y, Hu Z.Q and Lu K, "Transformation from the amorphous to the nanocrystalline state in pure selenium", Nano.Str.Mater.,5(l),1995,41.
    [65] Erb U, El-Sherik A.M, Palumbo G and Aust K.T, "Synthesis, structure and properties of electroplated nanocrystalline materials", Nanostruc.Mater.,2(3) ,1993,383.
    [66] Mehta S.C, Smith D,A, and Erb U, "Study of grain growth in electrodeposited nanocrystalline nickel-1. 2wt% phosphorous alloy.", Mater.Sci.Eng.A,204(l),1995,227.
    [67] Bakonyi I,et.al, "Thermal stability of nickel electrodeposites: differental scanning calorimetry transmission electron microscopy and magnetic studies", Mater.Sci.Eng.A, 179-180,May 1,1994,531.
    [68] Chang H, Altstetter C.J and Averback R,S, "Characteristics of nanophase TiAl produced by inert-gas condensation", J.Mater.Res,7( 11) , 1992,2962.
    
    
    [69] Li Y.L, Ph.D.Thesis,Institute of Metal Research, Academia Sinica, Shenyang, P.R.China, 1995.
    [70] 刘珍,纳米材料制备方法及其研究进展,材料科学与工艺,2000(3),103.
    [71] Lu K. and Lu J, "Surface nanocrystallization(SNC) of metallic materials-presentation of the concept behind a new approach",J. Mater. Sci. Technol., 15(3), 1999, P 193-197.
    [72] 刘刚,雍兴平,卢柯,“金属材料表面纳米化的研究现状”,中国表面工程,3,2001,1-5.
    [73] Sudarshan T.S, 范玉殿,表面改性技术工程师指南,第一版,清华大学出版社,1992, 390.
    [74] Lu K, Lu J, Chinese patent, (1999) No. 991226704
    [75] Hahn H., Mondal P, Padmanabhan K.A. "Plastic deformation of nanocrystall materials", Nanostruct. Mater., 9(4)1995,603-606.
    [76] 崔昆,钢铁材料及有色金属材料,第一版,北京:机械工业出版社,1983
    [77] Schutz R..W, "Surface Treatment for Expending Titanium Alloy Application Limits: An Overview," in Surface Performance of Titanium, (Proceeding of a Symposium on Surface Performance of Titanium, held at the 1996 Fall TMS Meeting) Eds. Gregory J. K. et al, USA: TMS, 1997,1.
    [78] Bloyee A, "Wear Protection of Titanium Alloys",同1, 155.
    [79] 钱苗根,姚寿山,张少宗,“现代表面技术”,第一版,北京:机械工业出版社,1999.
    [80] 王仁智,汝继来,“表面喷丸强化工艺的工程应用与强化机制”,金属热处理学报(增刊),第七届全国热处理大会专集,1999年,P92-98.
    [81] 勃拉图辛A.T.等著,“飞机钛合金结构制造技术”,李香波等译,北京:航空工艺研究所,1998,P247-281.
    [82] 王静宜等,“Ti合金喷丸强化研究进展”,西安工业学院学报,1999,19(4).
    [83] Tao N.R.,Sui M. L, Lu J. and Lu K., "Surface Nanocrystalline of iron induced by ultrasonic shot peening", Nanostructured Materials, 11(4), 1999, P433-440.
    [84] Liu G., Lu.J and Lu.K., "Surface Nanocrystalline of 316Lstainless steel induced by ultrasonic shot peening", Materials Science and Engineering,A286(2000),91.
    [85] Liu G., Wang S.C., Lou X.F, Lu.J and Lu.K., "Low carbon steel with nanostructured surface layer induced by high-energy shot peening, Scripta Mater, 44(2000), 1791.
    [86] 冯淦,石连捷,吕坚,卢柯,低碳钢超声喷丸表面纳米化的研究,金属学报,2000,36(3),300.
    [87] Klug H P,Alexander L E, "X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials",2nd Edition, 1974,662
    
    
    [88] 杨世春,汪鸣铮,张银喜,表面质量与光整技术,机械工业出版社,1999,12月,第一版,15-26.
    [89] 方博武,受控喷丸与残余应力理论,第一版,济南:山东科学技术出版社,1991.
    [90] 王仁智,汝继来,“表面喷丸强化工艺的工程应用与强化机制”,金属热处理学报(增刊)—第七次全国热处理大会专辑,P92-98.
    [91] 王仁智,汝继来,“表面喷丸强化工艺的工程应用与强化机制”,金属热处理学报(增刊)—第七次全国热处理大会专辑,P92-98.
    [92] 雍兴平,“低碳钢表面纳米化处理及组织结构特征”,中国科学院硕士学位文,2001,P46-48
    [93] 范雄,金属X射线学,第一版,北京:机械工业出版社,1988.5.
    [94] 陶乃熔,“超声喷丸表面纳米化微观结构及机理的研”,东北大学硕士学位论文,1999年,48-55.
    [95] 陈世朴,王永瑞,金属电子显微分析,第一版,机械工业出版社,1992年5月,69.
    [96] 徐滨士,朱绍华,表面工程的理论与技术,第一版,国防工业出版社,1999年7月,469.
    [97] 同85,P44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700