用户名: 密码: 验证码:
中低碳钢表面纳米化对低温气体渗氮行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶体材料晶粒细小,界面密度高,表现出独特的力学、物理和化学性能,但是目前很难制备理想的三维块体纳米晶;而材料的失稳(比如磨损,腐蚀,疲劳等)多发生在材料表面,若在材料的表面制备出一定厚度的表面纳米层,可利用纳米晶的优异特性来提高材料的表面的性能。金属表面自身纳米化处理可以在金属材料的表面获得纳米晶组织,且纳米结构层与基体之间没有明显的界面,在使用过程中不会因为外界条件的变化而发生剥层和分离,能够提高材料整体的服役行为。
     气体渗氮是工业生产中提高材料表面性能的常用技术之一。表面晶粒细化可有效地加速化学热处理过程,纳米材料拥有丰富的晶界、位错等缺陷,这些缺陷为原子扩散提供了快速扩散的通道,可大大降低渗氮的温度,缩短渗氮的时间,提高元素渗入的浓度和深度。
     本文采用超音速微粒轰击(SFPB)技术对40Cr和20Cr钢表面进行轰击处理,在材料表层获得纳米晶组织。利用X衍射、光学电镜、透射电镜、显微硬度测量仪和摩擦磨损试验机等测试技术对样品的微观结构和力学性能进行了测试分析,对表面纳米化的形成机理及其对性能的影响进行了初步的探讨。并对表面纳米化处理后的试样分别在300℃,350℃,400℃,450℃下进行了气体渗氮实验,利用金相法,硬度法和XRD法对渗氮后的试样进行了表征,讨论了实现低温气体渗氮的原理。主要研究结果如下:
     1)SFPB处理以后,40Cr钢和20Cr钢试样表面均已形成等轴,随机取向的纳米结构层,最表面晶粒尺寸达到10nm左右。40Cr钢SFPB表面纳米化最佳工艺为0.4MPa气压下,轰击时间为60s~480s;20Cr钢最佳工艺轰击气压0.2MPa,轰击480s~3600s,纳米层厚度为30μm左右;随着距表面距离的增加,晶粒尺寸增大,塑性变形量减小;
     2)SFPB处理后表面显微硬度明显增大,为原始试样的二倍以上;摩擦磨损性能也有所提高,表现为摩擦系数减小,磨损量减少;
     3)SFPB处理的试样,在300℃低温,渗氮时间9h即可实现快速渗氮,表面形成化合物主要以γ′相为主,并含有少量的ε相。明显降低气体渗氮的温度,并缩短了渗氮的周期,降低成本。
     4)渗氮温度降低,时间缩短的主要因素为SFPB表面纳米化处理,晶粒细化为氮原子的扩散提供了大量的通道;晶界上存在大量的非平衡缺陷,提供晶界储存能,相对降低氮化物形成的自由能;试样表面粗糙度增加,与氮原子的接触面积增多,也有利于渗氮的进行。
Nanocrystalline materials have attracted considerable interest because of their novel mechanical, physical and chemical properties originating from a large volume fraction of grain boundaries or interfaces with respect to the conventional coarse-grained polycrystalline materials. Most failures of materials occur on surface, including fatigue fracture, corrosion and wear etc., which are very sensitive to microstructure and properties of the surface. It is expected to achieve surface modification by the generation of a nanostructured surface layer, referring as surface nanocrystallization(SNC), and there is not obvious interface between the layer of nanostructures and the matrix, thus the nanostructures layer don't separate and appear break-crust because of the change of external condition, so that the properties and behavior of materials are significantly improved.
     Gas nitriding is widely used in industrial production to improve the surface properties of materials. The surface nanocrystalization can accelerate the process of chemical heat treatment. Nanocrystal materials have abundant interface and dislocation, these defects supply ideal entryway for the diffuseness of chemical elements, and can markedly lower the temperature and time of chemical treatment and enhance infiltration concentration and deepness.
     A nanostructured surface layer was fabricated on a 40Cr and 20Cr steel by using supersonic fine particles bombarding (SFPB) technique. The microstructure and mechanics property of the surface layer of sample was characterized by means of X-ray diffraction, transmission electron microscope ,optical microscope, microhardness testing machine and friction and wear testing machine. The development mechanism and mechanics property of the surface layer was essentially probed. The nanocrystalized samples are nitridized respectively at the temperature of 300℃, 350℃,400℃,450℃and characterized by multiform test methods, such as optical microscope, microhardness and XRD. Then we bring forward the principium of low temperature nitriding. Experimented evidence show that:
     1) After SFPB, equiaxed nanocrystallines with random crystallographic orientations were obtained in the surface layer of 20Cr and 40Cr steel, the average grain size of the nanocrystallines approximates to10nm. Under the pressure of 0.4MPa, the prime duration of 40Cr steel ranges from 60s to 480s; Under the pressure of 0.2MPa, the prime duration of 20Cr steel ranges from 480s to 3600s. The depth of the nanocrystal layer is about 30μm.With the increase of the distance from the top surface, the crystal dimension increases and the plastic deformation decreases.
     2) After SFPB, the surface microhardness is obviously increased, is about twice of the original sample before SDFPB; the abrasion-resistance of the surface layer is significantly enhanced compared with that of original sample, which can be primarily attributed to the grain refinement. The friction coefficient decreases and the weight of wear reduces.
     3) The result shows that the nitriding temperature of the nanocrystalized samples could be as low as 300℃, which was much lower than the traditional nitriding temperature. The critical nitrogen potential to formεphase from SFPB was obviously reduced with respect to that of the coarse-grained form. And the depth of the nitriding layer was increased obviously.
     4) The principium of the low temperature nitriding treatment is: the surface naocrystallization supplies plenty of entryway for the diffuseness of nitrogen elements; abundant interface and defects supply interface deposited energy for lowing the formation free energy of nitride; the coarseness of the sample is increased after SFPB, which increase the contact area for nitrogen atom. These three factors benefit for nitriding treatment.
引文
[1]严东生,冯端.材料新星[M].长沙:湖南科学技术出版社,1998:3-10.
    [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报,2002,22(5):71-75.
    [3]丁秉钧.纳米材料[M].北京:机械工业出版社,2004:1-3.
    [4]H.Gleiter.Nanostructure materials:basic concepts and microstructure[J].Acta Materialia,2000,48(1):5-9.
    [5]J.S.C.Jang and C.C.Koch.The hall-perch relationship in nanocrystalline iron produced by ball milling[J].Scripta Metallurgica et materialia,1990,24(8):1559-1604.
    [6]H.Chang,H.J.Hofer,C.J.Altsetter and R.S.Averback.Synthesis,processing and properties of nanophase TiAl[J].Scripta Metall.Mater,1991,25(5):1161-1166.
    [7]G.J.Thomas,R.W.Siegel and J.A.Eastman.Grain boundaries in nanophase palladium:High resolution electron microscopy and image simulation[J].Scripta Metall.mater,1990,24(1):201-205.
    [8]R.Schulz,M.L.Trudeau,D.Dussault,A.Van Neste and L.Dignard-Balley.Structural and magnetic properties of nanocrystalline Fe-Si-B alloys produced by mechanical crystallization[J].Materials Science and Engineering A,1994,179-180(1):516-520.
    [9]D.X.Li,D.H.Ping,H.Q.Ye,X.Y.Qin and X.J.Wu.Characterization of the microstructure in TiB-whisker reinforced Ti alloy matrix composite[J].Materials Letters,1993,16(6):322-326.
    [10]S.R.Phillport,J.Wang,D.Wolf,H.Gleiter.Computer simulation of the structure and dynamical properties of grain boundaries in a nanocrystalline model material[J].Materials Science and Engineering A,1995,204(1-2):76-82.
    [11]P.Keblinski,S.R.Phillpot,D.Wolf,H.Gleiter.Amorphous structure of grain boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics simulation[J].Acta Materialia,1997,45(3):987-998.
    [12]K.Lu,M.L.Sui.An explanation to the abnormal Hall-Petch relation in nanocrystalline materials[J].Scripta Metallurgica et Materialia,1993,28(12):1465-1470.
    [13]C.G.Granqvist,R.A.Buhrman.Size distributions for supported metal catalysts:Coalescence growth versus ostwald ripening[J].Journal of Catalysis,1976,42(3):477-479.
    [14]G.Skandan,H.Rlahn,M.Roddy,W.Cannon.The effect of applied stress on densification of nanostructured zirconia during sinter-forging[J].Materials Letters,1994,20(5-6):305-309.
    [15]J.A.Eastman,M.R.fitzsimmons,L.J.Thompson.Diffraction studies of the thermal properties of nanocrystalline Pd and Cr[J].Nanostructured Materials,1992,1(6):465-470.
    [16]谭谆礼.金属材料高能喷丸表面纳术化研究[D].硕士学位论文,大连铁道学院,2002.
    [17]M.L.Sui,K.Lu.Variation in lattice parameters with grain size ofa nanophase Ni3P compound[J].Materials Science and Engineering A,1994,179-180(1):541-544.
    [18]徐祖耀,相变原理[M].北京:科学出版社,1984:116.
    [19]K.Lu,The thermal instability of nanoerystalline Ni-P materials with different grain sizes[J].1993,2(6):643-652.
    [20]N.J.Peteh,The fracture of metals[J].Progress in Metal Physics,1954,5:1-10.
    [21]A.H.Chokshi,A.Rosen,J.Karch,H.Gleiter.On the validity of the hall-petch relationship in nanoerystalline materials[J].Scripta Metall.Mater,1989,23(10):1679-1683.
    [22]C.Cheung,G.Plambo,U.Erb.Synthesis of nanoerystalline permalloy by eleetrodeposition[J].Seripta Metall.Mater,1994,31(6):735-740.
    [23]杨磊.高能喷丸表面纳米化后表面粗糙度和损伤的研究[D].大连:大连交通大学,优秀硕士论文,2003:9.
    [24]D.R,Arantes,X.Y.Huang,C.Marte,R.Kircheim.Hydrogen diffusion and permeation in microand nanoerystalline nickel[J].Acta Metallic Mater,1993,41(11):3215-3222.
    [25]徐滨士.纳术表面工程[M].北京:化学工业出版社,2004:15-17.
    [26]徐滨士.表面工程的应用与展望[M].北京:高等教育出版社,2000:6-7.
    [27]徐滨士,马世宁,梁秀兵等.表面工程的进展[J].金属热处理,2002,27(7):1-3.
    [28]孙冬柏.表面纳米技术与工程[J].纳米科技与产业,2001,4(8):10-12.
    [29]师昌绪,徐滨士,张平等.21世纪表面工程的发展趋势[J].中国表面工程,2001,7(1):2-7.
    [30]徐滨士,欧忠文,马世宁等.纳米表面工程[J].中国机械工程,2000,11(6):707-708.
    [31]欧忠文,徐滨士,马世宁等.基于纳米材料的表函工程应用研究进展[J].中国表面工程,2000,5(2):5-9.
    [32]NR Tao,ZB Wang,W P Tong et al.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J].Acta Materialia,2002,50(10):4603-4016.
    [33]Tao N R,Sui ML,Lu Jetal.Surface Nanocrystallization of Iron Induced by Ultrasonic shot Peening[J].Nanostructural Materials,1999,11(4):433-440.
    [34]Y.H.Zhao,H.W.Sheng,K Lu.Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition[J].Acta Materialia,2001,49(9):365-375.
    [35]雍兴平,刘刚,吕坚等.低碳钢表面纳米化处理及结构特征[J].金属学报,2002,38(2):157-160.
    [36]G Liu,S C Wang,X F Lou,etal.Low carbon steel with nanostructured surface layer induced by high energy shop peening[J].Scripta Mater.,2001,44(6):1791-1795.
    [37]冯淦,石连捷,吕坚等.低碳钢超声喷丸表面纳米化的研究[J].金属学报,2000,36(3):300-303.
    [38]王镇波,雍兴平,陶乃熔等.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报,2001,37(12):1251-1255.
    [39]Z.B.Wang,N.R.Tao,S.Li etal.Effect of surface nanocrystallization on friction andwear properties in low carbon steel[J].Materials Science and Engineering,2003,A352:144-149.
    [40]Liu G,Lu J,Lu K.Surface Nanocrystallizatin of 316L StainlessSteel Induced by Ultrosonic Shot Peening[J].Materials Science and Engineering,2000,A286:91-99.
    [41]张洪旺,刘刚,黑祖昆等,表面机械研磨诱导AISI304不锈钢表层纳米化Ⅰ组织与性能[J].金属学报,2003,39(4):342-346.
    [42]张洪旺,刘刚,黑祖昆等.表面机械研磨诱导AISI304不锈钢表层纳米化Ⅱ晶粒细化机理[J].金属学报,2003,39(4):347-350.
    [43]温爱玲,陈春焕,郑德有等.高能喷丸表面纳米化对工业纯钦组织性能的影响[J].表面技术,2003,32(3):16-18.
    [44]K.Y.Zhu,K.Lu,J.Lu.Nanostructure formation mechanism of a-titanium using SMAT[J].Acta Matcrialia,2004,52(3):4101-4110.
    [45]X Wu,N R Tao,Y Hong,etal.Microstructure and evolution of mechanically induced ultraline grain in surface layer of AL-alloy subjected to USSP[J].Acta Materialia,2002,50(5):2075-2084.
    [46]胡兰青,李茂林,王科等.铝合金表面纳米化处理及显微结构特征[J].中国有色金属学报,2004,14(12):2016-2020.
    [47]徐滨士,欧忠文,马世宁.纳米表面工程基本问题及其新进展[J].中国表面工程,2001,(3):6-2.
    [48]欧忠文,陈国需,刘朝辉等.纳米表面工程的基本问题研究[J].表面技术,2004,33(5):1-5.
    [49]Lu K,Lu J.Surface Nanocrystallization(SNC)of Metallic Materials Presentation of the Concept behind a New Approach,Materials Science and Engineering[J].1999,15(3):193-197.
    [50]K Lu,J.Lu.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering,2004,A375:38-45.
    [51]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,(3):1-5.
    [52]卑多慧,吕坚,顾剑锋等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002,23(1):19-24.
    [53]WP Tong,NR Tao,ZB Wang,et al.The formation of ε-Fe_(3-2)N phase in a nanocrystalline Fe[J].Scripta Mater,2004,50(5):647-650.
    [54]J.F.Gu,D.H.Bei,K.Lu,etal.Improved nitrogen transport in surface nanocrystallized low-carbon steels during gaseous nitridation[J].Materials letters,2002,55(5):340-343.
    [55]WP Tong,HW Zhang,K Lu.Low-temperature nitriding by means of SMAT[J].Transactions of Materials and Heat treatment,2004,5(25):302-306.
    [56]夏立芳,高彩桥等.钢的渗氮[M].北京:机械工业出版社,1989,60-110.
    [57]O'Brian J M,Goodman D.Nitriding of Ion[J].Heat Treatment,1991,4:420.
    [58]河田一喜.氮基软氮化法[J].金属热处理,1999,5:19-20.
    [59]新井国夫.渗氮氧化热处理新技术[J].油机设计制造,1994,1:59-69.
    [60]熊剑.国外热处理新技术[M],北京:冶金工业出版社,1990,415-491.
    [61]杨仁山,胡廷法.预氧化催渗气体渗氮的研究[J].热加工工艺,1996,(4):12-16.
    [62]刘志文.超音速微粒轰击316L不锈钢表面纳米化的研究[D].辽宁:辽宁工程技术大学,2002:18-19.
    [63]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003:244.
    [64]李茂林.铝合金表面纳米化微观结构及晶粒细化机制研究[D].太原:太原理工大学,2006:29-42.
    [65]熊天英,李铁藩,吴杰等.超音速微粒轰击技术[P].中国发明专利:01128225.8,2001-9-29.
    [66]T.Ungar,J.I.Langford,R.J.Cemik,G.Voros,R.Pflaumer,G.Oszlanyi,I.Kovacs.Microbeam X-ray diffraction studies of structural properties of polycrystalline metals by means of synchrotron radiation[J].Materials Science and Engineering A,1998,247(1-2):81-87.
    [67]L.H.Qian,S.C.Wang,Y.H.Zhao,etal.Micriostrain effect on thermal properties of nanocrystallinc Cu[J].Acta Matcrialia,2002,50(13):3425-3434.
    [68]胡兰青.金属纳米晶化及机理研究[D].太原:太原理工大学,2005:35-43.
    [69]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:65-71.
    [70]张淑兰,陈怀宁,林泉洪等.工业纯钦的表面纳米化及其机制[J].有色金属,2003,55(4):157-160.
    [71]张亨金.Q235低碳钢表面纳米化及离子注入的研究[J].太原:太原理工大学,2003:42-43.
    [72]赵茂程,潘一凡,陆荣鉴.气体渗氮中的氮势控制[J].热加工工艺,2005,(5):31-32.
    [73]王振波,雍兴平,陶乃熔等.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报,2001,37(12):1251-1255.
    [74]N.Tsuji,Y.Saito,S.H.Lee,Y.Minamino.ARB and other new techniques to produce bulk ultrafme grained materials[J].Adv.Eng.mater.,2003,5:338-344.
    [75]胡明娟,潘健生.钢铁化学热处理原理[M].上海:上海交通大学出版社.1996:65-83.
    [76]赖福贵.材料、装炉量和氨气分解率对气体渗氮效果的影响[J].金属热处,1999,(1),43-44.
    [77]上海市机械制造工艺研究所.金相分析技术[M].上海:上海科学技术文献出版社,1987:55-62.
    [78]韩志良.钢铁零件渗氮层硬度测定[J].金属热处理,2005,30(7):31-32.
    [79]郑有才,刘玉娥.氮化物相与渗氮[J].材料科学与工艺,1995,3(2):82-85.
    [80][俄]Jlaxn TNH M等著.郭铮匀译.钢的氮化[M].北京:国防工业出版社,1979:10.
    [81]佟卫平,陶乃镕等.纳米结构纯铁的气体渗氮[J].热处理,2007,22(2):11-14.
    [82]周潘兵,周浪等.预喷丸对H13钢气体渗氮行为的影响[J].金属热处理,2006,31(2):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700