用户名: 密码: 验证码:
自生Al_2O_3增强钼基复合材料的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼是一种具有高沸点、高熔点的难熔金属,其高温硬度、高温强度好,抗热震性、抗腐蚀性优良,还具有易于机械加工和压力加工的优点,这些优良特性使得钼及其合金被广泛应用于航空航天、电子、化工等的关键领域;然而,钼及其合金在高温下易氧化,再结晶后容易脆断且再结晶温度低,低温下变脆,而且塑-脆转变温度高,这些缺点限制了钼及其合金的加工性能与应用范围。本课题着眼于钼合金高温耐磨材料的开发,主要通过添加第二相Al_2O_3陶瓷硬质颗粒,以期达到提高材料的摩擦磨损性能的要求。以溶胶凝胶(sol-gel)法制备出氧化钼和氧化铝的混合粉体后,通过氢还原获得掺杂Al_2O_3的钼粉,结合粉末冶金的加工工艺方法制备Al_2O_3颗粒增强钼基复合材料,继而对其组织结构和磨损性能进行了测试。所用工艺过程和试验结果对钼合金的应用开发具有指导作用。
     研究表明:
     1.在用sol-gel法和氢还原制备Al_2O_3/Mo超微细混合粉体过程中,控制初始溶液pH<2,柠檬酸添加量为钼酸铵质量的1.5倍时效果最佳,胶体有机物在加热至550℃时完全分解,铝以Al_2O_3的形式存在于混合粉体中。氧化铝颗粒能够起到细化各阶段基体颗粒的作用,并且随着Al_2O_3体积分数的增加,细化作用增强。
     2.烧结坯体组织由钼和Al_2O_3两相组成,还产生了少量的Al_3Mo和Al_5Mo等新相,Al_2O_3的添加,细化了钼晶粒。随着Al_2O_3掺杂量的增加,钼基体的显微硬度逐渐增加;坯体的烧结收缩量先增加后降低,所得复合材料的密度先增加后降低,实测密度在掺杂量为7%~9%之间出现极值,且与理论密度的变化曲线之间存在交点。
     3.当Al_2O_3含量为3%时,随着磨粒粒度的减小,Al_2O_3/Mo复合材料的比磨损率逐渐增加,在较高Al_2O_3含量(5%、10%、15%)时,比磨损率随磨料粒径的增大而呈现先增加后减少的趋势。Al_2O_3/Mo复合材料的磨损量随载荷增加和摩擦行程的增加而增加;主要磨损机理是因磨料滚压作用而产生的沟槽和犁沟;随着载荷的增加,犁沟的深度、宽度均增加;随着掺杂Al_2O_3体积分数的增加,磨损过程中产生的沟槽和犁沟的数量和深度都有一定程度的减小。
     4.在400℃氩气气氛条件下与Cr26钢盘干滑动摩擦时,Al_2O_3/Mo复合材料的磨损量随Al_2O_3含量的增加而降低,摩擦系数随Al_2O_3含量的增加而升高。摩擦面上出现粘着磨损鳞片状磨损形貌。
Molybdenum is a refractory metal with high boiling point, melting point, high hardness, high temperature strength, good thermal shock resistance and excellent corrosion resistance. Molybdenum also be easy mechanical processing and pressure processing. All of the fine properties above make molybdenum and its alloys to be used widely in aerospace, electronics, chemicals and other key areas. However, molybdenum is easy to be oxidized at high temperature, it has low recrystallization temperature, low temperature brittleness, easy to brittle fracture after recrystallization. The plastic-brittle transition temperature of molybdenum and its alloys is high. All of the shortcomings above limit the processing of molybdenum and the range of its application.
     This issue focuses on the development of molybdenum alloy as a high temperature and wear resistant material, mainly by adding the second phase Al_2O_3 ceramics particles to improve the friction and wear performances. Ultrafine powders of Al_2O_3/Mo mixture prepared successfully by sol-gel, and the Al_2O_3/Mo composite materials were prepared by powder metallurgy processing technology. At the same time, its microstructure and wear properties are investigated. The facts as following are important guides for the application and development of molybdenum alloys.
     1. In the sol-gel, the better quality of the powders were abtained under the conditions of pH<2 and about 1.5 of quality ratio of citric acid to ammonium molybdate. Colloidal organic matter eventually completely decompounded under the temperature of 550℃, and Al_2O_3 remained in mixed powder. Mo particles is about hundreds of nanometers, and Al_2O_3 particles several tens of nanometers or so. Al_2O_3 particles play the role of refining the basic particles in all stages of the process. The refining effect is enhanced with the increase of Al_2O_3 volume.
     2. The sintered tissues is composed of Mo, Al_2O_3, Al_3Mo and Al_5Mo. Adding Al_2O_3 is helpful of grain refinement of the molybdenum. With increasing of Al_2O_3, the micro-hardness of Mo-base increased gradually and the sintering shrinkage and density of composite first increased and then decreased. There was an intersection of the measured density and theoretical density and the extreme appeared at the range of 7% to 9% of the Al_2O_3.
     3. When the Al_2O_3 content is 3%, the specific wear rate of composites increased gradually with the particle size of abrasive decreasing. However, at higher Al_2O_3 content (5%, 10%, 15%), the specific wear rate increased firstly and then decreased with abrasive grain diameter increasing. The wear volume increased with the increasing of load and travel. The abrasion mechanism is mainly the failure mode of grooves and furrows caused by rolling and cutting effects of abrasive. With the load increasing, the depth and width of furrow was increased. With increasing of volume fraction of Al_2O_3, the quantity and depth of groove and furrow produced in wear process have a certain degree of reduction.
     4. Under argon atmosphere at 400℃, the wear of the composite material dry sliding to Cr26 steel decreased with the increasing of Al_2O_3, the friction coefficient increasing. Adhesive and scaly wear morphology appeared.
引文
[1]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社, 2005, 26-28.
    [2]杨宇锋.钼和钼合金深加工技术进展[J].中国钼业, 2001, 25(4): 34-37.
    [3]罗振中,杨晓青,廖利波.国内钼冶炼及加工技术最新进展[J].中国钼业, 2008, 32(1): 14-18.
    [4]谭望,陈畅,汪明朴,等.不同因素对钼及其钼合金塑脆性能影响的研究[J].材料导报, 2007, 21(8): 80-87.
    [5]周武平.钼及钼合金制品的应用[J].中国金属通报, 2008, 42: 34-37.
    [6] Nawa M, Sekino T, Niihara K. Fabrication and mechanical behaviour of Al_2O_3/Mo nano-composites[J]. Journal of Materials Science, 1994, 29(12): 3185-3192.
    [7]常春,余大江,刘少斌,等. Mo/Al_2O_3材料的微观结构和抗腐蚀性[J].硅酸盐学报, 2008, 36(8): 1124-1128.
    [8]易意. 2006年中国钼工业发展状况综述[J].中国金属通报, 2007, 7: 12-14.
    [9]李大成,杨刘晓,孙院军,等.钼金属深加工产品现状及技术应用分析[J].中国钼业, 2008, 32(1): 8-13.
    [10] Leichtfried G, Joachim H S, Martin H. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys[J]. Metal Mater. Trans. 2006, A37: 2955-2961.
    [11]黄强,李青,宋尽霞,等. TZM合金的研究进展[J].材料导报, 2009, 23(11): 38-42.
    [12]范景莲,成会朝,卢明园,等.微量合金元素Ti、Zr对钼合金性能和显微组织的影响[J].稀有金属材料与工程, 2008, 37(8): 1471-1474.
    [13]陈功明,高家诚,王勇,等. Si-Al-K掺杂钼丝研究综述[J].材料导报, 2005, 19(1): 47-49.
    [14]陈强,李大成,泊春阳.掺杂Si-Al-K对钼粉及烧结制品组织/性能的影响[J].稀有金属, 2007, 31(3): 300-305.
    [15]王德志,刘新宇,周美玲. Mo-La2O3烧结坯间隙杂质的研究[J].稀有金属材料与工程, 2000, 29(14): 266-268.
    [16]张久兴,刘燕琴,刘丹敏,等.微量La2O3对钼的韧化作用[J].中国有色金属学报, 2004, 14(1): 14-17.
    [17]刘拼拼,范景莲,成会朝,等.稀土La对钼合金组织和性能的影响[J].粉末冶金技术, 2009, 27(3): 185-188.
    [18]任引哲,王建英.纳米级MoO3微粉的制备与性质[J].化学通报, 2000, (1): 47-49.
    [19] Zhan Y W, Yang Y. Sol-Gel fabrication and electrical property of nanocrystalline(RE2O3)0.08(ZrO2)0.92(RE=Sc, Y) thin films [J]. Chemistry Mater, 2001, 13: 372-378.
    [20] Bokhimi M A. Crystalline structure of MgO prepared by the sol-gel technique with different hydrolys is catalysts [J]. Journal of Solid Chemistry, 1995, 115: 411-415.
    [21]吴湘伟,段学臣.溶胶凝胶法制备PZT纳米晶反应机理[J].中国有色金属学报, 2003, 13(1) : 127-131.
    [22]林永禄.冰冻氢氧化铝凝胶法制取氧化铝超细颗粒[J].硅酸盐通报, 1987(3): 1-3.
    [23] Yang N, Wang J H, Guo Y Z, Zhou X L.SnO2 nanofibers prepared by sol-gel template method [J]. Rare metal materials and engineering, 2008, 37(4): 694-696.
    [24]雅箐.溶胶-凝胶法制备MoO3陶瓷薄膜[J].材料研究学报. 1996, 10(2): 195-198.
    [25]余家国,赵建修,赵青南. TiO2纳米薄膜的溶胶-凝胶工艺制备和表征[J].物理化学学报, 2000, 16(9): 792-797.
    [26]刘全坤.材料成形基本原理[M].北京:机械工业出版社, 2004, 256-263.
    [27]周美玲,谢建新,朱宝泉.材料工程基础[M].北京:北京工业大学出版社, 2004, 393-395.
    [28]林璜,许坤,丛修杰.粉料预处理对干压成型致密度的影响[J].中国粉体技术, 2004, (3): 24-26.
    [29]曾青,熊惟皓.等静压技术在粉末冶金材料生产中的应用[J].材料导报, 1995, 5: 20-24.
    [30]张义文.热等压技术新进展[J].粉末冶金工业, 2009, 19(4): 32-39.
    [31]刘军,佘正国.粉末冶金与陶瓷成型技术[M].北京:化学工业出版社, 2005, 61-69.
    [32]周继承,黄伯云,吴恩熙,等.粉末挤压成型进展[J].材料导报, 1997, 11(6): 13-15.
    [33]李绍纯,戴长虹.陶瓷凝胶注模成型工艺研究与发展[J].材料导报, 2005, 19(3): 44-46.
    [34]高志国,杨涤心,魏世忠,等.金属粉末爆炸压制工艺[J].粉末冶金工业, 2005, 15(6): 46-50.
    [35]曲在纲,黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社, 2005, 10-15.
    [36] Nam P S. An overview of the delaminati on theory of wear [J].Wear, 1977, 44: 1-16.
    [37]克拉盖尔斯基ИВ等著,汪一麟等译.摩擦磨损计算原理[M].北京:机械工业出版社, 1982, 35-38.
    [38]陈卓君,杨文通.磨损理论的研究和控制磨损的发展趋势[J].机械设计与制造, 1999, 1: 58-59.
    [39]温诗铸.材料磨损研究的进展与思考[J].摩擦学学报, 2008, 28(1): 1-5.
    [40] Byrne C, Wang Z Y. Influence of thermal properties on friction performance of carbon composites[J]. Carbon, 2001, 39:1789-1791.
    [41]张军,徐春园,张思成.金属材料摩擦磨损行为的影响因素[J].甘肃科技, 2008, 24(4): 49-50.
    [42]董磊,李卫京,杨爱国,等.减震材料的摩擦磨损特性及其影响因素[J].北京交通大学学报, 2009, 33(4): 60-64.
    [43]游兴河. WC在WC/钢基复合材料中的溶解行为[J].复合材料学报, 1994, (3): 29-35.
    [44]王亚珍,黄平,龚中良.温度对微界面摩擦影响的研究[J].物理学报, 2010, 59(8): 5635-5640.
    [45]韩德伟,张建新.金相试样制备与显示技术[M].长沙:中南大学出版社, 2005, 258-259.
    [46] Zhan Y W, Yang Y. sol-gel fabrication and electrical property of nanocrystalline (RE2O3)0.08(ZrO2)0.92(RE=Sc,Y)thin films[J]. Chem Mater, 2001, 13: 372-378.
    [47] Bokhimi M A. Crystalline structure of MgO prepared by the sol-gel technique with different hydrolys is catalysts[J]. Journal of Solid Chemistry, 1995, 115: 411-415.
    [48]吴湘伟,段学臣.溶胶凝胶法制备PZT米晶反应机理[J].中国有色金属学报, 2003, 13(1) : 127-131.
    [49]李会峰,李明丰,褚阳,等.钼和钨在氧化铝表面的分散特性[J].催化学报, 2009, 30(2): 165-170.
    [50]王思清,倪德忠,张楠.高温钼坯生产工艺研究[J].稀有金属材料与工程, 1998, 27(4): 233-235.
    [51]李荣久.陶瓷金属复合材料[M].北京:冶金工业出版社, 2004, 206-210.
    [52]材料耐磨抗蚀及其表面技术丛书委员会.材料的磨粒磨损[M].北京:机械工业出版社, 1990, 31-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700