用户名: 密码: 验证码:
纯钼粉末材料等径角挤压成形致密及模拟优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大塑性变形法(SPD)是制备块体超细晶材料的一种新型塑性加工技术,而等径角挤压(ECAP)被公认为是一种发展最为迅速、极具工程应用前景的大塑性变形法。粉末冶金材料的塑性成形致密一直是材料领域研究的难点。目前,等径角挤压(ECAP)应用于粉末冶金材料的相关研究尚处于起步阶段,特别是高熔点、低塑性、难变形的粉末材料的ECAP应用还鲜见相关报道。粉末材料的塑性成形能力差、变形机理及致密机制尤为复杂,从而限制了ECAP在该领域内的研究与应用。鉴此,本文采用理论基础研究、塑性力学解析、数值模拟分析、实验研究等相结合的方法,全面深入地研究纯钼粉末材料在ECAP过程中的变形机理、致密行为,从而为ECAP工艺在该领域的研究与应用,提供必要的理论依据及借鉴。
     针对钼及其粉末材料的特点,研究了不同因素对纯钼粉末烧结体材料塑性压缩变形行为的影响规律。其塑性流变应力随应变速率的增加而增加,随成形温度的升高而减小;高温条件下材料软化现象占据主导优势,其流变应力较低;初始相对密度增大,材料流变应力随之逐渐增加,材料屈服强度越高,但出现破裂时间亦越早。材料硬度增加速率对温度变化不敏感,但提高温度则有利于降低其屈服强度;压缩变形时,烧结体内孔隙和颗粒形变发生双重影响,使得材料逐渐致密,但单轴压缩并不能使材料完全致密。
     基于粉末材料的“可压缩连续体”假设及对现有各种屈服条件式的比较分析,建构了可压缩系数g表达的纯钼粉末体刚塑性本构关系,给出了各参数间的量化关系式。合理分析了该本构关系式的应用范围,为进行粉末体材料的塑性成形研究、成形工艺的控制、模拟建模分析等提供一定借鉴作用,同时丰富和拓展了粉末冶金材料广义塑性理论。
     全面研究了等径角挤压(ECAP)的塑性成形力学问题。运用滑移线法、几何推导法以及上限法,解析了ECAP的成形工艺,对应力-应变场、速度场、挤压力等进行了定量分析;考虑了摩擦的影响,在三维状态下对ECAP挤压力进行了全面解析。同时,针对“背压”对ECAP工艺的影响,运用滑移线法求解了带背压的ECAP挤压力,对等径角挤压的背压问题的理论研究进行了有益尝试。
     建立了用于纯钼粉末体材料塑性成形的热力耦合有限元模型。基于该模型,对不同模具结构、不同初始条件下的纯钼粉末烧结体材料成形致密进行模拟研究,获得ECAP过程中挤压力、应力-应变、相对密度、温度等场量分布规律。模拟结果表明,模具内、外角对材料的剪切变形作用是成形致密的主要动因。尽管一道次挤压变形分布呈现不均匀性,但ECAP工艺对于纯钼粉末体材料具有良好的致密效果。
     系统地分析了不同工艺参数对纯钼粉末体材料ECAP成形致密的影响程度。适当增大摩擦可以提高变形均匀性和致密化程度;较高的成形温度可降低材料的硬化性能,降低成形压力,提高变形均匀性和致密效果,但对组织细化不利。初始相对密度较小的试样,ECAP时易于导致孔隙被压制、致密。挤压速度大,其对坯料产生挤压效应明显,使得粉末体颗粒间压挤、形变速率加大,致密效果较好,但挤压速度与挤压力几乎成正比。建议选择相对较小的初始相对密度、挤压速度、适中的摩擦因子,以保护工装模具、延长设备使用寿命。
     进行了纯钼粉末烧结体材料不同挤压路径的多道次模拟研究。结果表明,路径Bc经过4道次挤压后,试件四个面均受到剪切,内部变形分布均匀,是获得变形效果和致密均匀性的最佳挤压路径。C路径ECAP时,从Y向看变形分布趋于对称和均匀。经过偶数(2n)道次挤压后,路径C的形变均匀程度要明显的优于路径A;路径A的整体致密化程度要高于路径BA。
     阐述了几种常用的背压方式及其作用,进行了两类背压设计的ECAP工艺的模拟研究。施加背压的大小,总体上与试样成形致密成正比。背压过大,会在小的外角模具产生“死区”,所需挤压力亦越大。第一类背压设计更符合ECAP成形特征,有利于整体变形致密、均匀,应优先选择。
     设计了用于纯钼粉末材料等温ECAP的实验模具及加热设备,进行了粉末烧结体-包套、粉末-包套及带背压粉末烧结体-包套等三种条件下ECAP挤压实验,并与有限元模拟结果进行对比分析。1道次粉末烧结体-包套ECAP后,试样内部的变形及密度分布不均匀,除靠近底部区域材料,其余部分的变形及孔隙焊合效果较好,且试样整体平均相对密度较高,说明ECAP具有强烈的致密效果。ECAP后,主要变形区内试样显微硬度大幅提高,且不同挤压路径、挤压温度、初始相对密度等对试样所获的硬度具有不同程度的影响。多道次ECAP显微组织的扫描电镜结果亦表明,ECAP对粉末烧结体材料具有极强的焊合作用和细化效果。经过1道次挤压后,试样主要变形区孔隙大部已经闭合,经2道次挤压后,试样接近理论压实密度,同时晶粒被明显细化。
     1道次ECAP对纯钼粉末-包套的致密化影响较小,主要发生颗粒重排、弹塑性变形等行为;经过2道次以上的ECAP后,试样致密化程度明显提高且主变形区域近全致密。运用自制简易背压器,进行了1道次带背压ECAP实验研究。背压能增加静水压力,使材料产生较大剪切变形,促进颗粒破碎、熔融、焊合,从而提高粉末材料的成形致密效果。当使用常规直角模具进行纯钼粉末烧结体材料的ECAP时,背压合理选择范围是20-35Mpa。
     最后,创新性运用模糊数学的层次分析法及灰色系统理论,进行了纯钼粉末烧结体材料的ECAP工艺多目标优化设计。仿真与实验结果证明:当模具内角不变,合理选择模具外角、成形温度、初始相对密度、成形速度和摩擦因子,能使纯钼粉末体材料的ECAP塑性变形效果好、最大损伤值降低、静水压力剧增,材料显著致密且均匀。
Severe plastic deformation(SPD) is a new research techniques of preparation for bulk ultrafine-grained(UFG) materials,and as a typical method of SPD, equal channel angular pressing (ECAP) has become a hot research topics related fields in material science and engineering for most rapid development and the very prospect of industrial application.Plastic forming and densification of powder metallurgy materials has been the difficulty of materials research in the field.Currently, the related study on powder material is just beginning, and there has poor plastic workability and complication of the deformation and densification mechanism for powder materials, especially there have no related reports about ECAP application with respect to the high melting point, low plasticity and hard deformed powder materials. Therefore, the deformation mechanism and the densification behavior of pure Mo powder materials in the ECAP process are a comprehensive and in-depth studied based on the method of combining basic theoretical research, the finite element numerical simulation with experimental study in this paper. All of these will provide the essential theoretical foundation for ECAP process research and application in the field.
     Contrary to characteristics of Mo and its powder materials, the influence of different factors on pure Mo powder sintered materials and its plastic compression deformation behavior have been studied. The flow stress increases with increasing strain rate and decreases with increasing temperature.The yield strength of material is the higher and more prone to rupture compared with the higher initial relative density,and increasing rate of hardness is not sensitive to the change of temperature, while the increase in temperature is beneficial to the reduction of yield strength. There is double impact of the pore and particle deformation and makes the material gradually dense but does not make fully dense for pure Mo powder sintered materials based on uniaxial compression.
     Based on "compressible continuum" assumptions of the powder material and analysis for various existing yield, the plastic constitutive equations adapted to pure Mo powder sintered materials are researched. Rigid-plastic constitutive equation of compressibility coefficient g is deduced and the quantitative relationship between the various parameters are given. The constitutive equations and their applications are reasonable analyzed,too. All of these will give available reference for the plastic forming process control and simulation analysis and enrich and expand the powder metallurgy generalized plasticity theory.
     On the basis of the comprehensive analysis of the slip line method, geometric derivation method and upper bound method to solve the plastic mechanics,the ECAP forming process is analytical resolved and the stress-strain field, velocity field, the extrusion pressure are quantitative analyzed.Considering three dimensions and the friction during the ECAP processing and using the upper limit of the theory, ECAP pressure is a comprehensive carried out and mathematical expression of the extrusion pressure is given.it will provide a theoretical basis of ECAP equipment selection and tooling design.In addition, for the "back pressure" on the ECAP process, the extrusion pressure with back pressure ECAP is solved and quantitative analyzed by using slip-line method,too.
     Thermodynamic coupled finite element model for powder material plastic forming is deduced,and based on different die structures and different initial conditions of pure Mo powder sintered materials, forming dense simulation is studied and distribution regularity of access extrusion pressure, stress-strain, the relative density and temperature field are obtained.The simulation results show that the shear deformation caused by the die corners is the forming and dense motivation,and despite ECAP deformation distributes the inhomogeneity but the ECAP processing for pure Mo powder material has a good densification effect.Die geometry shape is the key factor affecting the densification. On the basis of higher die strength and the allow of material processed,it is essential to choose a smaller die angles with the appropriate exterior angle improving the material flow of the outer corner and being satisfied with the amount of deformation and densification effect.
     Systematic analysis of influence of different process parameters to densification on pure Mo powder material.Appropriate to increase the friction can increase the extent of uniform deformation and densification,and the hardening properties of the material and the forming pressure will be reduced with increasing temperature and improve deformation homogeneity and compact effect but also adverses the organization refine.The pore is easy to be suppressed and acquire high degree of densification when initial relative density is smaller. Otherwise, there have good densification mechanism for grain crushing when the initial relative density is larger.When extrusion speed is large, the compact is better because of making the powder body particles squeeze, increasing deformation rate; and due to the extrusion stroke lengthened, forming a dense process more fully, there has well dense effect if extrusion speed is small.In the actual process, it is recommended to select a smaller value of the initial relative density,extrusion speed and moderate friction factor to protect the die equipment and to extend the equipment utilization,a reasonable choice of different process parameters should be considered during ECAP of pure Mo powder sintered materials.
     Multiple passes extrusion on various paths are simulated.The results show that the path BC after four passes extrusion completes a cycle and four surfaces are subjected to shear in the specimen, internal deformation is evenly distributed,so it is best extrusion path.That C path makes the deformation distribution tends to be symmetrical and uniform because of exchanging of the upper and lower contact surfaces. In view of uniformity of densification, path C is significantly better than path A after even (2n)passes extrusion, and the overall degree of densification of path A is higher than that of the path BA,too.
     Several common backpressure way and its role are described and simulation of two types BP-ECAP process are studied. The results show that forming dense is general proportional to the applied back pressure,However, that back pressure is too large will form a "dead zone" in die with a small exterior angle; Simultaneously there has too large extrusion pressure required, this will have serious implications for the ECAP forming die structure.It is conclusion of comprehensive comparison that the first class of the BP-ECAP design should be given firstly because of being more in line with the ECAP forming characteristics and more overall uniform for material deformation.
     On the basis of the theoretical foundation, numerical simulation studies, die and heating equipment are designed for pure Mo powder materials and experimental program is prepared. Extrusion experiments of the tube-powder sintered, tube-powder for ECAP and tube-powder sintered for BP-ECAP are carried out with comparative analysis of the finite element simulation results. After a single pass of tube-powder sintered ECAP.there is uneven distribution of deformation and density of the sample which is low relative density within near the bottom and the rest of the deformation and pore welding is better, while the sample overall has average higher relative density, it is confirmed that the ECAP has a strong densification effect. Microhardness of the specimen obtained has greatly improved depends on the extrusion path, extrusion temperature, the initial relative density.
     The ovservation and analysis of microstructure, scanning electron microscopy after multi-passes ECAP show that, ECAP has a powerful effect of the welding and refining effect of sintered powder materials. After a single pass, most of the pore of the sample deformation zone has been closed, specimen is close to the theoretical compaction density at the same time the grain has been significantly refined after2passes ECAP. Experiment results of2passes ECAP for tube-pure Mo powder show that there has smaller effect to deformation and densification besides occuring mainly particle rearrangement, elastic and plastic deformation behavior; the degree of densification of the specimen is significantly improved, the main deformation zone is near full density after2passes ECAP processing. A single pass BP-ECAP experiments using homemade simple back pressure equipment combined with the simulation results show,proper back pressure can increase the hydrostatic pressure and a greater shear deformation, promote particle crushing, melting, welding,and contribute effectively to the powder material densification. Reasonable range of back pressure for ECAP of pure Mo powder sintered materials is20-35Mpa when using the conventional right angle die.
     Finally, based on the orthogonal experimental design and numerical simulation,and innovative use of the Analytic Hierarchy of fuzzy mathematics and gray system theory, multi-objective optimization design of pure Mo powder sintered material during the ECAP process is studied. Results have proved that a reasonable choice of the die outer corner, forming temperature, the initial relative density, forming speed and the friction factor can significantly reduce the maximum damage value, obtain high hydrostatic pressure and make material significantly dense on the premis of the die inner angles to determine.
引文
[1]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社.2002.
    [2]《国家中长期科学和技术发展规划纲要(2006-2020年)》[R],中华人民共和国国务院,2006.
    [3]ValievRZ,Islamgaliev R K,Alexandrov I V.Bulk nanostructured materials from severe plastiede formation[J].Progress in Materials Seienee,2000,45:103-189.
    [4]Valiev R Z,LangdonTG.Principles of equal-channel Angular pressing as a Proeessing tool for grain refinement[J].Progress in MaterialsSeienee,2006,51(7):881-981.
    [5]E.O.Hall.The Deformation and Ageing of Mild Steel:Ⅲ Discussion of Results[J]. Podc.Phys.Soc.B,1951,64:747-753.
    [6]付华,张光磊.材料性能学[M].北京:化学出版社大学.2010.
    [7]Segal V M, Reznikov V I, Drobyshevkiy.A.E, et al. Plastic working of metals by simple shear [J]. Russian metallurgy,1981,1:99-105.
    [8]Valiev R Z, Krasilnikov N A, Tsenev N K, Plastic deformation of alloys with submicron grained structure [J]. Materials Science and Engineering,1991, A137 (15):35-40.
    [9]V V Stolyarov, Y T Zhu, R Z Valiev, Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti Powder using high Pressure torsion[J]. Materials Science and Engineering,1999,A82(1-2):78-85.
    [10]Genki Sakai, Katsuaki Nakamura, Zenji Horita, Terence G. Langdon. Developing high pressure torsion for use with bulk samples [J]. Materials Science and Engineering,2005, A 406:268-273.
    [11]A P Shpak, V N Varyukhin, V I Tkatch.et al Nanostructured A186Gd6Ni6Co2 bulk alloy produced by twist extrusion of amorphous melt-spun ribbons [J]. Materials Science and Engineering,2006, A 425:172-177.
    [12]Y Saito, N Tsuji, H.Utsunomiya, et al. Ultra-finegrained bulk Aluminum Produced by accumulative roll-bonding(ARB) Process[J]. Scripta Mater,1998,39(9):1221-1227.
    [13]Huang J Y, Zhu Y T, Jiang H et al. Microstructures and dislocation configurations in nano-structured Cu processed by repetitive corrugation and straightening [J]. Acta mater,2001, 49:1497-1505.
    [14]Egumi Kawasaki, Irene J. Beyerlein, Sven C. Vogel, Terence G. Langdon. Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing. Acta Materialia,2008,56:2307-2317.
    [15]rman Hasani, Rimma Lapovok, La'szlo'S. To'tha, Alain Molinaria. Deformation field variations in equal channel angular extrusiondue to back pressure. Scripta Materialia,2008, 58:771-774.
    [16]G Yang, C.X. Huang, C. Wang, L.Y. Zhang, C. Hua, Z.F. Zhang, S.D.Wu. Enhancement of mechanical properties of heat-resistant martensitic steel processed by equal channel angular pressing. Materials Science and Engineering A,2009,515:199-206.
    [17]M.H. Paydar, M. Reihanian, E. Bagherpour, M. Sharifzadeh, M. Zarinejad, T.A. Dean. Equal channel angular pressing-forward extrusion (ECAP-FE) consolidation of Al particles. Materials and Design,2009,30:429-432.
    [18]P. Karpuz, C. Simsir, C. Hakan Gur. Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study. Materials Science and Engineering A,2009,503:148-151.
    [19]A. Azushima,R. Kopp, A. Korhonen, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Annals-Manufacturing Technology,2008.(57):716-735.
    [20]Iwahashi Y, Wang J, Horita Z, Nemoto et al. Principle of equal channel angular pressing for the processing of ultrafinegrained materials [J]. Scripta mater,1996,35(2):143-146.
    [21]Victor Spuskanyuk,Alexander Spuskanyuk, Victor Varyukhin. Development of the equal-channel hydroextrusion[J].Journal of materials processing technology,2007.11345:1-5.
    [22]叶小青.ECAP塑性力学分析与拉拔工艺研究[D].西安:西安建筑科技大学.2001.06.23-31.
    [23]毕大森等.等通道转角挤压模具挤压力计算[J].重型机械,2001.(6):34-36.
    [24]魏伟,陈光.等径角挤压的上限解分析[J].有色金属,2005.57(1):23-26.
    [25]刘仁智,康锋,王经涛.等径弯曲通道变形力的研究[J].塑性工程学报,2004.11(6):50-54.
    [26]Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal channel angular pressing [J]. Acta Mater,1998,46(5):1589-1599.
    [27]Kazuko Furuno, Hiroki Akamatsu, Keiichiro Oh-ishi, et al.Microstructural development in equal-channel angular pressing using a 60° die [J]. Acta Mater,2004,52:2497-2507.
    [28]Nagasekhar A V,Yip Tick-Hon,S.Li,et al.Effect of acute tool-angles on equal channel angular extrusion[J].Materials Science and Engineering,2005,A410-411:269-272.
    [29]Kim H S. On the effect of acute angles on deformation homogeneity in equal channel angular pressing[J]. Materials Science and Engineering,2006,A430:346-349.
    [30]Wei W,Nagasekhar A V,Chen.G,etal.Origin of inhomogenous behavior during equal channelangularPressing[J].SeriPta Materialia,2006,54:1865-1869.
    [31]A V Nagasekhar, Yip Tick-Hon.Optimal tool angles for equal channel angular extrusion of Strain hardening materials by finite element analysis[J].Computational Materials Seiene, 2004,30:489-495.
    [32]Furkawa M, HoritaZ, Netnoto M, Longhon T G. Review Proeessing of metals by equal channel angular pressing[J].Joumal of Materials Science,2001,36:2835-2843.
    [33]Langdon T G, Furukawa M,Nemoto M,Horita Z.Ultrafinegrained microstructure evolving during severe plastie deformation [J].JOM,2000,52(4):30-33.
    [34]Cholinia A, Prangnell P B, Markushev M V. The effect of strain on the development of deformation structures in severely deformed aluminum alloys processed by ECAE [J].Acta mater,2000,48:1115-1130.
    [35]Ohishi K, Horita Z, Furukawa M, Nemoto M, Longdon T G. Optimizing the otation condition for grain refinement in equal channel angular processing [J]. Metallurgical and Materials Transactions A,1998,29:2011-2013.
    [36]Iwahash Y, Horita Z, Nemoto M, Longdon T G. The process of grain refinement in equal channel angular pressing [J]. Acta Mater,1998,46(9):331-333.
    [37]Furukawa M, Iwahashi Y, Horita Z.The shearing characteristics associated with equal channel angular pressing[J]. Materials Science and Engineering,1998,A257(2):328-332.
    [38]Zhu Y T Lowe T C. Observations and issues on mechanisms of grain refinement during ECAP process [J]. Materials Science and Engineering,2000, A291 (1):46-53.
    [39]Yamashita A, Yamaguchi D, Horita Z, et al. Influence of pressing temperature on microstructure development in equal-channel angular pressing [J]. Materials Science and Engineering,2000, A287 (1):100-106.
    [40]Shin H D, Pak J J, Kim Y K,et al. Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing [J]. Materials Science and Engineering,2002, A325 (1):31-37.
    [41]Berbon P B, Furukawa M, Horita Z, Nemoto M, Langdon T G. Influence of pressing speed on microstructural development in equal channel angular pressing [J]. Metal Mater Trans,1999, 30A(8):1989-1997.
    [42]Majid Hoseinia, Mahmood Meratian, Mohamma R. Toroghinejad, Jerzy A. Szpunar. Texture contribution in grain refinement effectiveness of different routes during ECAP. Materials Science and Engineering A,2008,497:87-92.
    [43]Iwahashi Y, Wang J, Horita Z, Nemoto et al. Principle of equal channel angular pressing for the processing of ultrafinegrained materials [J]. Scripta mater,1996,35(2):143-146.
    [44]Nishida Y, Arima H, Kim J C. Rotary-die equal-channel angular pressing of an Al-7mass%Si-0.35mass% Mg alloy[J].Scripta Materialia,2001:261-266.
    [45]Nisida Y, Arima H, Kim JC, Ando T.Superplasticity of SiCw/7075Composites Processed by Rotary-Die Equal-channel Angular Pressing[J]. TheJapan Institute of Metals, 2000.64(12):1224-1229.
    [46]Azushima A, Aoki K.Properties of Ultrafine-grained Steel by Repeated Shear Deformation of Side Extrusion Process[J]. Materials Science and Engineering A,2002.377(1-2):45-49
    [47]Aoki K, Kimura Y, Asada Y, Azushima A.Creation of High Strength Carbon Steels by Repetitive Shear Deformation Process and Heat Treatment[J]. Proceedings of the 7th International Conference on Technology of Plasticity,2002.1195-1200.
    [48]Nakashima K, Horita Z, Nemoto M, Langdon TG. Development of a Multi-pass Facility for Equal-channel Angular Pressing to High Total Strains[J]. Materials Science and Engineering A,2000 281(1-2):82-87.
    [49]Victor Spuskanyuk,Alexander Spuskanyuk, Victor Varyukhin. Development of the equal-channel hydroextrusion[J]. Journal of materials processing technology,2007.11345(10):1-5.
    [50]Lee JC, Seok HK, Suh JY, Han JH, Chung YH. Structural evolution of a strip-cast Al alloy sheet processed by continuous equal-channel angular pressing[J]. Metallurgical and Materials Transactions,2002.33A(3):665-673.
    [51]Nam CY, Han JH, Chung YH, Shin MC.Effect of precipitates on microstructural evolution of 7050 Al alloy sheet during equal channel angular rolling[J]. Materials Science and Engineering A,2003.347(1-2):253-257.
    [52]Utsunomiya H, Saito Y, Hayashi T, Sakai T Rolling of T-Shaped Profiled Strip by the Satellite Mill[J]. Journal of Materials Engineering and Performance,1997.6(3):319-325.
    [53]Raab GJ, Valiev RZ, Lowe TC, Zhu YT. Continuous processing of ultrafine grained Al by ECAP-conform[J].Materials Science and Engineering A,2004.382(1-2):30-34.
    [54]运新兵,宋宝韫.连续等径角挤压及其成形过程的三维数值模拟[J].塑性工程学报,2006,13(4):38-42.
    [55]陈彦博,赵晶磊,李英龙等.连续ECAP技术制备超细晶铝[J].中国有色金属学报,2006,12(10):2054-2059.
    [56]J.Rojek,O.C Zienkiewcz,E.Onate et al.Advances in FE explicit formulation for simulation of metal forming processes[J].Journal of Materials Processing Technology,2001,119:41-47.
    [57]Liu Z Y,Liu G,Wang Z R.Finite element simulation of a new deformation type occurring in changing channel extrusion[J]. Journal of Materials Processing Technology,2000,12(1):30-32.
    [58]S.J.Oh,S.B.Kang.Analysis of the billet deformation during equal channel angular pressing[J].Mater Sci and Eng A,2003,343(1-2):107-115.
    [59]J.R.Bowen, A.Gholinia, S.M.Roberts, P.B.Prangnell, Analysis of the billet deformation behaviour in equal channel angular extrusion[J].MaterSciandEngA,2000.287(1):87-99.
    [60]B.S.Moon,H.S.Kim,S.I.Hong.Plastic flow and deformation homogeneity of 6061AL during equal channel angular Pressing[J], Scripta Mater,2002,46(2):131-136.
    [61]H.S.Kim, M.H.Seo, S.I.Hong.On the die corner gap formation in equal channel angular pressing[J].Mater Sci and Eng A,2000,291(1-2):86-90.
    [62]J.C.Lee,H.K.Seok,J.Y.Suh.Microstructural evolutions of the Al Strip prepared by cold rolling and continuous equal channel angular pressing[J].Acta Mater,2002.50(16):4005-4019.
    [63]A.Rosoehowski, L.Olejnik, Numerieal and physieal modeling of Plastic deformation in 2-tum equalehannel angular extrusion[JJ, JMaterProeTeeh,2002,125-126:309-316.
    [64]S.L.Semiatini,D.P.Delo,E-B-Shell.The effeetive of material properties and Tooling design on deformation and fracture during Equal Channel Angular Extrusion[J].Aeta Mater,2000, 48(8):1841-1851.
    [65]刘祖岩,刘刚,王尔德.等径侧向挤压等效应变分布的有限元模拟[J].哈尔滨工业大学学报,1999,31(3):65-67.
    [66]徐淑波,赵国群.等通道弯角挤压变形机理模拟与工艺参数优化[J].塑性工程学报,2004,11(3):22-26.
    [67]赵国群,徐淑波等.等通道弯角多道次挤压工艺累积变形均匀性研究[J].机械工程学报,2005,41(5):177-181.
    [68]TaoSuo,YulongLi, YazhouGuo etal The simulation of deformation distribution during ECAP using3D finite element method [J] Materials Seience and Engineering,2006,432A:269-274.
    [69]TaoSuo, YulongLi, Qiong Deng etal.Optimal pressing route for continued equal channel Angular pressing by finite element analysis[J].Materials Seience and Engneering,2007,A 466:166-171.
    [70]包立,赵文娟,丁桦等.等通道转角挤压中摩擦影响的数值模拟[J].塑性工程学报,2005,12 SuP:57-61.
    [71]周明智.粉末多孔材料等通道转角挤压数值模拟及实验研究[D].合肥:合肥工业大学.2008.
    [72]黄培云.粉末冶金原理[M].北京:冶金工业出版社,2008.
    [73]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998.
    [74]L.C.Zhang, J.Xu, E.Ma etal.Consolidation and properties of ball-milled Ti5oCu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion[J].Materials Seience and Engineemg,2006,A434:280-288.
    [75]Senkov O.N.,Senkov S.V,Scott J.M. et al.Compaction of amorphous alninum alloy powder by direct extrusion and equal channel angular extrusion[J]. Materials Seience and Engineering,2005,A393:12-21.
    [76]Xia K,Wu X. Back pressure equal channel angular consolidation of pure Al particles[J]. Scripta Materialia,2005,53:1225-1229.
    [77]K.Matsuki,T.Aida,T.Takeucki.et al.Microstructural characteristics and superplastic-like behavior in alunmim powder alloy consolidated by equal-channel angular pressing[J].Acta Materialia,2000\,48:2625-2632.
    [78]S.Xiang, K.Matsuki, et al.Microstructure and mechanieal properties of PM2024AL-3Fe-5Ni alloy consolidated by a new proeess,equal channel angular pressing[J].Journal of Materials Seience Letters,1997,16:1725-1727.
    [79]M.Haouaom, I.Karraman,H.J.Maier.et al.Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro-and nanopowders using equal-channel angular extrusion[J].Metallurgical and materials transactions A,2004,35:2936-2949.
    [80]Chang S Y, Lee K S, Choi S H, et al.effect of ECAP on microstructure and meehanical properties of a conunercial 6061A1 alloy produced by powder metallurgy[J].Journal of Alloys and Compounds,2003,354:216-220.
    [81]向铁根.钼冶金[M].长沙:中南大学出版社,2005.
    [82]彭志辉.稀有金属材料加工工艺学[M].长沙:中南大学出版社,2003.
    [83]罗振中.钼的应用及其发展.中国钼业,1998,22(4):17-20.
    [84]韩强,王勇智.浅析影响粉冶钼金属塑性的因素.中国钼业,2003,27(2):55-58.
    [85]李英龙,李体彬.有色金属锻造与冲压技术[M].北京:化学工业出版社,2008.
    [86]Kuhn H A, Downey C L.DeMrmatlon. Characteristic and Plasticity Theory of Sintered Powder Materials. Int.J.Powder Met.1971,7(1):15-25.
    [87]Narayanasamy R, Ponalagusamy R, Subramanian K R. Generalized Yield Criteria of Porous Sintered Powder Metallurgy Metals[J]. J Materials Processing Tech,2001, (110):182-185.
    [88]Shima S, Oyane M. Plasticity Theory for Porous Metals[J]. Int J Mech Sci,1976, 18(6):285-291.
    [89]Gurson A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth Part I-Yield Criteria and Flow Rules for Porous Ductile Media [J]. T rans A SM E, Series H, J Engng M ater Tech,1977, (9):2-10.
    [90]Doraivelu S M,Gegel H L,Gunasekera J S,et al. A New Yield Function for Compressible P/ M Materials.Int.J. of Mech. Set,1984,(26):9-10.
    [91]Park JJ.Constitutive Relations to Predict Plastic Deformations of Porous Metals in Compaction.Int.J.Mech.Sci,1995,37(7):709-719.
    [92]任学平.粉末金属屈服准则和流动应力研究[D].哈尔滨:哈尔滨工业大学,1989.
    [93]任学平,王尔德,霍文灿.粉末体的屈服准则[J].粉末冶金技术,1992,10(1):8-11.
    [94]华林,赵仲治.烧结材料塑性理论及应用.机械工程学报,1992,28(4):94-102.
    [95]华林,秦训鹏.粉末烧结材料屈服条件研究和进展[J].武汉理工大学学报,2004,26(4):1-5.
    [96]华林,秦训鹏,毛华杰等.可压缩粉末烧结材料塑性变形与屈服条件[J].塑性工程学报,2003,10(6):62-65.
    [97]秦训鹏,华林.粉末冶金烧结材料广义塑性屈服条件[J].汽车工业与材料,2005,1:7-9.
    [98]Zhao Zhongzh i, Hua L in, W ang Huachang. The Forming and Densificat ion of Sintered PowderM aterials[J]. Int J Sci of Sintering,1987,19 (2):65-80.
    [99]Hua Lin, Zhao Zhongzh i. P last ic Defo rmat ion and Densificat ion fo r Sintered Powder Materials[J]. Trans Nonferrous Metals Society of China,1992,2 (4):82-87.
    [100]Green R J. A Plasticity Theory for Porous Solids[J]. Int J Mech Sci,1972,14(3): 215-224.
    [101]Doraivelu H C. A New Yield Function for Compressible P/M Materials[J]. Int J Mech Sci,1984,26(9/10):527-535.
    [103]Becker R, N eedleman A, Richmond O, et al. Void Grow th and Failure in Notched Bars[J]. JM ech Phys Solids,1988,(36):317-323.
    [104]Goya M, Nagak i S, Sowerby R. Yield Criteria for Ductile Porous Solids [J]. JSM E Internat ional Journal Series Ⅰ,1992,35 (3):310-318.
    [105]周照耀,李元元.金属粉末成形力学建模与计算机模拟[M].广州:华南理工大学出版社,2011.
    [106]卫原平,阮雪榆.粉末烧结材料塑性变形过程的有限元分析[J].中国有色金属学报,1994,4(4):56-61.
    [107]汪俊.粉末金属成形过程建模及成形工艺计算机仿真[D].上海:上海交通大学,1999.
    [108]刘心宇,张继仲,占美燕.粉末体成形的有限元数值模拟[J].中南工业大学学报,1999,30(6):279-282.
    [109]吕炎编著.锻压成形理论与工艺[M].北京:机械工业出版社,1991.
    [110]王振范,刘相华.能量理论及其在金属塑性成形中的应用[M].北京:科学出版社,2009.
    [111]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2003.
    [112]陈普庆.金属粉末压制过程的力学建模和数值模拟[D].华南理工大学,2004.
    [113]林治平.锻压变形力的工程计算[M].北京:机械工业出版社,1986.
    [114]王经涛,陈光.真实切应变及其在等径弯曲通道变形中的应用[J].南京理工大学学报, 2007,27(5):643-646.
    [115]郝南海,刘祖岩.平面纯剪切大变形等效应变分析[J].塑性工程学报,2000,7(1):4-5.
    [116]C.J. Luis Perez, R. Luri. Study of the ECAE process by the upper bound method considering the correct die design[J].Mechanics of Materials,2008,40:617-628.
    [117]V.V. Stolyarov, R. Lapovok. Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP[J]. Journal of Alloys and Compounds,2004,378:233-236.
    [118]K. Xia, X. Wu. Back pressure equal channel angular consolidation of pure A1 particles[J]. Scripta Materialia,2005,53:1225-1229.
    [119]P.W.J. Mckenzie, R. Lapovok, Y. Estrin.The influence of back pressure on ECAP processed AA 6016:Modeling and experiment[J].Acta Materialia,2007,55:2985-2993.
    [120]康锋,王经涛.背压对ECAP塑性变形区影响的有限元分析[J].材料与冶金学报,2007,6(2):142-149.
    [121]周明智,薛克敏,李萍.温度和背压方式对等通道转角挤压过程的影响[J].中国机械工程,2007,18(18):2163-2168.
    [122]王勋成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997.
    [123]殷有泉.固体力学非线性有限元引论[M].北京:清华大学出版社,2009.
    [124]J.N.Karadelis,M.Omair.Elasto-plastic analysis with large deformation effeets of a T-end Plate conneetion to square hollow section[J].Finite Elements in Analysis and Design,2001, 38:65-77.
    [125]Katri I.Ika Ferreira,DeaneRoehi.Tree dimensional elastoplastie contact analysisas large Strains with enhane assumed strain elernents[J].Intemational Journal of Solids and Structures.2002,38:1855-1870.
    [126]王祖唐,关廷栋,肖景容等.金属塑性成形理论[M],北京:机械工业出版社,1989.
    [127]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1982.
    [128]谢水生,王祖唐著.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社,1997.
    [129]刘建生,陈惠琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [130]董湘怀.材料成形计算机模拟[M].北京:机械工业出版社,2001.
    [131]吕炎.精密塑性体积成形技术[M].北京:国防工业出版社,2003.
    [132]刘郁丽,杨合,詹梅等.叶片精锻三维可压缩刚粘塑性有限元模拟系统的研究[J].西北工业大学学报,2003,21(1):106-109.
    [133]姜正义,刘相华,王国栋等.纵筋板轧制可压缩刚粘塑性有限元分析有关技术问题处理[J].塑性工程学报,1998,5(1):24-30.
    [134]秦泗吉,李洪波,朱清香等.可压缩刚粘塑性有限元牛顿迭代解法收敛性分析及方法[J].燕山大学学报,1995,22(2):143-145.
    [135]徐伟力,李雪春,金朝海等.可压缩刚粘塑性有限元法中的罚因子的选取[J].哈尔滨工业大学学报,1993,31(6):128-132.
    [136]赵国群.锻造过程的正反向数值模拟[D].上海交通大学,1991.
    [137]徐淑波.等通道弯角挤压(ECAP)变形机理数值模拟与实验研究[D].山东大学,2006.
    [138]Mingwang Fu, Z.J.Luo.The simulation of the viseoplastic forming proeess by the Fnite-element method[J].Journal of Materials Proeessing Technology,1995,55:442-447.
    [139]Antoinette M.Maniatty, YongLiu, Otttnar Klaas etal.Stabilized finite element method for Viscoplastie flow:formulation and a simple progressive solution strategy[J].Computer methods in applied mechanics and engineering,2001,190:4609-4625.
    [140]彭颖红,阮雪榆,左铁铺等.CONFORM连续挤压耦合热变形过程的刚粘塑性有限元析[J].中国有色金属学报,1994,4(3):60-64.
    [141]卫原平,阮雪榆.热缎过程中工模具温度场的有限元迭代解法[J].上海交通大学学报,1994,18(6):39-44.
    [142]卫原平,阮雪榆.金属成形过程中热力耦合分析技术研究[J].塑性工程学报,1994,1(2):3-10.
    [143]李萍,薛克敏,吕炎.Ti-15-3合金反挤压成形的热力耦合模拟[J].中国有色金属学报,2002,12(3):578-581.
    [144]陈慧琴,刘建生,郭会光Mn18Cr18N钢热成形晶粒变化的模拟研究[J].金属学报,1999,35(1):53-56.
    [145]李萍,薛克敏,吕炎等.Ti-15-3合金热反挤成形微观组织的模拟[J].机械工程学报,2003,39(1):133-136.
    [146]周明智,薛克敏,李萍.粉末多孔材料等径角挤压热力耦合有限元数值分析[J].中国有色金属学报,2006,16(9):1510-1516.
    [147]廖寄乔.粉末冶金实验技术[M].长沙:中南大学出版社,2003.
    [148]张向.金属体积成形过程有限元模拟中六面体网格生成技术[D].上海:上海交通大学,2000.
    [149]胡忠,王志诚.塑性有限元数值模拟的二维及三维网格重划技术[J].清华大学学报,1996,3:78-81.
    [150]陈军,张向,阮雪榆.金属三维挤压成形过程数值模拟的若干关键技术[J].中国有色金属学报,2002,12(6):1119-1122.
    [151]李传民,王向丽,闫华军.DEFORM5.03金属成形有限元分析实例指导教程[M]北京:机械工业出版社.2007.
    [152]张莉,李升军DEFORM在金属塑性成形中的应用[M]北京:机械工业出版社.2007.
    [153]刘思峰编著.灰色系统理论及其应用[M]北京:科学出版社,2000.
    [154]邓聚龙著.灰色控制系统[M].武汉:华中工学院出版社,1985.
    [155]邓聚龙著.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [156]彭祖赠,孙韫玉.模糊(Tuzzy)数学及其应用[M].武汉:武汉大学出版社.2002.
    [157]王琦.实用模糊数学[M].北京:科学技术文献出版社.1992.
    [158]谢季坚.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2006.
    [159]李云雁,胡传荣编著.实验设计与数据处理[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700