用户名: 密码: 验证码:
金属氧化物半导体纳米材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌和二氧化锡是两种用途广泛的半导体材料,由于纳米材料具有一些特殊的性能,更加扩展了它们的应用范围,使其制备研究成为当前材料研究的热点之一。本论文分别采用电化学沉积和水辅助气相沉积方法制备了氧化锌和二氧化锡纳晶薄膜、二氧化锡纳米带,并探索了所制备材料在染料敏化太阳能电池,电催化方面的应用。主要研究工作包括以下三方面。
     1.通过在沉积液中添加具有吸附基团的曙红染料,采用电化学沉积的方法制备了多孔ZnO/EY复合纳晶薄膜,ZnO为六方晶型纤锌矿,单晶ZnO在垂直于FTO导电玻璃基底上沿c轴方向有较好的择优生长取向。在较负电位下可以沉积出较厚的薄膜。通过ZnO/EY复合纳晶薄膜上曙红的脱附和再吸附过程,可以得到曙红敏化的氧化锌纳晶薄膜。将其应用于染料敏化太阳能电池中,表现出良好的光电转换性能。
     2.采用电化学沉积的方法,在70℃下,在添加不同浓度的丁基罗丹明(BRhB)的氧气饱和的氯化亚锡的酸溶液中,制备了多孔二氧化锡纳晶薄膜。溶液中加入盐酸为了抑制SnCl2的水解,BRhB含有氨基取代基能溶于酸性的沉积溶液中,同时BRhB含有羧基能吸附在二氧化锡表面,所以采用BRhB作结构导向剂控制SnO2晶体生长,从而控制晶体的结构和薄膜的表面形貌。由于BRhB的加入,沉积的薄膜具有多孔结构形貌和四方金红石晶体结构。BRhB的添加促进了多孔结构的形成,多孔结构提高了二氧化锡薄膜降解苯酚的电催化性能。
     3.采用水辅助气相沉积法,以高纯锡粒为原料合成高纯度的二氧化锡纳米带,二氧化锡纳米带为四方金红石结构,表面光滑。同时研究了由合成的二氧化锡制备的薄膜的电催化氧化苯酚的性能。
ZnO and SnO2, as a semiconductor material, are widely applied in many fields. Recently, their application is extended further due to some special characteristics as the size of the prepared material is decreased to nanoscale. Much attention has been paid to this area in the world. In this thesis, nanoporous ZnO crystalline thin films, nanoporous SnO2 thin films and crystalline SnO2 nanobelts were prepared by electrochemical deposition and water assisted vapor deposition technique. Their applications on dye sensitized solar cell, electrocatalytic oxidation were studied. The major research work and results for this dissertation are as follows:
     1. The electrochemical deposition was employed to prepare nanocrystalline ZnO/EY hybrid porous thin films from solution containing dye with adsorption group. ZnO is hexagonal wurtzite crystal. Single crystal ZnO has preferred growth direction perpendicular to the FTO conductive glass substrate along the c-axis. In the more negative potential, we can deposit a thicker film. Through desorption and re-adsorption process, eosinY sensitized nanocrystalline ZnO films can be prepared. This kind of film was applied to dye-sensitized solar cells presenting good photoelectric properties
     2. Porous crystalline SnO2 thin films were successfully electrodeposited from an oxygen-saturated acid aqueous solution of SnCl2 containing different concentrations of butyl rhodamine B (BRhB) at 70℃. HCl was added to suppress hydrolysis of SnCl2, BRhB can be dissolved in the acid deposition solution due to its substitutes of amidocyanogen, and can adsorb on the surface of SnO2 due to its carbonate group. Therefore, it was used as a structure-directing agent to control the crystal growth of SnO2 and thus affects the crystalline structure and surface morphology of the deposited film. The electrodeposited thin films show porous morphology and rutile-type SnO2 crystalline structure due to addition of BRhB, and these structure features were controlled by the added amount of BRhB. The SnO2 thin film electrodeposited with addition of BRhB exhibits electrocatalytic characteristic enhancement on oxidation of phenol due to its porous structure.
     3. SnO2 nanobelts were synthesized by the water-assisted vapor deposition method using high pure Sn particles as the source materials. The SnO2 nanobelts synthesized by this method have rutile structure and smooth surface. The SnO2 thin film prepared by SnO2 nanobelts has good electrocatalytic activity to degrade phenol.
引文
[1]立德张, 季美牟.纳米材料和纳米结构[M].科学出版社,2001
    [2]P. Yu, Z. K. Tang, G. K. L. Wong, et al.23nd Int. Conf. On the Physics of Semiconductors[C]. World Scientific, Singapore,1996:1453-1456
    [3]Z. K. Tang, G.K.L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Appl. Phys. Lett,1998,72:3270-3272
    [4]D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett,1997,70:2230-2232
    [5]德恒张,用射频偏压溅射制备的具有快速紫外光响应的ZnO薄膜[J].半导体学报,1995,16(10):779-782
    [6]R. R. Service. Materials Science:Will UV Lasers Beat the Blues?[J]. Science,1997,276: 895-899
    [7]剑光李,志镇叶,炳辉赵.氧化锌薄膜研究进展[J].材料科学与工程,1997,15(2):65-66
    [8]Z. X. Fu, B. X Lin, G H Liao, et al. The effect of Zn buffer layer on growth and luminescence of ZnO films deposited on Si substrates[J]. J.Cryst. Growth,1998,193: 316-320
    [9]C. I. Guo, Z. X. Fu, C. S. Shi. Ultraviolet Super-Radiation Luminescence of Sputtering ZnO Film Under Cathode-Ray Excitation at Room Temperature[J]. Chinese Phys. Lett, 1999,16(2):146-148
    [10]炼柯,煦月缪,彦峰魏等.Ⅱ-Ⅵ族半导体激光器的新材料-ZnO量子点[J].物理,1999,1:30-34
    [11]X. M. Hou, F. Zhou, W. M. Liu. A facile low-cost synthesis of ZnO nanorods via a solid-state[J]. Materials Letters,2006,60:3786-3788
    [12]建群俞,殿赠贾,毓峰郑.纳米NiO、ZnO的合成新方法[J].功能材料,1998,29(6):598-601
    [13]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002
    [14]G.P. Du, W. Li, M. G.Fu, N. Chen, X. Fu, et al. Synthesis of tetrapod-shaped ZnO whiskers and microrods in one crucible by thermal evaporation of Zn/C mixtures[J]. Trans.Nonferrous Met.Soc.China,2008,18:155-161
    [15]Mitarai, Take shi. Nikko aed kk. Production of globular zinc oxide[P]. JP 632889145
    [16]Jongsun Maeng, Gunho Jo, Minhyeok Choe, Woojin Park, Min-Ki Kwon, Seong-Ju Park, Takhee Lee. Structural and photoluminescence characterization of ZnO nanowalls grown by metalorganic chemical vapor deposition[J]. Thin Solid Films,2009,518:865-869
    [17]Y. Tomokiyo, M. Takoshi, E. Tanaka. Shape and structure of zinc oxide particles prepared by vapor phase oxidation of zinc vapor[J]. Journal of the American Ceramic Society,1988, 71(5):391-395
    [18]L. L. Wu, Y. S. Wu, Y. C. Shi, H. Y. Wei. Synthesis of ZnOnanorods and their optical absorption in visible-light region[J]. Rare Metals,2006,25:68-73
    [19]Z. F. Liu, Z. G Jin, W. Li, J. J. Qiu. Preparation of ZnO porous thin films by sol-gel method using PEG template[J]. Materials Letters,2005,59:3620-3625
    [20]建明曹.溶胶-凝胶法制备ZnO微粉工艺研究[J].化学工程师,2005,11(5):4-6
    [21]S. Hingorani, V. Pillai, P. Kumar. Microemulsion mediated synthesis of zinc-oxide nano particles for varistor studies[J]. Mat Res Bull,1993,28:1300-1310
    [22]Y. H. Ni, X W. Wei, J. M. Hong, Hydrothermal preparation and optical properties of ZnO nanorods[J]. Mater. Sci. and Eng. B,2005,121:42-47
    [23]M. H. Huang, S. Mao. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001,292:1897-1903
    [24]N. Y. Xia, P. D. Yang, Y. G Sun, et al. One-dimensional nanostructures:synthesis, nanostructures:synthesis,characterization, and applications[J]. Adv Mater,2003,15:353
    [25]S. Y. Masashi, H. Noritsugu. Effect of poly ethylene glycol addition on the microsstructure and sensor characteristics of SnO2 thin films prepared by sol-gel method[J]. Sensors and Actuators B,2003,93:585-589
    [26]X. M. Liu, S. L. Wu, Paul K. Chu, J. Zheng, S. L. Li. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method[J]. Materials Science and Engineering A,2006, 426:274-277
    [27]X. M. Hou, F. Zhou, W. M. Liu. A facile low-cost synthesis of ZnO nanorods via a solid-state[J]. Materials Letters,2006,60:3786-3788
    [28]D. L. Chen, L. Gao. Facile synthesis of single-crystal tin oxide nanorods with tunable Dimensions via hydrothermal Process[J]. Chem. Phys. Lett,2004,398(1-3):201-206
    [29]D. D. Vuong, G S. Kai. Preparation of grain con-trolled tin oxide sols by hydrothermal treatment for thin film sensor application[J]. Sensors and Actuators B:Chemical, 2004,103(1-2):386-391
    [30]B. Cheng, J. M. Russe, W. Shi, L. Zhang, E. T. Samulski. Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2Nanorods[J]. J. Am. Chem. Soc,2004,126:5972-5977
    [31]C. X. Guo, M. H. Cao, C. W. Hu. A novel and low-temperature hydrothermal synthesis of SnO2 nanorods[J]. Inorganic Chemistry Communications,2004,7:929-931
    [32]R. S. Wagner, W. C. Ellis. Vopor-liquid-solid mechanism of single Crystal growth[J]. Appl. Phys. Lett.,1964,4:89-90
    [33]Y. Liu, M. L. Liu. Growth of aligned square-shaped SnO2 tube arrays[J]. Adv. Funet. Mater,2005,15:57-62
    [34]Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides[J]. Science,2001, 291:1947-1949
    [35]Z. R. Dai, J. L Gole., J. D Stout., Z. L. Wang. Tin oxide nanowires nanoribbons and nanotubes[J]. J. Phys. Chem. B,2002 106:1274-1279
    [36]X. J. Feng, J. M. Fan. Transparent conducting SnO2:Sb epitaxial films prepared on α-Al2O3 (0001) by MOCVD[J]. Materials Letters,2008,62:1779-1781
    [37]Z. H. Huang, C. F. Chai. Water-assisted growth and characterization of SnO2 nanobelts, Materials letter,2007,61:5113-5116
    [38]S. K. Kwang, W. K. Hyoun, M. L. Chong. Effect of growth temperature on ZnO thin film deposited on SiO2 substrate[J]. Materials Science and Engineering B,2003,98(2):135-139
    [39]S. T. Chang, I. C. Leu, M. H. Hon. Electrodeposition of nanocrystalline SnO2 coatings with two-layer microstructure. Journal of Crystal Growth,2004,273:195-202
    [40]S. T. Chang, I. C. Leu, C. L. Liao. Novel methods for preparing nanocrystalline SnO2 and Sn/SnO2 composite by electrodeposition, Electrochem, Journal of Materials Chemistry.
    2004 14:1821-1826
    [41]S. T. Chang, I. C. Leu, M. H. Hon. Novel methods for preparing nanocrystalline SnO2 and Sn/SnO2 composite by electrodeposition[J]. Journal of Alloys and Compounds,2005,403: 335-339
    [42]E. Sancedo, J Mimila-Aarora.Pro.14thIEEE Photovoltaic Specialists Coaf.San Diego.CA.IEEE, New York.1980:1370
    [43]S. Peulon, D.Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films [J]. Adv. Mater.,1996,8:166-170
    [44]T. Pauporte and D. Lincot. Hydrogen Peroxide Oxygen Precursor for Zinc Oxide Electrodeposition:Deposition in Perchlorate Medium [J]. J. Electrochem. Soc,2001,148: C310-314
    [45]T. Yoshida and H. Minoura, Electrochemical Self-Assembly of Dye-Modified Zinc Oxide Thin Films [J]. Adv. Mater.,2000,12:1219-1222
    [46]T. Yoshida, K. Terada, D. Schlettwein, et al. Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance [J]. Adv. Mater.,2000,12:1214-1217
    [47]P. Liu, W.Y. Li, J.B. Zhang. Electrodeposition and Photocatalytic Selectivity of ZnO/Methyl Blue Hybrid Thin Films [J]. Phys. Chem. C,2009,113:14279-14284
    [48]K. Ichinose,T. Yoshida. Epitaxial electrodeposition of Zno thin film on GaN(0001) bulk single crystal[J]. Physica Status Solidi a-Applications and Materials Science,2008,205 (10):2376-2381
    [49]C. Boeckler, T. Oekermann, M. Saruban, et al. Influence of the supporting salt concentration on the electrodeposition concentration on the electrodeposition of ZnO/eosin Y hybrid films[J]. Physica Status Solidi a-Applications and Materials Science,2008,205 (10):2388-2391
    [50]玉恒王,瑾马,峰计,旭浒余,锡健张,洪磊马.射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究[J].物理学报,2005,54(4):1731-1735
    [51]安龙匡,兴种刘,忠林路,尚坤任,存业刘,凤鸣张.稀释磁性半导体Sn1-xMnxO2的室温铁磁性[J].物理学报,2005,54(6):2934-2937
    [52]S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang. Large-scale synthesis of SnO2 nanobelts[J]. Appl Phys A,2003,76:287-289
    [53]F. M. Amanullaj, K. J. pratap, V. Hari et al. Compositional analysis and depth profile studies on undoped and doped tin oxide films prepared by spray technique[J]. Mater. Sci. Eng. B,1998,52:93-98
    [54]M. Kojima, F. Takallashi, K. Kinoshita et al. Transparent furnace made of heat mirror[J]. Thin Solid Films,2001 392:349-353
    [55]B. Thangaraju. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor [J]. Thin Solid Films, 2002 402:71-76
    [56]S. Yamanaka and T. Oohashi. Jpn. J. Appl. Phys,1969,8:1058-1064
    [57]R. H. Deich, E. J. West, T. G. Giallorenzi. Appl. Opt,1974,13:712-717
    [58]G. N. Advani, A. G. Jordan. Analytical characterization of SnO2 thin films[J]. Mater. Sci. Eng,1979 4:99-103
    [59]M. Kojima, H. Kato, A. Imai et al. Microstructure and electrical properties of Sb-Sn-O thin
    films[J]. Appl. Phys,1988,51:902-907
    [60]M. Kojima, H. Kato, A. Imai et al. Microstructure and electrical properties of Sb-Sn-O thin films[J]. Appl. Phys,1988,51:902-907
    [61]M. Izaki, T. Omi. Transparent zinc oxide films prepared by electrochemical reaction [J]. Appl. Phys. Lett,1996,68:2439-2445
    [62]S. Peulon, D. Lincot. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films(p). Adv. Mater,1996,8:166-171
    [63]T. Pauporte, Highly Transparent, ZnO/Polyvinyl Alcohol Hybrid Films with Controlled Crystallographic Orientation Growth Crystal Growth & Design,2007 231 (7):1-2
    [64]P. Liu, W.Y. Li, J.B. Zhang. Electrodeposition and Photocatalytic Selectivity of ZnO/Methyl Blue Hybrid Thin Films[J]. Phys. Chem. C,2009,113:14279-14284
    [65]T. Yoshida, J. B. Zhang, D. Komatsu, S. Sawatani, H. Minoura, Th. Pauporte, D. Lincot, T. Oekermann, D. Schlettwein, H. Tada, D. Wohrle, K. Funabiki, M. Matsui, H. Miura and H. Yanagi. Electrodeposition of Inorganic/Organic Hybrid Thin Films, Adv. Funct. Mater, 2009,19:17-43
    [66]T. Yoshida, H. Minoura. Electrochemical Self-Assembly of Dye-Modified Zinc Oxide Thin Films Advanced Materials,2000,12:1219-1222
    [67]A. Kolmakov, Y. X. Zhang, G. S. Cheng, et al. Detection of CO and O2 using tin oxide nanowire sensors[J]. Adv. Mater,2003,15:997-1000
    [68]E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z. L. Wang. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J]. Appl. Phys. Lett,2002,81: 1869-1871
    [69]R. W. J. Scott, S. M. yang, G. Chabanis, N. Coombs, D. E. Williams, G. A. Ozin. Tin Dioxide opals and inverted opals:near-ideal microstructures for gas sensors[J]. Adv. Mater,2001,13(19):1468-1472
    [70]A. Bismuto, S. Lettieri, P. Maddalena, C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, L. Zanott. J. Opt. A:Pure Appl. Opt,2006,8,585-591
    [71]Q. Kuang, C. S. Lao, Z. Li. Yu-Zi Liu. J. Phys. Chem. C,2008,12:100-104
    [72]立德张,思深解.纳米材料和纳必结构—国家重大基础研究项目新进展[M].北京工业出版社,2005,113-118
    [73]X. S. Fang, LD Zhang, J.Mater. Sci. Techno 1.,2006,22(1):1-18
    [74]Y. N. Xia, P. D. Yang, Y. G. Sun. One-dimensional nanostructures:Synthesis, characterization, and applications. Adv.Mater,2003,15(4):353-389
    [75]B. Zheng, Y. Y. Wu, P. D. Yang. Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys[J]. Adv. Mater,2002,14(2):122-124
    [76]X. S. Fang, C. H. Ye, L. D. Zhang. Direct observation of the growth process of MgO nanoflowers by a simple chemical[J]. Small,2005,14(1):422-428
    [77]J. Q. Hu, X. L. Ma, N. G. Shang. Large-Scale Rapid Oxidation Synthesis of SnO2 Nanoribbons[J]. J. Phys. Chem. B,2002,106:3823-3826

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700