用户名: 密码: 验证码:
SnO_2一维纳米材料的制备、表征以及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用新工艺和新方法制备了SnO_2纳米棒、Cd~(2+)掺杂SnO_2纳米棒和Zn~(2+)掺杂SnO_2纳米棒三种SnO_2一维纳米材料。对材料的制备工艺、材料合成、材料结构的表征、晶体生长机理等进行了探讨;与SnO_2纳米颗粒粉体和SnO_2(SiO_2)壳(核)结构纳米粒子两种零维纳米SnO_2材料相对照,对比研究了SnO_2一维纳米材料的红外吸收光学特性、氧化还原特性和气体敏感特性,制备出了具有高灵敏度和高选择性的几种新型气敏元件。论文取得了多项新颖的研究结果。
     1、SnO_2纳米棒的新制备方法与表征
     在微乳液法制备SnO_2一维纳米材料的基础上,发展了采用表面活性剂包裹下的室温固相还原反应合成单分散的前驱体粒子再在熔盐中生长SnO_2一维纳米材料的新工艺制备出了SnO_2纳米棒,获得了采用新方法制备SnO_2纳米棒的条件与工艺。
     采用新方法制备SnO_2一维纳米材料,可获得直径为5nm~100nm,长度为几百纳米~10μm的单晶SnO_2纳米棒。SnO_2纳米棒Sn和O原子浓度比随着在熔盐中的晶体生长温度的高低而发生变化,生长温度越低,O原子缺位越严重;生长温度越高,SnO_2纳米棒中O原子缺位越少。
     2、Cd~(2+)掺杂或Zn~(2+)掺杂SnO_2纳米棒新型一维纳米材料的合成与表征
     采用微乳液法,在熔盐介质中生长制备了掺杂Cd~(2+)或掺杂Zn~(2+)的SnO_2纳米棒新型SnO_2一维纳米材料。通过XPS和XRF测量表明,在Cd~(2+)掺杂的SnO_2纳米棒晶体中CdO的含量约为3%,Zn~(2+)掺杂的SnO_2纳米棒晶体中ZnO的含量约为1.5%。SnO_2纳米棒的晶体结构是Cd~(2+)、Zn~(2+)代替部分Sn~(4+)构成替位式固溶体的晶体结构。这种掺杂的SnO_2一维纳米材料未见报导。
     3、研究了SnO_2纳米棒在熔融盐中的晶体生长过程,提出了熔融盐中SnO_2一维纳米晶体生长机制的新见解
     SnO_2纳米棒在熔融盐中的生长是一个从最初的SnO_2纳米颗粒前驱物,在一定生长温度形成细小纤维,纤维生长纳米棒成型,在较高的生长温度下纳米棒逐步长大、长粗,最终生长成为纳米棒。这一生长期过程的主要特点是在熔盐介质中同一种物质(SnO_2)从零维的纳米颗粒到一维的纳米棒的固态转变。
     SnO_2纳米棒在熔融盐中的固态转变生长机制是:在熔融盐提供的液态环境中,单分散前驱体SnO_(2-δ)纳米颗粒在熔融盐中作热扩散,以熔融盐中的空洞线或隙缝线形成的位错线为“软模板”,单分散SnO_(2-δ)纳米颗粒中SnO发生歧化反应形成SnO_2,按气—液—固(VLS)晶体生长机制,以降低表面能为驱动力,沿着“软模板”按一定的晶面进行“自组装”取向生长,最终在熔融盐形成的封闭体系中生长成SnO_2一维纳米材料。SnO_2纳米棒在熔融盐中的固态转变生长机理是一种新的一维纳米材料的生长机制。这种SnO_2一维纳米材料生长机制尚未见报道。
     4、对SnO_2一维纳米材料的红外吸收光谱特性进行了研究,发现SnO_2纳米棒、掺杂Cd~(2+)或掺杂Zn~(2+)的SnO_2纳米棒的奇异红外光谱演变现象
     在400-1000cm~(-1)低波数范围,SnO_2纳米棒材料Sn-O振动带的特征红外吸收峰呈双峰形式,分别位于680.5cm~(-1)和475.2cm~(-1)的位置。SnO_2纳米棒Sn-O红外吸收特性与纳米棒直径大小密切相关,表现出明显的尺寸效应。随着SnO_2纳米棒直径的减小,吸收峰出现明显宽化;475.2 cm~(-1)位置的吸收峰,随着SnO_2纳米棒直径减小,吸收峰出现蓝移;680.5cm~(-1)位置的吸收峰,随着SnO_2纳米棒直径减小,吸收峰却出现了红移。这种红外收吸峰蓝移和红移并存的奇异光谱现象,在一维纳米材料中也是首次观察到。
     在400-1000 cm~(-1)低波数范围的Sn-O的红外吸收振动带,Cd~(2+)掺杂和Zn~(2+)掺杂SnO_2纳米棒的红外吸收与SnO_2纳米棒的红外吸收相似,也是呈双红外吸收峰。但是随着SnO_2纳米棒直径的减小,吸收峰出现明显宽化外,其Sn-O红外吸收峰只出现红移现象。这种红移由Cd~(2+)、Zn~(2+)在SnO_2纳米棒晶体中形成的替位式晶体结构引起。
     5、SnO_2一维纳米材料的氧化还原特性及新的还原反应热力学机理分析通过H_2-TPR研究表明,SnO_2纳米棒具有由表面吸附的活性氧导致的较好的表面活性和氧化还原性质。纯SnO_2纳米棒在320℃左右的低温下就可以使H_2发生缓慢氧化,纯SnO_2纳米棒的H_2还原反应机理是“表面脱氧反应+歧化反应”;Cd~(2+)掺杂和Zn~(2+)掺杂的SnO_2纳米棒的H_2还原反应与纯SnO_2纳米棒的H_2还原反应类似,但由于纳米CdO和ZnO的催化作用使H_2还原反应温度大大降低,并形成H_2消耗反应峰。掺杂Cd~(2+)和Zn~(2+)的SnO_2纳米棒的H_2还原反应机理是“脱氧反应+歧化反应+纳米催化还原反应+Cd~(2+)(或Zn~(2+))的还原反应”。
     6、SnO_2纳米棒一维纳米材料的气敏特性及气敏机理探讨
     首次以SnO_2纳米棒集群材料为气体敏感材料,设计制作了二种新型材料气体传感器:
     (?)SnO_2一维纳米集群材料传感器
     (?)SnO_2一维纳米集群材料+SnO_2纳米粉体混合材料传感器
     两种新型传感器对乙醇(C_2H_5OH)气体具有很好的灵敏度和稳定性,并具有较好的恢复-响应特性。其中以掺杂Zn~(2+)的SnO_2纳米棒对乙醇气体的敏感性最好,纯SnO_2纳米棒次之,而掺杂Cd~(2+)的SnO_2纳米棒对乙醇气体的敏感性再次之。这种SnO_2一维纳米集群气敏材料的气敏特性及元件设计,还未见报道。
     根据纳米SnO_2气敏材料偏离化学计量比及相关缺陷,材料的表面气体吸附特性,晶粒尺寸及比表面积大小,以及界面理论和导电通道理论,讨论了SnO_2一维纳米材料的气敏机理,提出了SnO_2一维纳米材料的气敏机理模型。用该气敏机理能很好地解释相关的实验结果。
Nanoscale one-dimensional (1-D) materials of SnO_2 nanorods, SnO_2 nanorods doped Cd~(2+) and SnO_2 nanorods doped Zn~(2+) were produced by a new method and technology of preparation. It was researched that the method and the technology of preparation, the structures, the growth mechanism of SnO_2 nanorods were studied. Comparing SnO_2 nanorods materials with SnO_2 nano-powders and SnO_2 nano-particles coating on SiO_2 ball prepared, the properties in infrared absorption spectra (IR), redox, gas sensitive of SnO_2 nanorods materials were studied. High sensitivity and high selectivity new gas sensors of SnO_2 nanorods materials were investigated too. Some new results were obtained in this paper. The results are as follows:
     1. Preparation and characterizations of SnO_2 nanorods
     A new synthesis method of SnO_2 nanorods developed based on the preparing way of SnO_2 nanorods via annealing the precursor powders, which were prepared by microemulsion system consisting of oil phase, water phase and surfactant. SnO_2 nanorods were produced via the growth in molten salt medium of precursors, which prepared applying by solid-state reaction coated surfactants at room temperature. It was obtained that the preparing techniques of SnO_2 precursors and SnO_2 nanorods.
     It is found that SnO_2 nanorods prepared via the new synthesis method were single crystal materials. The diameter and length of the SnO_2 nanorods are in the range of 5nm to 100nm and several micrometers depended on the growth temperature and time. The atomic composition of Sn and O was calculated by using peak area sensitivity factors. The results showed that the atomic ratio of Sn/O was changed from 1:1 to 1:2. The deviation of composition from stoichiometry caused by oxygen vacancies was strongly affected by the growth temperature. Lower growth temperature, higher atomic ratio of Sn and O. Contradictorily, higher growth temperature, closer to the stoichiometry of atomic ratio of Sn and O.
     2. Synthesis and characterizition of SnO_2 nanorods doped Cd~(2+) or Zn~(2+)
     In molten salt medium, two kinds of SnO_2 nanorods doped Cd~(2+) or Zn~(2+) were obtained via annealing the precursors of SnO_2 powders doped Cd~(2+) or Zn~(2+), which were prepared by redox reaction in microemulsion system. The structure and chemical composition of SnO_2 nanorods doped Cd(2+) or Zn(2+) were characterized by means of XPS and XFS(X-ray fluorescence spectrometry). It is found that the content of CdO in SnO_2 nanorods materials doped Cd~(2+) is up to 3%, and the content of ZnO in SnO_2 nanorods materials doped Zn~(2+) is up to 1.5 %. The crystalline structure of SnO_2nanorods doped Cd~(2+) or Zn~(2+) is a substitutional solid solution crystalline, which was formed by Sn~(4+) replaced with Cd~(2+) or Zn~(2+). The work was not reported.
     3. Growth processes and mechanism of SnO_2 nanorods in molten salt medium
     The growth processes and mechanism of SnO_2 nanorods in molten salt medium were investigated. The growth of SnO_2 nanorods is a process of homogeneously dispersed particles of SnO_2 precursors growing into SnO_2 whiskers via self assembly, forming thin SnO_2 nanorods, and gradually growing up in molten salt medium. The main feature of this procedure is a solid transformation forming process of SnO_2 crystalline from nano-particles of 0-D to nanorods of 1-D in molten salt medium.
     In molten salt, the growth mechanism of SnO_2 nanorods is that molten salt provide the liquid environment, in which dispersed particles of SnO_(2-δ) nano-crystal can diffuse along the dislocations in tubes. SnO_2 was formed by divergent reaction of SnO contained in SnO_(2-δ), and take the tube dislocations as "template" oriented growth via self assembly derived by decreasing the surface energy of homogeneously dispersed SnO_(2-δ) particles, and controlled by VLS growth mechanism. Eventually, SnO_(2-δ) particles grow into SnO_2 nanorods in the tube dislocations of molten salt. The growth mechanism of SnO_2 nanorods in molten salt medium is a new mechanism of 1-D nano-materials.
     4. Study on infrared absorption characteristics of SnO_2 nanorods
     The infrared absorption characteristics of SnO_2 nanorods with different diameters were investigated by infrared absorption spectra (IR). It is found that there existdouble peaks at 475.2cm~(-1) and 680.5cm~(-1) of the vibrational modes of Sn-O band in the low frequency range 400-1000 cm~(-1). The IR modes of Sn-O band depend on the diameter of SnO_2 nanorods closely. The smaller the diameter is, the wider the IR peaks become. The active IR mode at 475.2cm~(-1) shifts to high frequency(blue shift) in accordance with decrease of diameter of SnO_2 nanorods. On the other hand, the active IR mode at 680.5cm~(-1) shifts to low frequency(red shift) in accordance with decrease of diameter of SnO_2 nanorods. This novel phenomenon about the infrared absorption spectra of SnO_2 nanorods with different diameters was investigated for the first time.
     Being similar to the infrared absorption spectra of SnO_2 nanorods, the infrared absorption spectra of SnO_2 nanorods doped Cd~(2+) or Zn~(2+) have double peaks of the vibrational modes of Sn-O band in the low frequency range 400-1000 cm~(-1), too. But the two active IR modes shift to low frequency(red shift) in accordance with decreasing of nanorods diameter at the same time. It is different from the infrared absorption spectra of SnO_2 nanorods due to the substitutional solid solution crystalline structure of SnO_2 nanorods doped Cd~(2+) or Zn~(2+).
     5. Redox properties and new reaction thermodynamics mechanism of SnO_2 nanorods
     The redox properties of SnO_2 nanorods materials were investigated by means of H_2-TPR. The results showed that the better redox properties of SnO_2 nanorods ascribed to higher oxidizing activity induced adsorbed oxygen on the surface of SnO_2 nanorods. The slow-reaction temperature of H_2 consumption was started at 320℃. The reaction mechanism of SnO_2 nanorods is in the employ of H_2 consumption reaction of the desorbed oxygen and the divergent reaction of SnO_2.
     The redox properties of SnO_2 nanorods materials doped Cd~(2+) or Zn~(2+) were similar to redox properties of SnO_2 nanorods materials. But the started slow-reaction temperature of H_2 consumption were reduced in a large degree due to the catalytic effect of CdO or ZnO. The reaction was started at 270℃and the H_2 consumption peak was at 510℃in H_2-TPR profile of SnO_2 nanorods materials doped Cd~(2+). In the meanwhile, the reaction was started at 180℃and the H_2 consumption peak was at 420℃in H_2-TPR profile of SnO_2 nanorods materials doped Zn~(2+). The reaction mechanism submits to catalytic reaction of CdO or ZnO cooperated with H_2 consumption reaction of the desorbed oxygen, the divergent reaction of SnO_2 and reduction reaction of Cd~(2+) or Zn~(2+). This work of reaction mechanism was reported for the first time.
     6. Research on gas sensing properties and new gas sensitive mechanism of SnO_2 1-D nano-materials.
     Two kinds of gas sensor have been desired with new gas-sensing materials based on SnO_2 nanorods and mixture materials of SnO_2 nanorods with SnO_2 nano-powders for the first time. It was discovered that sensors exhibited higher sensitivity, better selectivity, better stability, and better response and reversion to ethanol (C_2H_5OH). Sensors based on SnO_2 nanorods materials doped Zn~(2+) illustrated the best sensitivity to ethanol and sensors based on SnO_2 nanorods materials was inferior to it. Sensitivity to ethanol of the sensors based on SnO_2 nanorods materials doped Cd~(2+) followed them. The work was not still reported.
     The gas sensitive mechanism of SnO_2 nanorods was put forward according to structure characteristics of SnO_2 nanorods gas sensitive materials with deviated from stoichiometry, to adsorption properties and interface principle, to grain size and surface-to-volume ratios associated with 1-D nanostructures, and to the tunnel of electrical conductivity theory. Relative experiment results of the gas sensing properties of SnO_2 nanorods materials can be explain very well with using the mechanism pattern.
引文
[1] Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nonowire building blocks[J], Science, 2001, 294: 1313-1316.
    [2] Bachtold A, Hadley P, Nakanishi T et al., Logic circuits with carbon nanotube transistors [J], Science, 2001, 294 : 1317-1320.
    [3] Collier C P, Vossmeyer T, Heath J R et al., Nanocrystal superlattices[J], Annu. Rev. Phys. Chem., 1998, 49: 371-405.
    [4] Iijima S, Helical microtubules of graphitic carbon[J], Nature, 1991,354: 56-58.
    [5] Tang Y H, Zhang Y F, Lee C S, et al., Mater.Res.SEC.Symp.Proc.(Advances in Laser Ablation of Mtehals) [C], 1998, 526:73.
    [6] Morlaes A.M., Lieber C. M.,.Semiconductor nanowires[J], Science, 1998, 279: 208.
    [7] 张立德,解思深主编,纳米材料和纳米结构——国家重大基研究项目新进展[M].化学工业出版社,材料科学与工程出版中心,北京,2005,pp113-136.
    [8] Tager A A, Routkeviteh D, Haruyama J,et al, NATO ASI Ser.E (Future Trends in Microelectronics) [C], 1996, 323:171-183.
    [9] Ledentsoy N N, Proe. Cryst. Crowth Charact. Mater[M]. 1997(Pub 1998), 35(2-4): 289-305.
    [10] 张亚利,郭玉国,孙典亭.纳米线研究进展(Ⅰ):制备与生长机制[J],材料科学与工程.2001,19:131-136.
    [11] Wagner R S, Ellis W C, Vapor-liquid-solid mechanism of single crystal growth[J], Appl. Phys. Lett., 1964, 4: 89-90.
    [12] Wu Y Y, Yang P D. Direct Observation of Vapor-Liquid-Solid anowire Growth[J], J. Am. Chem. Soe., 2001, 123:3165-3166.
    [13] Wang Y W, Meng G W, Zhang L D et al.,Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence [J], Chem. Mater., 2002, 14:1773-1777.
    [14] Duan X, Lieber C M., Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires[J], J. Am. Chem. Soc, 2000,122:188-189.
    [15] Peng X S, Zhang L D, Meng G W et al, Photoluminescence and Infrared Properties of α-Al_2O_3 Nanowires and Nanobelts[J], J. Phys. Chem. B, 2002, 106:11163-11167.
    [16] Wang Y W, Zhang L D, Wang G Z, et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J], J.Cryst. Growth, 2002, 234: 171-175.
    [17] Pan Z W, Dai Z R, Wang Z L et al. Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires[J], J. Am. Chem. Soc, 2002, 124:1817-1822.
    [18] Yang P D, Wu Y Y, Fan R. International Journal of Nanoscience[J], 2002, 1:1.
    [19] Yang P D, Lieber C M. Nanorod-superconductor composites: A pathway to materials with high critical current densities[J], Science, 1996, 273:1836-1840.
    [20] Yang P D, Lieber C M, J. Mater. Res, 1997,12:2981.
    [21] Trentler T. J., Hickman K. M., Buhro W. E, et al. Solution-liquid-so lid growth of crystalline III-V semiconductors-An analogy to vapor-liquid-solid growth[J], Science. 1995, 270: 1791-1794.
    [22] W.E.Buhro, K.M.Hickman, T.J.Trentler, Turning down the heat on semiconductor growth: Solution-chemical syntheses and the solution-liquid-solid mechanism[J], Adv.Mater, 1996, 8: 685-688.
    [23] Zhang R Q, Chu T S, Cheung H F, et al. Mechanism of oxide assisted nucleation and growth of silicon nanostructures [J]. Materials Science and Engineering C, 2001,16 :31-35.
    [24] Zhang Y F, Tang Y H, Lee S T et al. Germanium nanowires sheathed with an oxide layer[J]. Phys.Rev.B , 2000,15 :4518-4521.
    [25] Lee S T, Wang N, Zhang Y F et al. Mater. Res. Bull, 1999, 24:36.
    [26] Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducting nanowires[J], Adv. Mater, 2003, 15:635-640.
    [27] Shi W.S, Zheng Y.F, Wang N, Lee C.S, Lee S.T. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires[J]. Appl. Phys.Let. 2001, 78: 3304-3306.
    [28] Yu D P,. Xing Y J, Hang Q L et al. Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism[J], Physica E , 200, 19:305-309.
    [29] Huczko A. Template based synthesis of nanomaterials[J]. Appl. Phys A, 2000, 70 (4): 365-376.
    [30] Martin B R, Dermody D J, Reiss B D et al., Orthogonal self-assembly on colloidal gold platinum nanorods[J]. Adv. Mater., 1999, 11 (2): 1021-1025.
    [31] Pea D J, Mbindyo J K N, Carado A J et al, Template growth of photoconductive metal CdSe metal nanowires[J]. J.Phys.Chem., B, 2002, 106(30): 7458-7462.
    [32] Molares M E T, Buschmann V, Dobrev D et al., Single crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes[J]. Adv. Mater,2001,13 (1):62-65.
    [33] Sapp S A, Lakshmi B B, Martin C R, Template synthesis of bismuth telluride nanowires[J]. Adv. Mater., 1999, 11(5): 402-403.
    [34] Zhang X, Yao B, Zhao L, Liang C et al. Electrochemical fabrication of single crystalline anatase TiO_2 nanowire arrays[J]. J.Electrochem. Soc., 2001, 148 (7): 398-400.
    [35] Wang Y W, Zhang L D, Meng G W, Peng X S et al. Fabrication of ordered ferromagnetic nanomagnetic alloy nanowired array and their magnetic property dependence on anealling temperature [J]. J. Phys. Chem B, 2002, 106 (10): 2502-2507.
    [36] Cheng G S, Chen S H, Zhang L D et al, Mater. Sci. Eng. A, 2000, 286:165
    [37] Zhang X Y, Zhang L D, Meng G Wet al., Synthesis of Ordered Single Crystal Silicon Nanowire Arrays[J], Adv. Mater., 2001, 13:1238-1241.
    [38] Li Y, Meng G W, Zhang L D et al., Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J], Appl. Phys. Lett., 2000, 76: 2011-2013.
    [39] Tang Z, Kotov N A, Giersig M, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires [J]. Science, 2002, 297(5579): 237-240.
    [40] Satoshi K, Hanabusa K, Hamasaki N et al., Preparation of TiO_2 hollow fibers using superamolecular assemblies[J]. Chem. Mater., 2000, 12(6): 1523-1525.
    [41] 董亚杰,李亚栋;一维材料的合成、组装与器件[J],科学通报,2002,9(47):641-648..
    [42] Hartanto A B, Ning X, Nakata Y, Okada T, Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume[J], Applied Physics (Materials Science & Processing), 2004, A 78:299-301.
    [43] Okada T, Agung B H, Nakata Y, ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition[J], Applied Physics A(Materials Science & Processing), 2004, A79: 1417-1419.
    [44] Zhang H Z, Kong Y C, Wang Y Z.. Ga_2O_3 nanowires prepared by physical evaporation [J], Solid State Commun. 1999, 109(11): 677-682.
    [45] Tang C C, Fan S S, Marclamy D. . Silica-assisted catalytic growth of oxide and nitride nanowires[J]. Chem. Phys. Lett , 2001, 333: 12-15.
    [46] Cui Z, Meng G W, Huang W D, et al., Preparation and characterization of MgO nanorods[J], Mater.Res. Bull., 2000, 35: 1653-1659.
    [47] 胡卫兵,史伯安,但悠梦 等, A novel chemical route to SiO_2 nanowiresA novel chemical route to SiO_2 nanowires [J], Science in China,Ser.B, 2002, 32(4): 164-167.
    [48] Meng G W, Peng X S , Wang Y W, et al ., Applied Physis A(Materials Science Processing) 2003, A76(1): 119-121.
    [49] Zhou J, Deng S Z, Chen J, et al. Synthesis of crystalline alumina nanowires and nanotrees[J], Chem. Phys. Lett., 2003, 365(5-6): 505-508.
    [50] Bai Z G, Yu D P , Zhang H Z , et al., Nano-scale GeO_2 wires synthesized by physical evaporation[J], Chem. Phys. Lett., 1999, 303: 311-314.
    [51] Liang C H., Meng G. W, Lei Y et al., Catalytic growth of semiconducting In_2O_3 nanofibers[J], Adv. Mater., 2001,13:1330-1333.
    [52] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J].Science, 2001,291: 1947-1949.
    [53] .2001, Z. R. Dai, Z. W. Pan and Z. L. Wang , Ultra-long single crystalline nanoribbons of tin oxide Solid State[J], Commun 118: 351-354.
    [54] Xu C K, Xu G D, Liu Y K, et al. Preparation and characterization of SnO_2 nanorods by thermal decomposition of SnC_2O_4 precursor [J], Scripta Materialia, 2002, 46(1) :789-794.
    
    [55] Xu C K, Xu G D, Liu Y K, et al.. A simple and novel route for the preparation of ZnO nanorods, Solid State Commun[J], 2002, 22(3-4): 175-179.
    [56] Xu C K, Liu Y K, Xu G D, et al.,Preparation and characterization CuO nanorods by thermal decomposition of CuC_2O_4 precursor[J], Mater. Res. Bull., 2002, 37: 2365-2372.
    
    [57] Zheng M J, Zheng L D, Zhang X Y.. Fabrication and optical absorption of rdered indium oxide nanowire arrays embedded in anodic alumina membranes[J], Chem. Phys. Lett., 2001, 334:298-302.
    
    [58] Limmer S J, Seraji S, Wu Yun, Template-Based Growth of Various Oxide Nanorods by Sol-Gel Electrophoresis[J], Adv. Func. Mater., 2002, 12:59-64.
    
    [59] Lei Y, Zhang L D., J. Mater. Res., 2001, 16(4): 1138-1144.
    
    [60] Lakzhmi B B, Patrissi C J, Martin C R [J]. Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures[J], Chem. Mater., 1997, 9 :2544-2550.
    
    [61] Limmer S J, Seraji S, Forkess M J.. Electrophoretic growth of lead zirconate titanate nanorods[J], Adv. Mater., 2001, 13(16) :1269-1272.
    
    [62] Wang Y C, Leu I C, Hon M H.[J]. Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition[J], J. Cryst. Growth., 2002,237-239: 564-568.
    
    [63] Ajayan P M, Stephan O, Redilich P, et al., Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures[J], Nature, 1995, 375: 564-567.
    
    [64] Han W, Fan S, Li Q et al, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J], Science, 1997, 277:1287-1289.
    
    [65] Satishkumar B C, Govindaraj A, Vogl E M et al., J. Mater. Res.,1997,12: 604.
    
    [66] Rao C N R, Satishkumar B C, Govindaraj A.. Zirconia nanotubes[J], Chem. Commun, 1997,1581-1582.
    
    [67] Satishkumar B C ,Govindaraj A ,Rao C N R., Synthesis of metal oxide nanorods using carbon nanotubes as templates [J], J .Mater. Chem., 2000,10: 2115-2119.
    
    [68] Hansoo Kim, Sigmund W.. Zinc oxide nanowires on carbon nanotubes[J], Appl. Phys.Lett., 2002, 81(11): 2085-2087.
    
    [69] Tang Q, Qian Y T et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J], Chem. Comm., 2004, 712-713.
    
    [70] Tang Q, Qian Y T et al. Preparation, characterization and optical properties of terbium oxide nanotubes[J], J. Mater. Chem., 2003, 3:3103-3106.
    [71] Kasuga T., Hiramastsu M, Hoson A. et al., Surface Dilational Properties of Protein and Lipid Films at the Air-Water Interface[J], Langmuir, 1998, 14: 2160-2166.
    [72] Yu D B, Qian Y T et al., Metastable Hexagonal In203 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure[J], Adv. Funct. Mater., 2003, 13 : 497-501.
    [73] Claudia P, Andreas K, Horst W., Angew.Chem.Int.Ed., 2001, 41(7) : 1188-1191.
    [74] Liu Y K, Zheng C L, Wang W Z, et al. Synthesis and Characterization of Rutile SnO_2 nanorods[J]. Advanced Materials, 2001, 13(24): 1883-1887.
    [75] Guo L, Wu Z H, Liu T., Synthesis of novel Sb_2O_3 and Sb_2O_5 nanorods[J], Chem. Phys. Lett., 2000, 318(1~3):49-52.
    [76] Han W Q, Kohler-Redlich P, Ernst., Growth and microstructure of Ga_2O_3 nanorods[J], Solid.State.Commun.,2000, 115: 527-529.
    [77] Li Y B, Bando Yoshio, Sato Tadao., Preparation of network-like MgO nanobelts on Si substrate[J], Chem.Phys.Lett., 2002,359(1~2): 141-145.
    [78] Fu Y Y, Chen J, Zheng H, Synthesis of Fe_2O_3 nanowires by oxidation of iron.[J], Chem.Phys.Lett., 2001, 350(5~6):491-494.
    [79] Ni Y H,Ge X W, Liu H R., Mater.Lett. ,2001,49:185~188.
    [80] 庄京,邓兆祥,梁家和,β-PbO_2纳米棒及Pb_3O_4纳米晶的制备与表征[J],高等学校化学学报,2002,23(7):1223-1226.
    [81] Beermann N, Vayssieres L, Lindquist S E et al., J.Electro.Chem. Soc., 2000, 147:2456.
    [82] Kumar R, Koltypin Y, Xu X Net al.[J], Fabrication of magnetite nanorods by ultrasound irradiation[J], J. Appl. Phys. 2001, 89:6324-6328.
    [83] Wang W Z, Wang G H, Wang X S, et al.[J], Synthesis and characterization of Cu20 nanowires by a novel reduction route[J], Adv. Mater., 2002, 14(1):67-69.
    [84] Wang W, Zhan Y, Wang G., One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant [J], Chem. Commun., 2001,727-728.
    [85] Wang X, Li Y., Selected-Control Hydrothermal Synthesis of α-and β-MnO_2 Single Crystal Nanowires[J], J.Am.Chem. Soc, 2002, 124: 2880-2881.
    [86] Niederberger M, Krumeich F, Muhr H J,et al. Synthesis and characterization of novel nanoscopic molybdenum oxide fibers [J], J. Mater. Chem., 2001, 11: 1941-1945.
    [87] Ryan J V, Berry A D, Anderson M L et al.., Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO_2[J], Nature, 2000, 406:169-172.
    [88] Hunag M H, Mao S, Feik H et al., Room-temperature ultraviolet nanowire nanolasers[J], Science, 2001,292:1897-1899.
    [89] Wang N, Tang Y H, Lee S T et al. Si nanowires grown from silicon oxide[J], Chem. Phys. Lett., 1999, 299(2):237-242.
    
    [90] Peng X S, Wang X F, Zhang L D, Appl. Phys. A, 2002, 74 : 831.
    [91] Zheng M J, Zhang L D, Li G H etal., Ordered indium-oxide nanowire arrays and their photoluminescence properties [J], Appl. Phys. Lett., 2001, 79:839-841.
    [92] Peng X S, Meng G W, Zhang L D et al., Synthesis and photoluminescence of single-crystalline In_2O_3 nanowires [J], J.Mater. Chem., 2002, 12:1602-1605.
    [93] Gundiah G, Govindaraj A, Rao C N R, Nanowires, nanobelts and related nanostructures of Ga_2O_3[5], Chem. Phys. Lett., 2002, 351(3~4):189-194.
    [94] Li J, Chen X, Qiao Z et al., J. Phys.: Condens. Matter., 2001,13 : L937.
    [95] Yu D P, Hang Q L, Ding Y, et al., Amorphous silica nanowires: Intensive blue light emitters[J], Appl. Phys. Lett .,1998, 73(21):3076-3078.
    [96] Li C, Zhang D H, Zhou C W et al. In_2O_3 nanowires as chemical sensors[J], Appl. Phys. Lett., 2003, 82:1613-1615.
    [97] Varghese O K, Gong Da-wei. Hydrogen sensing using titania nanotubes[J]. Sensors and Actuators B, 2003, 93(1-3): 338 - 344.
    [98] Zhang D H, Li C, Zhou C W et al., Electronic transport studies of single-crystalline In_2O_3 nanowires[J], Appl. Phys. Lett., 2003, 82:112-114.
    [99] Nam C Y, Tham D, Fischer J E. Effect of the polar surface on GaN nanostructure morphology and growth orientation[J], Appl. Phys. Lett., 2004, 85: 5676-5678.
    
    [100] Kong X Y, Wang Z L., Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts[J], Nano.Lett., 2003, 3 (12): 1625-1631.
    [101] Lakshmi B B, Dorhout P K, Martin C R.. Sol-Gel Template Synthesis of Semiconductor Nanostructures[J],Chem. Mater., 1997, 9 : 857-862.
    [102] Zhang W, Oyama S T.. In Situ Laser Raman Studies of Intermediates in the Catalytic Oxidation of Ethanol over Supported Molybdenum Oxide[J], J. Phys. Chem., 1996, 100:10759-10767.
    [103] Patzke G R, Krumeich F, Nesper R., Angew. Chem. Int . Ed.2002, 41: 2446-2461.
    [104] 尤金跨,杨勇,舒东,等.锂离子电池纳米电极材料研究[J],电化学,1998,4(1):94-100.
    [105] 严东生,冯端.材料新星——纳米材料科学[M].湖南科学出版社.1997.
    [106] 包建春,徐正.无机化学学报,2002,18(10):965-975.
    [107] 郝润蓉,方锡义,钮少冲编著,无机化学丛书(第三卷)[M],北京:科学出版社,1998,pp:380-450.
    [108] M. De Murcia, M. Egee, J.P. Fillard. J. Phys. Chem. Solid, 1978, 39: 629.
    [109] T. Seiyama, A. Kato, K .Fujiishi, et al. A new detector for gaseous components using semiconductor films[J]. Anal Chem, 1962,34(11): 1502-1503
    [110] H.F. Sterling, R.C.G. Swan, Solid State Electron, 1965,8:653
    [111] B.L Yu, G.L. Zhang, GQ. Tang, H.T. Su, W.J. Chen, Chinese Science Bulletin, 1996, 41: 1431.
    [112] Wang C S, Fan C G, Chinese Keji Yongbao, 1992, 3: 27.
    [113] 保龙,吴晓春,邹炳锁,物理化学学报,1994,10:103.
    [114] ltm, M. Haradome, IEEE Trans, ED-26, 1979, 219.
    [115] 朱文会,徐甲强,陈源,应用科学学报,1993,11:104.
    [116] 徐甲强,秦建华,张惠敏,传感器世界,1997,3:7.
    [117] 蔡晔,葛忠华,陈银飞.金属氧化物半导体气敏传感器的研究和开发进展[J].化工生产与技术,1997,14(2):29-34.
    [118] 傅敏恭,刘传中,化学传感器,1991,11:16.
    [119] 赵世勇,魏培海,刘俊富,淳于宝珠,化学传感器,1995,15:119.
    [120] Bond G C, Mulloy L R, Fuller M J, J. Sos. Chem., 1975, 19: 798.
    [121] Nishiyama S, Kubota T, J. Mol. Catal A: Chem., 1997, 120: L17.
    [122] 魏昭彬,陈怡萱,李文钊,物理化学学报,1988,4:478.
    [123] 罗晓呜,陈懿,韩世莹,催化学报,1992,13:257.
    [124] Solymosi, F&Bozso, in "Proceedings of the 6th International Congress on Catalysis", Eds: Bond G C et al., The Chemical Society, London, 1997, Vol.1, pp365.
    [125] 刘平,周廷云,林华香,傅贤智,TiO_2/SnO_2复合光催化剂的耦合效应[J],物理化学学报,2001,17(3):265-269.
    [126] Reed T B, Roddy J T, Mariano A N, Vapor growth of tin oxide crystals[J], J. Appl. Phys. 1962, 33:1014.
    [127] M Nagano. Growth of SnO_2 whiskers by VLS mechanism[J]. Journal of Crystal Growth, 1984, 66:377-379.
    [128] Dai Z R, Gole J L, Stout J D, et al. Tin oxide nanowires, nanoribbons, and nanotubes [J]. J Phys Chem B, 2002, 106:1274.
    [129] Hu J Q, Ma X L, Shang N G, et al. Large-scale rapid oxidation synthesis of SnO_2 nanoribbons [J]. J Phys Chem B, 2002, 106: 3823-3827.
    [130] Sun S H, Meng G W, Wang Y W, et al. Large-scale synthesis of SnO_2 nanobelts [J]. Appl Phys A, 2003, 76: 287-289.
    [131] Jian J K, Chen X L, Wang W J, et al. Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites [J]. Appl Phys A, 2003, 76: 291-294.
    [132] Peng X S, Zhang L D, Meng G W et al., Micro-Raman and infrared properties of SnO_2 nanobelts synthesized from Sn and SiO_2 powders[J], J. Appl. Phys., 2003, 93:1760-1763.
    [133] Chen Y X, Campbell L J, Zhou W L, Self-catalytic branch growth of SnO_2 nanowire junctions[J], Journal of Crystal Growth, 2004, 270:505-510.
    [134] Leea J S, Sima S K, Mina B, Choa K, Kimb S W etal., Structural and optoelectronic properties of SnO_2 nanowires synthesized from ball-milled SnO_2 powders[J], Journal of Crystal Growth, 2004, 267:145-149.
    [135] Li Zongmu, Xu Faqiang, Synthesis and Characterization of SnO_2 One-dimensional Nanostructures[J], Chinese Journal of Chemistry, 2005, 23, 337-340.
    [136] Yang Rusen, Wang Zhong Lin, Springs, rings, and spirals of rutile-structured tin oxide nanobelts[J], J. AM. CHEM. SOC. 2006, 128, 1466-1467.
    [137] S. Shukla, V. Venkatachalapathy, S. Seal, Thermal evaporation processing of nano and submicron tin oxide rods[J], J. Phys. Chem. B 2006, 110, 11210-11216.
    [138] L. Zanotti, M. Zha, D. Calestani, E. Comini, and G. Sberveglieri, Growth of tin oxide nanocrystals[J], Cryst. Res. Technol. 2005, 40, 10-11, 932-936.
    [139] Liu Y K, Zheng C L, Wang W Z, et al. Production of SnO_2 nanorods by redox reaction[J]. Journal of Crystal Growth, 2001,233:8-12.
    [140] Zheng C L, Chu Y Y, Wang G H, et al., Synthesis and characterization of SnO_2 nanorods[J]. Materials Letters, 2005, 59:2018-2020.
    [141] Sun J Q, Wang J S, Wu X C, Zhang G S, Novel method for high-yield synthesis of rutile SnO_2 nanorods by oriented aggregation[J], Crystal Growth & Design, Vol. 6, No. 7, 2006 1585-1587.
    [142] S. Budak, G.X. Miao, M.Ozdemir etal, Growth and characterization of single crystalline tin oxide (SnO_2) nanowires[J], Journal of Crystal Growth, 2006, 291:405-411.
    [143] Wang J X, Liu D F, Yan X Q, Yuan H J, Ci L J etal, Growth of SnO_2 nanowires with uniform branched structures [J], Solid State Communications, 2004, 130:89-94.
    [144] Park Jae Hwan, Choi Young Jin, Park Jae Gwan, Evolution of nanowires, nanocombs, and nanosheets in oxide semiconductors with variation of processing conditions [J], Journal of the European Ceramic Society 2005, 25: 2037-2040.
    [145] Z.W. Chen, J.K.L. Lai, C.H. Shek, Nucleation mechanism and microstructural assessment of SnO_2 nanowires prepared by pulsed laser deposition[J], Physics Letters A, 2005, 345: 391-397.
    [146] D. Calestani, M. Zha, A. Zappettini etal, Structural and optical study of SnO_2 nanobelts and nanowires[J], Materials Science and Engineering C, 2005, 25:625-630.
    [147] D. Calestani, L. Lazzarini, G. Salviati, and M. Zha, Morphological, structural and optical study of quasi-1D SnO_2 nanowires and nanobelts [J],Cryst. Res. Technol., 2005, 10-11 (40), 937-941.
    
    [148] Liu Zuqin, Zhang Daihua, Song Han, Chao Li, Laser ablation synthesis and electron transport studies of tin oxide nanowires [J], Advanced materials, 2003, 15(20), 1754-1757.
    [149] Maojun Zheng, Guanghai Li, Xinyi Zhang, Fabrication and Structural Characterization of large-scale uniform SnO_2 nanowire array embedded in anodic alumina membrane[J], Chem. Mater. 2001, 13, 3859-3861.
    [150] Zhang D F, Sun L D, Jia C J, Yan Z G etal., Hierarchical assembly of SnO_2 nanorod arrays on a-Fe_2O_3 nanotubes: A case of interfacial lattice compatibility [J], J.AM.CHEM. SOC. 2005, 127, 13492-13493.
    [151] Caixin Guo, Minhua Cao, Changwen Hu, A novel and low-temperature hydrothermal synthesis of SnO_2 nanorods [J], Inorganic Chemistry Communications, 2004, 7: 929-931.
    
    [152] Cheng Bin, Joette M. Russell, Shi Wensheng eta ., Large-scale, solution-phase growth of single-crystalline SnO_2 nanorods[J], J. AM. CHEM. SOC. 2004, 126, 5972-5973.
    [153] Zhang D F, Sun LD, Lu Y J etal., Low temperature fabrication of highly crystalline SnO_2 nanorods [J], Advanced materials, 2003, 15(12):1022-1025.
    
    [154] Liu B, Zeng H C, Salt-assisted deposition of SnO_2 on a-MoO_3 nanorods and fabrication of polycrystalline SnO_2 nanotubes[J], J. Phys. Chem. B 2004, 108, 5867-5874.
    
    [155] Chen Deliang, Gao Lian, Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process[J], Chemical Physics Letters, 2004,398:201-206.
    
    [156] Wang Y, Lee J Y, and Zeng H C, Polycrystalline SnO_2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application[J],Chem. Mater. 2005,17, 3899-3903.
    
    [157] Comini E, Faglia G, Sberveglieri G et al., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J]. Appl. Phys.,Lett.,2002, 81(10): 1869-1871.
    
    [158] Matt L, Hannes K, Benjamin M, Yang P, et al., Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature [J],Angewandte Chemie International Edition, 2002,41(13): 2405 - 2408.
    [159] Andrei K, Zhang Y X, Cheng G S , et al. Detection of CO and O_2 using tin oxide nanowire sensors [J]. Adv. Mater., 2003,15(12): 997 -1000.
    [160] Abello L, Bochu B, Gaskov Aetal. [J] J. Solid. State. Chem., 1998,135:78.
    [161] Liu Y K, Dong Y, Wang G H., Far-infrared absorption spectra and properties of SnO_2 nanorods[J], Appl. Phys. Lett., 2003, 82:260-262.
    [162] 王中林 编著,纳米线程纳米带——材料、性能程器件[M],北京:清华大学出版社,2004,pp10-11.
    [163] 康昌鹤,唐省吾等编著.气、湿敏感器件及其应用[M].北京:科学出版社,1988,pp5-98.
    [164] 张立德,古宏晨主编.超微粉体材料及其应用[M].石油化工出版社.
    [165] 吴兴惠,王彩君编著.传感器与信号处理[M].北京,电子工业出版社,1998.
    [166] Wang Y D, Sun X D, Li Y F, et al. Perovskite-type NiSnO_3 used as the ethanol sensitive material[J]. Solid-State Electron, 2000, 44:2009-2014.
    [167] 张义华,王学勤,王祥生等.纳米SnO_2的制备及其气敏特性分析[J].传感器技术.1999,6:1-7.
    [168] 赵全明,李玲玲,王广健等,半导体纳米氧化物气敏传感器的制备及应用[J],仪器仪表学报,2002,23(3)增刊:343—344.
    [1] 黄惠忠 等编著,纳米材料分析[M],北京,化学工业出版社,2003:1-8.
    [2] 周瑞发,韩雅芳,陈祥宝编著,纳米材料技术[M],北京,国防工业出版社,2003:1-17.
    [3] 王世敏,许祖勋,傅晶 编著,纳米材料制备技术[M],北京,化学工业出版社,2002:1-6.
    [4] 阎峻,纳米材料的表征[J],材料导报,2001,4(15):53-55
    [5] Arnold M S, Avottris, Pan Z W, Wang L, Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts[J], Phys. Chem. 2003, B 107: 659-663.
    [6] Cui Y and, Lieber C M, Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J], Science, 2001, 291:851-853.
    [7] Collins P C, Arnold M S and Avouris P H., Engineering carbon nanotubes and nanotubes circuits using electrical breakdown[J], Science, 2001, 292:706-710.
    [8] Kong J, Franklin N, Wu C, Pan Set al, Nanotube molecular wires as chemical sensors[J], Science, 2000, 287: 622-625.
    [9] Comini E, Faglia G, Sberveglieri G, et al .Tin oxide nanobelts electrical and sensing properties [J], Sensors and Actuators B, 2005, 111-112: 2-6.
    [10] 胡平,徐甲强,刘艳丽.纳米材料SnO_2的室温固相合成及其气敏特性研究[J].传感器技术,2001,20(9):8-9
    [11] 徐甲强,刘艳丽,牛新书.室温固相合成In_2O_3及其气敏性能研究[J].无机材料学报,2002,17(2):367-370
    [12] 徐甲强,刘艳丽,牛新书.半导体金属氧化物的室温固相合成研究[J].贵州大学学报(自然科学版),2001,18(3):196-198
    [13] 麦振洪,赵永男,微乳液技术制备纳米材料[J].物理,2001,2(30):106-110.
    [14] 谢刚 编著,熔融盐理论与应用[M],冶金工业出版社,北京,1998,pp6-7.
    [15] K. H. Yoon, Y. S. Cho and D. H.Kang, Review molten salt synthesis of lead-based relaxors[J], J.Mater.Science, 1998, 33:2977-2984.
    [1] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:441-451.
    [2] 张义华,郭新闻,王祥生,等.气相沉积法分子封装SnO_2纳米半导体材料的研究[J].功能材料,1999,30(6):651-652
    [3] Jo M H, Park H H, Kim D J, et al. SiO_2 aerogel film as a novel intermetal dielectric [J]. J Appl Phys, 1997, 82(3): 1299-1304.
    [4] Jin Z.H., Jin Z.L., Savinell R.F. et al. Application ofnano-crystalline porous tin oxide thin film for CO sensing[J]. Sensors and Actuators, 1998, 52(1-2): 188-194
    [5] 索辉,向思清,朱玉梅.等,SnO_2纳米晶的溶胶-凝胶法制备及气敏性质[J],吉林大学自然科学学报,2000,3:49-51
    [6] Ando M, Suto S, Suzuki T, et al. Hydrogen sulfide sensing characteristics of tin oxide solderived thin films[J]. J Ceram Soc Jpn ,1996,104 (5) :409.
    [7] 蔡晔,葛忠华,陈银飞.纳米SnO_2及分子筛封装纳米SnO_2簇的湿敏性能研究[J].材料科学与工程,1998,16(1):60-64.
    [8] Hasegawa S, Tsukaoka T, Inokuma T, et al. Dielectric properties of fluorinated silicon dioxide films [J]. J Non-Cryst Solids, 1998, 240:154-165.
    [9] 石娟,吴世华,张守民 等,热解法制备SnO_2及其气敏性能研究[J],高等学校化学学报,2004,4(25):607-609.
    [10] 赵杰,赵经贵,高山等,二氧化锡气敏纳米粉体的红外光谱研究[J],光散 射学报,2004,3(16):234-236.
    [11] J.X. Zhou, M.S. Zhang, J.M.Hong, Structural and spectral properties of SnO_2 nanocrystal prepared by microemulsion technique[J]. Applied Physics A(Materials Science & Processing), 2005, A81:177-182.
    [12] 李玲编,表面活性剂与纳米技术[M],北京,化学工业出版社,2004:141-156.
    [13] 许珂敬,杨新春,刘风春 等,高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用[J],中国陶瓷,1999,5(35):15-15.
    [14] 孙继红,巩雁军,范文浩等,SiO_2-PEG凝胶体系织构特性的研究[J],高等学校化学学报,2000,1:95-98.
    [15] Xi Li, Baokun Xu, Zichen Wang, et al. J.Mater Sci.Lett., 1992, 11:1476-1479.
    [16] 曹立新,万海保,袁迅道等.SnO_2纳米粒子膜的性质和结构研究[J],化学物理学报,1999,2(12):192-196.
    [17] 佘家国,张联盟,童兵,等.Sol-gel工艺制备二氧化硅超细粉及其机理研究[J],硅酸盐通报,1992,3:43-48.
    [18] 张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.27-48.
    [19] Saad Hamzaoui, Mohamed Adnane, Effects of temperature and r.f. power sputtering on electrical and optical properties of SnO_2[J], Applied Energy , 2000, 65:19-28.
    [20] X.C. Wu, B.S. Zou, J.R. Xu etal, Chen, Nanostruct. Mater, 1997, 8:179-189.
    [21] C. Karman, D.W. Hahnemann, M.R. Hoffmann, J. Phys. Chem. 1988, 92:5196.
    [22] A.J. Aronson, C.F. Branford, A. Stein, Chem. Mater. 1997, 9:2842.
    [23] T subokawa N, Ich ioka H, Satoh T, et al. React.Funct. Po lym., 1998, 37: 75-79.
    [24] T subokawa N, Hayashi S, N ishimura J. Progress in Organic Coatings, 2002, 44 : 69-74.
    [25] Guo Z X, Yu J., Grafting of dendritic polyethers onto nanometre silica surface[J], J. Mater. Chem., 2002,12 (3): 468-472.
    [26] Hrubesh L W, Aerogel applications[J]. Journal of noncrystalline solids,1998, 225:335-342.
    [27] Husing N, Schubert U. Aerogele-luftige materialien:chemie,strukur und eigenschaften[J]. Angew. Chem., Int .Ed., 1998,377 (1/2) :22-47.
    [28] Prakash S S, Brinker C J, Hurd A J, Rao S M., Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrink-age[J]. Nature (London), 1995,374: 439-443.
    [29] 朱捷,朱红.正交设计在单分散球形SiO_2制备中的研究[J],功能材料,2005,4(36):577-579.
    [30] 赵辉,罗运军,李杰等,纳米SiO2表面超支化聚合物接枝改性的新方法[J],高分子材料科学与工程,2005,3(21):188-191.
    [1] Iijima S, Helical microtubules of graphitic carbon[J], Nature, 1991, 354: 56-58.
    [2] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001.
    [3] Li S Y,Lee C Y, Tseng T Y, Copper catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process[J].Journal of Crystal Growth, 2003, 247: 357-362.
    [4] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947-1949.
    [5] Dai Z R, Gole J L, Stout J D, et al. Tin oxide nanowires, nanoribbons, and nanotubes [J]. J Phys Chem B, 2002, 106: 1274.
    [6] Hu J Q, Ma X L, Shang N G, et al. Large-scale rapid oxidation synthesis of SnO_2 nanoribbons [J]. J Phys Chem B, 2002, 106: 3823.
    [7] Sun S H, Meng G W, Wang Y W, et al. Large-scale synthesis of SnO_2 nanobelts [J]. Appl Phys A, 2003, 76: 287-289.
    [8] Jian J K, Chen X L, Wang W J, et al. Growth and morphologies of large-scale SnO_2 nanowires, nanobelts and nanodendrites[J]. Appl Phys A, 2003, 76: 291-294.
    [9] Liu Y K, Zheng C Z, Wang W Z, et al. Production of SnO_2 nanorods by redox reaction[J]. Journal of Crystal Growth, 2001,233:8-12.
    [10] Xu C K, Xu G D, Liu Y K, et al. Preparation and characterization of SnO_2 nanorods by thermal decomposition of SnC_2O_4 precursor [J]. Scripta Mater, 2002, 46(11): 789-794.
    [11] Zhong C L, Zheng C L, Chu Y Y, et al. Synthesis and characterization of SnO_2 nanorods[J]. Materials Letters, 2005, 59:2018-2020.
    [12] 吴刚编著.材料结构表征及应用[M].北京,化学工业出版社.2002. p347-393.
    [13] 李泉.非化学计量比纳米微晶材料的XRD/XSP和ESR研究[J].化学学报.1995,53(4):381-385.
    [14] 冯端等编著,金属物理学(第二卷)——相变[M],北京,科学出版社,1998.
    [15] H. Iwanaga, M. Egashira, K. Suzuki, M. Ichihara, S. Takeuchi, J. Mater. Sci. Lett.1989, 8:1179.
    [16] H. Iwanaga, A. Tomizuka, N. Shibata, T. Matsumoto, H. Katsuki, M. Egashira, J. Crystal. Growth. 1987, 83:602.
    [17] 徐如人,庞文琴编著,无机合成与制备化学[M].北京,高等教育出版社,2001年6月:290-331.
    [1] Cheng B C, Xiao Y H, Zhang L D et al., The vibrational properties of one-dimensional ZnO:Ce nanostructures[J],Appl. Phys.Lett., 2004, 84:416-418.
    [2] Cheng B C, Xiao Y H, Zhang L D et al., Controlled Growth and Properties of One-Dimensional ZnO Nanostructures with Ce as Activator/Dopant[J], Adv. Funct. Mater., 2004, 14: 913-919.
    [3] 胡春,王怡中,汤鸿霄.环境科学进展,1995,3(1):55.
    [4] 符小荣,张枝刚,宋世庚等.TiO_2/Pt╱glass纳米薄膜的制备及对可溶性染料的光电催化降解[J],应用化学,1997,4(14):77-79.
    [5] Muradov N Z, Muzzey M Z. Solar Energy, 1996, 56:445.
    [6] Sukharev V, Wold A, Cao Y M, et al. J Solid State Chem, 1995, 119, 339.
    [7] Cui H, Dwight K, Soled S, et al. J Solid State Chem, 1995,I15:187.
    [8] Papp J, Soled S; Dwight M, et al. Chem Matter, 1994, 6:496.
    [9] Richard C, Boule P. Solar Mater Solar Cells, 1995, 38:431.
    [10] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001.
    [11] 王世敏,许祖勋,傅晶编著,纳米材料制备技术[M],北京:化学工作出版社,2001,p242-247.
    [12] 吕云阳,王文绍,刘颂禹,季振平.无机化学丛书(第六卷)[M],北京:科学出版社,1998,pp:671-786.
    [13] 冯端等著,金属物理学(第二卷)——相变[M],北京:科学出版社,1998, pp: 114-144.
    [14] 陈敬中 主编,现代晶体体化学——理论与方法[M],北京:高等教育出版社,2001,pp:113-233.
    [1] Iijima S.Helical microtubules ofgraphitic carbon[J], Nature, 1991,354: 56-58.
    [2] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:12-51.
    [3] Li S Y, Lee C Y, Tseng T Y. Copper catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process[J]. Journal of Crystal Growth, 2003, 247:357-362.
    [4] Yu D P, Xing YJ, Hang Q L, et al. Controlled growth of oriented amorphous silicon nanowires via solid-liquid-solid(SLS)mechanism[J]. Physics E, 2001, 9:305-309.
    [5] Zhang R Q, Chu T S, Cheung H F, et al. Mechanism of oxide assisted nucleation and growth of silicon nanostructures[J]. Materials Science and Engineering C, 2001, 16:31-35.
    [6] Li M K, Wang C W, Li H L. Preparation of well-aligned silicon nanowire arrays in aluminum oxide templates[J]. Chinese Science Bulletin, 2001, 46(14):1172-1175.
    [7] Li Y B, Bando Y, Golberg D, et al. WO_3 nanorods/nanobelts synthesized via physical vapor deposition process [J]. Chemical Physics Letters, 2003, 367:214-218.
    [8] 龚毅生,顾学民,臧希文等,无机化学丛书(第二卷)[M],北京:科学出版社,1998:290-302.
    [9] Yingkai Liu, Zhihui Liu, Guanghou Wanga, Synthesis and characterization of ZnO nanorods[J]. Journal of Crystal Growth, 2003, 252:213-218.
    [10] 徐如人,庞文琴编著,无机合成与制备化学[M].北京,高等教育出版社,2001年6月:290-331.
    [11] T.Kimura, T.Yamaguchi. Ceram. Internat., 1983, 9(1):13-17.
    [12] Li F, Xu J , Yu X, et al . One step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles [J]. Sensors and ActuatorsB, 2002, 81:165-169.
    [13] K.H. Yoon, Y. S. Cho and D. H.Kang, J.Mater.Sci,1998,33,2977.
    [14] Y.Ito, S.Shi, T.Kimura, T.Yamaguchi, J.Am.Ceram.Soc.78,2695(1995).
    [15] 谢刚 编著,熔融盐理论与应用[M],冶金工业出版社,北京,1998,pp6-7,101-118.
    [16] S.Amelinckx, in "Growth and perfection of crystals"[M](R.H.Doremus et al., eds.), Wiley, New York and London, 1958, p139.
    [17] S.Amelinckx, The direct observation of dislocations[M] (Frederick Seits, David Turnbull, eds.), Academic Press, New York and London, 1964, p75-80.
    [18] J.Hirth, F.C.Frank, Phil. Mag.,1958, [8]3:34.
    [19] Trentler T. J., Hickman K. M., Buhro W. E, et al. Solution-liquid- solid growth of crystalline Ⅲ-Ⅴ semiconductors—An analogy to vapor-liquid-solid growth[J]. Science. 1995, 270: 1791-1794.
    [20] W. E. Buhro, K. M. Hickman, T. J. Trentler, Turning down the heat on semiconductor growth:Solution-chemical syntheses and the solution-liquid-solid mechanism[J], Adv. Mater. 1996, 8:685-688.
    [21] Shi W.S., Zhang Y.F., Wang N., Lee C.S., Lee S.T. Microstructures of gallium nitride nanowires synthesized by oxide-assisted method[J], Chem.Phys.Let., 2001, 345:377-380.
    [22] Shi W.S., Zheng Y.F., Wang N., Lee C.S., Lee S.T. Oxide-assisted growth and optical characterization of gallium-arseniden anowires[J], Appl.Phys.Let., 2001, 78:3304-3306.
    [23] 李梦轲,王成伟,力虎林,用模板法制备取向Si纳米线阵列[J].科学通报,2001,46(14):1172-1175.
    [24] Zhiyong Tang, Nicholas A.Kotov, Michael Giersig, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires[J]. Science, 2002, 297(12):237-240.
    [1] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:1-51.
    [2] Hu J T,Odom T W,Lieber C M. Ace. Chem. Res. ,1999,32:435.
    [3] Abelson P H. Funding the nanotech frontier[J]. Science, 2000,288(5464) :269.
    [4] Fasol G, Applied physics-Nanowires: Small is beautiful[J]. Science, 1998, 280: 545-546.
    [5] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947-1949.
    [6] Tang Z, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminest nanowires[J]. Science, 2002, 297:237-240.
    [7] J.F. Scott, Raman Spectrum of SnO_2[J],J. Chem. Phys. 1970, 53: 852-853.
    [8] R.S. Katiyar et al., J. Phys. C4, 1971, 2421
    [9] T. Sato et al., J. Phys. Soc. Jpn., 1995, 64: 1193.
    [10] F. Gervais, W. Kress, Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions of NbO_2 and VO_2[J], Phys. Rev B31, 1985, 4809-4914.
    [11] 石娟,吴世华,张守民等,热解法制备SnO_2及其气敏性能研究[J],高等学校化学学报,2004,4(25):607-609.
    [12] 赵杰,赵经贵,高山等,二氧化锡气敏纳米粉体的红外光谱研究[J],光散射学报,2004,3(16):234-236.
    [13] 潘庆谊,董晓雯,张剑平.溶胶.凝胶法制备二氧化锡薄膜[J].硅酸盐学报,2001,1:6-9.
    [14] Zhu J J, Zhu J M, Liao X H. Rapid synthesis of nanocrystalline SnO_2 powders by microwave heating method[J], Materials Letters, 2002, 53:12-19
    [15] V.M. Jiménez, A. Caballero, A. Fernandez, etal., Structural characterization of partially amorphous SnO_2 nanoparticles by factor analysis of XAS and FT-IR spectera[J], Solid State Ionics, 1999, 116:117-127.
    [16] 曹立新,万海保,袁迅道等.SnO_2纳米粒子膜的性质和结构研究[J],化学物理学报,1999,2(12):192-196.
    [17] 潘庆谊,董晓雯,张剑平,溶胶-凝胶法制备二氧化锡薄膜[J].硅酸盐学报,2001,1:6-9.
    [18] R S Katiyar, P Dawson, M M Hargreave, etal., Dynamics of the rutile structure Ⅲ. Lattice dynamics, infrared and raman spectra of SnO_2[J], J. Phy. C, 1971, 4:2421-2431.
    [19] V.M. Jiménez, A. Caballero, A. Fernandez, etal., Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectera[J], Solid State Ionics, 1999, 116:117-127.
    [20] 余保龙 编著,半导体纳米材料非线性光学性质[M],河南大学出版社,1999,p42-43.
    [21] Abello L, Bochu B, Gaskov A, etal., Structural characterization of nanocrystalline SnO_2 by X-ray and raman spectroscopy[J], J. Solid. State.Chem., 1998, 135:78-85.
    [22] MoC, Yuan Z, Zhang L., Nanostructured Mater. 1995, 5(1):95.
    [23] 陈志文,张庶元,谭舜等,光谱实验室.1996,13(6):1.
    [24] 叶锡生,沙健,焦正宽等,纳米MgO微晶的晶格畸变和反常红外特性[J],功能材料.1998,29(3):287-289.
    [25] S.R.Morrison, Selectivity in semiconductor gas sensor[J], sensors and Actuctors, 1987, 12: 425-440.
    [26] 钮少冲,郝润蓉,方锡义编著.无机化学丛书(第三卷)[M],北京:科学出版社,1998,pp:380-450.
    [27] 吕云阳,王文绍,刘颂禹,季振平.无机化学丛书(第六卷)[M],北京:科学出版社,1998,pp:671-802.
    [1] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:441-451.
    [2] T. Seiyama, A. Kato, K .Fujiishi, et al. A new detector for gaseous components using semiconductor films[J]. Anal Chem, 1962,34(11): 1502-1503.
    [3] Zhang Gong, L iuM eilin. Effect of particle size and dopant on properties of SnO_2-based gas sensors. Sensors and Actuators B [J], 2000, 69: 144-152.
    [4] 易惠中.气敏功能材料的开发和应用[J].功能材料,1991,22(5):286-293.
    [5] 田口尚义.特公昭45-38200.
    [6] 康昌鹤,唐省吾等编著.气、湿敏感器件及其应用[M].北京:科学出版社,1988.pp5-90.
    [7] 吴兴惠,王彩君编著.传感器与信号处理[M].北京,电子工业出版社,1998.
    [8] 蔡晔,葛忠华,陈银飞.金属氧化物半导体气敏传感器的研究和开发进展[J].化工生产与技术,1997,14(2):29-34.
    [9] 刘迎春,叶湘滨.传感器原理、设计与应用[M].长沙:国防科技大学出版社,1997.
    [10] 马丽杰.日本气体传感器产业化发展现状[J].云南大学学报(自然科学版),1997,19(2):211-216.
    [11] 高田雅介.五感[J].SUTBULLTIN,1993,(4):26.
    [12] 一本松正道,松本毅.酸化锡薄膜感度特性[J].DENKIKAGAKU,1998,56(11):998-999.
    [13] 刘文利,俞琳,高建华,等.一种新型CO气敏双层薄膜材料[J].中国环境监测,2001,17(5):46-48.
    [14] Lu Wengang ,Dong Jinming, Li Zhenya., Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method[J]. Phys Rew B , 2001, 63 (3) :33401-33404.
    [15] Klass J ,Kulawik K, Schulz-Ekoloff G,et al. Comparative Spectroscopic Study of TS-1 and Zeolite-Hosted Extraframework Titanium Oxide Dispersions[J]. Stud Surf Sci Catal, 1994,84:2261.
    [16] 张义华,王学勤,王祥生等.纳米SnO_2的制备及其气敏特性分析[J].传感器技术.1999,6:1-7.
    [17] Yude Wang, Xinhui Wu, Yangfeng Li, et al, Mesostructured SnO_2 as material for gas sensors[J]. Solid-state electronics,2004,48:627-632
    [18] 胡平,徐甲强,刘艳丽.纳米材料SnO_2的室温固相合成及其气敏特性研究[J].传感器技术,2001,20(9):8-9
    [19] 张义华,郭新闻,王祥生,等.气相沉积法分子封装SnO_2纳米半导体材料的研究[J].功能材料,1999,30(6):651-652
    [20] Comini E ,Faglia G,Sberveglieri G, et al . Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J].Applied Physics Review ,2002,81(10) : 1869-1871.
    [21] Matt L ,Hannes K,Benjamin M, et al. Photochemical sensing of NO_2 with SnO2 nanoribbon nanosensors at room temperature [J] . Angewandte Chemic International Edition ,2002,41 (13) :2405-2408.
    [22] Andrei K,Zhang You-xiang ,Cheng Guo-sheng, et al. Detection of CO and O_2 using tin oxide nanowire sensors [J]. Adv Mater, 2003,15 (12) :997-1000.
    [23] Comini E, Faglia G, Sberveglieri G, et al .Tin oxide nanobelts electrical and sensing properties[J], Sensors and Actuators B, 2005, 111-112: 2-6.
    [24] Wang Y D, Ma C L, Wu X H, et al., Mesostructured tin oxide as sensitive material for C_2H_5OH sensor[J], Talanta, 2002, 57: 875-882.
    [25] Jin Z.H., Jin Z.L., Savinell R.F. et al. Application of nano-crystalline porous tin oxide thin film for CO sensing[J]. Sensors and Actuators, 1998, 52(1-2): 188-194
    [26] 吴兴惠编著.敏感元器件及材料[M],北京,电子工业出版社,1992
    [27] Morrison S.R., Sensors and Actuators, 1987,12:425
    [1] 吴兴惠,王彩君编著.传感器与信号处理[M].北京,电子工业出版社,1998.
    [2] 奥默尔 M.A,固体物理学基础[M].北京师范大学出版社,1987.
    [3] Morrison S.R., Sensors and Actuators, 1987,12:425
    [4] Yamazoe N., et al. Surface Sci. 1976, 86:335
    [5] Morrosion S.R., Bonnelle J.P.. J. Catalysis, 1972, 25: 416-420.
    [6] Tanaka K., Blyholder G.. J.Chem.Soc.Chem.Commun, 1971, 736-741.
    [7] Cortes Corberua V., et al. J.Mater.Sci. 1989, 24
    [8] Watson P.R., et al. J.Catal. 1982, 74:282
    [9] 松山道雄,通信学会技术研究报告,1978,CPM-78-8.
    [10] 金篆芷,王明时.现代传感技术[M].北京:电子工业出版社,1995
    [11] 张正勇,张耀华,焦正等半导体氧化物气体传感器测试新原理与方法[J].传感技术学报,2000,2:106~110
    [12] 李泉,曾广赋,詹瑞云,等.非化学计量比SnO_(2-x)纳米微晶材料的XRD、XPS、ESR研究[J],化学学报,1995,53:381~385.
    [13] 康昌鹤,唐省吾等编著.气、湿敏感器件及其应用[M].北京:科学出版社,1988,pp18-22.
    [14] 徐毓龙.金属氧化物气敏传感器[J].传感技术学报,1996,9(2):56~59.
    [15] Klass J ,Kulawik K, Schulz-Ekoloff G,et al. Comparative Spectroscopic Study of TS-1 and Zeolite-Hosted Extraframework Titanium Oxide Dispersions[J]. Stud Surf Sci Catal ,1994,84:2261~2265.
    [16] 龙洁,苏新梅,夏定国,等.二氧化锡中氧空位浓度与气敏性能关系的研究[J],北京工业大学学报,1997,23(4):113~117.
    [17] 徐毓龙.金属氧化物气敏传感器(Ⅳ)[J].传感技术学报,1996,3:72-78.
    [18] 莫以豪等,半导体陶瓷及其敏感元件[M].上海,上海科技出版社,1988.261
    [19] T. Seiyama, A. Kato, K .Fujiishi, et al. A new detector for gaseous components using semiconductor films[J]. Anal Chem, 1962,34(11): 1502-1503.
    [20] Taguchi N. Gas alarm device. Japanese pat, 1962, 45-3820.
    [21] S.R.Morrison, sensors and Actuctors, 1987, 11: 283-287.
    [22] A.Bielanski and J.Haber, Oxygen in catalysis on transition metal oxides[J]. Catal. Rev. Sci. Eng.,19(1979)1-14
    [23] KohlD. Surface process in the detection of reducing gases with SnO_2 based device[J]. Sensors and Actuators 1989,18 (1):71-113.
    [24] S.R.Morrison, Selectivity in semiconductor gas sensor[J], sensors and Actuctors, 12(1987) 425-440.
    [25] 陈占先,WO_3气敏材料特性研究[D].云南大学硕士论文,1991.
    [26] Weisz P B, Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis[J], Journal of Chemical Physics, 1953, 21: 1531-1535.
    [27] Jiaqiang Xu, Qingyi Pan, Yu'an Shun etal., Grain size control and gas sensing properties of ZnO gas sensor[J], Sensors and Actuators, 2000, B 66: 277-279.
    [28] 潘庆谊,徐甲强,刘宏明等,微乳液法纳米SnO_2材料的合成、结构与气敏性能[J],无机材料学报,1999,14(14):83-88.
    [29] N Yamazoe, N Miura, Some basic aspects of semiconductor gas sensors, in:S Yamauchi(Ed.), Chemical Sensor Technology, Vol. 4, Kodansha, Tokyo, 1992.
    [30] Xu C N, Tamaki J, Miura N etal., Grain size effects on gas sensitivity of porous SnO2 based elements[J], Sensor and Actuators, 1991, B3:147-151.
    [31] 牛德芳,半导体传感器原理及其应用[M],大连理工大学出版社,1993.
    [32] 李泉,曾广赋,席时权.二氧化锡气敏材料的研究进展[J],应用化学,1994,11(6):1-5
    [33] Xu C ,Tamaki T , Miura N ,et al. Correlation between gas sensitivity and crystalline size in porous stannous oxide-based sensors[J], Chem Lett ,1990, 3:441-446.
    [34] Li G J, Zhang X H, Kawi S, Relationship between sensitivity,catalytic,and surface areas of SnO_2 gas sensors[J], Sensor and Actuators, 1999, B3:64-70.
    [35] Orlik D R. Monoelectrode gas sensors based on SnO_2 semiconductor ceramics [J]. Sensors and Actuators, 1993, B13-14:155-158.
    [36] Comini E , Faglia G, Sberveglieri G, et al . Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J]. Appl. Phys. Letter, 2002, 81(10):1869 -1871.
    [37] Matt L, Hannes K, Benjamin M, et al. Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature [J] . Ange wandte Chemie International Edition ,2002 ,41(13) :2405 - 2408.
    [38] Andrei K, Zhang You xiang ,Cheng guo sheng , et al. Detection of CO and O_2 using tin oxide nanowire sensors [J]. Adv Mater, 2003 , 15(12) :997 - 1000.
    [39] Zhang Dai hua, Li Chao, Liu Xiao lei ,et al. Doping dependent NH3 sensing of indium oxide nanowires[J]. Applied Physics Letters ,2003 ,83(9): 1845-1847.
    [40] Varghese O K, Gong da wei . Hydrogen sensing using titania nanotubes [J] . Sensors and Actuators, 2003, 93 B (1-3): 338 - 344.
    [41] Comini E, Faglia G, Sberveglieri G, et al. Tin oxide nanobelts electrical and sensing properties[J], Sensors and Actuators, 2005, B111-112:2-6.
    [42] Mizusaki J, Koinuma H, Shimoyama H D, etal., J. Solid State Chem., 1990, 88: 443-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700