用户名: 密码: 验证码:
金属橡胶磁悬浮轴承组合支承转子系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将磁悬浮轴承支承在金属橡胶环上,构成金属橡胶磁悬浮轴承组合支承转子系统。研究转子-磁轴承-弹性基座复杂系统的结构设计及动态特性。在一般磁悬浮轴承控制策略的基础上,利用金属橡胶环产生的附加阻尼,降低转子的振幅,提高系统的稳定性,使转子能够安全稳定地越过系统的弯曲临界转速。主要内容如下:
     首先,分析了金属橡胶阻尼工作原理,在原有磁悬浮轴承实验台基础上,根据金属橡胶的力学特性和原有实验台机械结构参数设计并加工了金属橡胶环、磁悬浮轴承座、金属橡胶环座、实验台基座等相关零部件,建立了金属橡胶磁悬浮轴承组合支承转子系统实验台。
     其次,论述了组合支承系统各环节的设计方法,建立了金属橡胶磁悬浮轴承组合支承转子系统的数学模型。采用Matlab软件编写了相关程序,分析了金属橡胶磁悬浮轴承组合支承转子系统的固有频率、阻尼、振型、不平衡响应等性能参数,并与原有的一般磁悬浮轴承转子系统进行了比较。
     最后,通过试验模态分析和系统高速旋转实验对比分析了金属橡胶环对磁悬浮轴承转子系统动态性能的影响。研究结果表明,增加合适支承刚度及支承阻尼的金属橡胶环可以明显降低转子在弯曲模态频率处的振动,减轻磁悬浮轴承为抑制转子弯曲振动所付出的代价,有利于系统平稳越过弯曲临界转速。
To reduce the vibration of the flexible rotor supported by active magnetic bearings, metal rubber annuluses are introduced and set around the active magnetic bearings, which is called complex bearing system. Structure design and dynamic characteristics of the system supported by the complex bearings are studied in this paper. The main contents and conclusions are summarized as follows: First, based on the original experimental setup with active magnetic bearings, metal rubber annuluses, seats, and some other parts are designed and machined, and the experimental setup with active magnetic bearings and metal rubber annuluses is built.
     Secondly, each part of the system is presented. Mathematic model of the system supported by the complex bearings is set up. The analysis program is developed by Matlab, and the dynamic characteristics of the system are analyzed, such as natural frequencies, modal damping, mode shape, unbalance response and so on, and compared with the original experimental setup with only active magnetic bearings.
     Finally, the dynamic characteristics of the system supported by the complex bearings or by only active magnetic bearings are studied by the Experimental Modal Analysis and actual operation of the two experimental setups. The results show that the metal rubber annuluses with appropriate stiffness and damping can increase the first bending modal damping of the system obviously, and help the system to get across the first bending critical speed safely.
引文
[1] G. Schweitzer, H.Bleuler, A.Traxler, Active Magnetic Bearing-Basic, Properties and Application of Active Magnetic Bearing, ETH, Switzerland, 1994
    [2]虞烈,刘恒,轴承—转子系统动力学,西安,西安交通大学出版社,1996.1
    [3] Earnshaw S, On the nature of the molecular forces which regulate the constitution of the lumiferous ether, Trans.Camb.Phil.Soc.7, 1842: 97~112
    [4]刘淑琴,转动惯量测试平台磁悬浮系统的研究,[博士学位论文],西安,西安交通大学,1999
    [5]杨作兴,磁悬浮鲁棒控制器的设计及仿真,[硕士学位论文],北京,清华大学,2001
    [6] Proceedings of the Third International Symposium on Magnetic Bearings, Virginia, USA, July, 1992: 24~31
    [7] Proceedings of the Fifth International Symposium on Magnetic Bearings, Kanazawa, Japan, August, 1996: 28~30
    [8] J.Imlach, B.J.Blair, P.E.Allaire, Measured and Predicted Force and Stiffness Characteristics of Industrial Magnetic Bearings. ASME Trans, Journal of Tribology, 1991, 113(10): 784~788
    [9]汪希平,电磁轴承系统的参数设计与应用研究,[博士学位论文],西安,西安交通大学,1994.3
    [10]赵雷,从华,赵鸿宾,可控磁悬浮轴承刚度与阻尼特性研究,清华大学学报,1999,Vol39(4):35~37
    [11]祁庆中,电磁轴承磨床电主轴的实验和研究,[博士学位论文],北京,清华大学,1997.5
    [12]汪希平,袁崇军,谢友柏,电磁轴承系统控制参数与稳定性关系分析,机械工程学报,1996,Vol.32(3):65~69
    [13]汪希平,电磁轴承系统的刚度阻尼特性分析,应用力学学报,1997,14(3):95~100
    [14] Ishimatsu. T, Shimomachi. T, Taguchi. N, Active vibration control of flexible rotor using electromagnetic damper Proceedings, International Conference on Industrial Electronics, Control and Instrumentation,1991: 437~442
    [15] Okade.Y , Vibration control of flexible rotor by inclination control magnetic bearings with axial self-bearing motor,IEEE/ASME Transactions on Mechatronics,2001: 521~524
    [16] Nonami, Adaptive vibration control for passing over flexible critical speed of 10 MWh class energy storage flywheel system using superconducting magnetic bearing, Japan Society of Mechanical Engineers, 2004: 1937~1943
    [17] Hideo Shida, Mitsuhiro Ichihara, Kazuto Seto, Motion and Vibration Control of Flexible Rotor Using Magnetic Bearing, Proceeding of the 8th International Symposium on Magnetic Bearing , Mito, Japan, 2002(8): 381~386
    [18] Mehmet N, Sahinkaya, Abdul-Hadi G, Abulrub, Patrick S.Keogh, on the Modeling of Flexible Rotor/Magnetic Bearing Systems when in Contact with Retainer Bearings, Proceeding of the 9th International Symposium on Magnetic Bearing , Lexington, Kentucky, USA, 2004(8): 1~6
    [19] Patrick Keogh, Matthew Cole, Necip Sahinkaya, Clifford Burrows, On the Control of Synchronous Vibration in Rotor/Magnetic Bearing Systems Involving Auxiliary Bearing Contact, Proceeding of the ASME TURBO EXPO, Amsterdam, The Netherland, 2002(6): 1~8
    [20] Lei Zhao, Controller design for a flexible rotor supported by active magnetic bearing passing the critical rotational speed, Qinghua Daxue Xuebao, 2005: 821~823
    [21]童水光,汪希萱,转子—轴承系统中电磁阻尼器理论研究,振动工程学报, 1992,Vol.5(1):17~24
    [22]何钦象,刘颖,磁浮轴承—转子系统非线性动态特性分析,应用力学学报,2004.9,Vol.21(3):113~116
    [23]张刚,李松生,张建生,杨新洲,虞烈,谢友柏,磁悬浮轴承—转子系统的机电耦合动力学模型,机械科学与技术,2003.7,Vol.22(增刊):40~43
    [24]汪希平,电磁轴承系统及其仿真方法,上海大学学报(自然科学版),1995.6,Vol.1(3):293~301
    [25]杨静,虞烈,电磁轴承过临界转速的非线性极点配置,轴承,2002.11,Vol.19(11):1~4
    [26]胡业发,基于结构动态特性的磁悬浮主轴系统研究,[硕士学位论文],武汉,武汉理工大学,2001
    [27] Hu Yefa, Wu Huachun, Wang Xiaoguang, Zhou Zude, Inversion of Magnetic Bearing Sensors Position, Proceeding of the Second International Symposium on Instrumentation Science and Technology, Jinan, China, 2002(8): 706~709
    [28]吴华春,磁力轴承支承的转子动态特性研究,[博士学位论文],武汉,武汉理工大学,2005.9
    [29]谢振宇,徐龙祥,李迎,丘大谋,虞烈,磁悬浮轴承转子系统动态特性的实验研究,航空动力学报,2004.2,Vol.19(1):30~37
    [30]谢振宇,李克雷,赵钦泉,黄佩珍,带阻尼器磁悬浮轴承转子系统性能的实验分析,航空动力学报,2008,Vol.23(7):1312~1317
    [31]谢振宇,李克雷,赵钦泉,黄佩珍,磁悬浮阻尼器对磁悬浮转子系统动态特性影响,航空动力学报,2008,Vol.23(6):1087~1092
    [32]李中郢,等,金属橡胶构件的设计,北京,国防工业出版社,2000.5
    [33]姜洪源,董春芳,敖宏瑞,夏宇宏,A. M. Ulanov,航空发动机用金属橡胶隔振器动静态性能的研究,航空学报,2004.3,Vol.25(2):140~142
    [34]姜洪源,张蕊华,赵克定,金属橡胶挤压油膜阻尼器阻尼性能分析,推进技术,2005.5,Vol.26(2):174~177
    [35]王新,朱梓根,环形金属橡胶减振器,航空动力学报,1997,Vol.12(2):143~145
    [36]宣海军,EORD支承转子动力学特性分析及其在超高速旋转机械中的应用研究,[博士学位论文],杭州,浙江大学,2004.4
    [37]范天宇,弹性支承干摩擦阻尼器减振研究,[博士学位论文],西安,西北工业大学,2006.4
    [38]戴振东,岳林,机械设计基础,北京,国防工业出版社,2005
    [39] Hamburg G, Parkinson J, Gas Turbine shaft dynamics, SAE Trans, 1962, 70: 774~784
    [40]夏南,孟光,对挤压油膜阻尼器轴承和旋转机械转子-挤压油膜阻尼器轴承系统动力特性研究的回顾与展望,机械强度,2002,24(2):216~224
    [41]和兴锁,赵渊,转子-非线性支承系统振动响应的优化计算,计算力学学报,1997, Vol.14(1):85~90
    [42]张家忠,郑铁生,许庆余,在滑动轴承转子系统中挤压油膜阻尼器的减振特性分析,西安交通大学学报,1997,Vol.31(4):12~17
    [43]马艳红,洪杰,赵福安,自适应挤压油膜阻尼器减振机理理论研究,北京航空航天大学学报,2004,Vol30(1):5~8
    [44]张韬,孟光,张子旭,电磁轴承-挤压油膜阻尼器-转子系统的主动控制,机械科学与技术,2002,Vol.21(2):234~236
    [45]寇尊权,谭庆昌,李为,磁动压混合推力轴承的研究,机械设计与研究,2004,Vol.20(5):49~51
    [46]刘暾,葛卫平,齐乃明,等,超精气磁轴承混合轴系的研究,中国机械工程,2002 Vol.13(2):167~170
    [47]姜洪源,夏宇宏,敖宏瑞等,金属橡胶与弹簧组合型隔振器动静态性能的分析,中国机械工程,2002,Vol13(21):1801~1804
    [48] KO J M, NI Y Q, TIAN Q L, Hysteretic Behavior and Empirical Modeling of a Wire-Cable Vibration Isolator, The International Journal of Analytical and Experimental Modal Analysis, 1992, 7(1): 111~127
    [49]敖宏瑞,金属橡胶干摩擦阻尼机理及应用研究,[博士学位论文],哈尔滨,哈尔滨工业大学,2003
    [50] Masri S F, Caughey T K, A random vibration of hysteretic system, Journal of the Engineering Mechanicas Division, 1976(4): 249~1263
    [51] Masri S F, Nonparameter identification of nearly arbitrary nonlinear system, Appli. Mech., 1982,49(3): 619~628
    [52]黄协清,张铁山,张俊华,金属橡胶隔振特性研究,机械科学与技术,2000,Vol.19(6):977~980
    [53]李宇明,郑坚,白鸿柏,金属橡胶材料的动态力学模型,材料研究学报,2003,17(5):499~504
    [54]李宇明,彭威,白鸿柏,郑坚,金属橡胶材料宏观和细观力学模型,机械工程学报,2005,Vol41(9):38~41
    [55]姜洪源,郝德刚,敖宏瑞,环形金属橡胶隔振器系统建模与实验研究,湖南科技大学学报,2005,Vol.20(1):13~16
    [56]邹经湘,结构动力学,哈尔滨,哈尔滨工业大学出版社,1995
    [57]郭宝亭,朱梓根,金属橡胶阻尼器在转子系统中的应用,航空动力学报,2003.12,Vol.18(5):662~668
    [58]柴健,粘弹性矩形截面阻尼器动态特性研究,[硕士学位论文],杭州,浙江大学化工机械研究所
    [59]赵钦泉,带阻尼器磁悬浮系统动态特性研究,[硕士学位论文],江苏,南京航空航天大学,2008.1
    [60]王照林,运动稳定性及其应用,北京,高等教育出版社,1992
    [61]钟一鄂,何衍宗,王正,李方泽,转子动力学,北京,清华大学出版社,1986
    [62]白鸿林,张培林,郑坚,吕建刚,滞迟振动系统及其工程应用,科学出版社,2002.1
    [63]李德葆,陆秋海,实验模态分析及其应用,北京,科学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700