用户名: 密码: 验证码:
基于二维胶体晶体模板复制的镍、氧化锌微结构和光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用自组织形成的二维胶体晶体为模板,首先通过物理沉积金属的方法制备了二维有序金半球壳阵列结构,研究了此类金微纳结构中的表面等离激元特性及其对环境折射率变化的响应特性。进而我们以金半球壳阵列为电极,通过电化学材料生长技术制备了形貌可控的氧化锌球壳阵列,并对其光致发光特性做了初步的实验研究。论文的主要内容包括以下几个方面:
     一、利用微通道自组织技术成功制备了大面积、有序性好的二维胶体晶体,并以此胶体晶体为模板通过真空溅射金属的方法,制备了金空心半球壳阵列结构,并研究了其所支持的等离激元特性。实验发现这种金微纳结构中的等离激元共振频率对环境折射率变化极为敏感,其敏感度可达1026nm/RIU,在化学生物等领域的微量探测以及分析方面有良好的应用前景。
     二、以平整ITO玻璃为电极,通过电化学沉积的方法在胶体晶体模板空隙中生长金属镍,通过控制电化学生长时间,可以获得不同高度的金属孔洞阵列结构;同时我们尝试了以金半球壳阵列为电极,制备了氧化锌半球壳和完整球壳阵列体系,并在实验上初步表征了其光致发光特性。我们期望利用电化学与胶体晶体模板相结合的技术所制备的形貌、尺寸、组分等可控的金属及其氧化物微结构材料,为磁学和光致发光特性的深入研究提供丰富的研究体系。
In this thesis, two-dimensional metallic half shell structures were first prepared by physically depositing a thin film of metal layer onto the self-assembled two-dimensional colloidal crystals. We investigated surface plasmons supported on the half shell arrays and the effect of refractive index of environment medium on the plasmonic properties. Furthermore, the as-prepared metallic half shell arrays were used as electrodes to electrochemically grow morphology-controllable zinc-oxide shell arrays. We also experimentally characterized photoluminescence properties of the prepared zinc-oxide shell arrays. The main results of this work are described as follows:
     1. We successfully prepared large-area highly-ordered two-dimensional colloidal crystals by micro-channel self-organization techniques. Metallic half shell arrays were obtained by vacuum sputtering a thin film of gold layer onto the silica colloidal crystal templates and subsequently removing silica colloidal crystals in hydrofluoric acid solutions. The plasmonic resonance frequencies are very sensitive to the refractive index of environment medium. It was found that the refractive index sensitivity of such half shell arrays could be as high as1026nm/RIU. Therefore, we hope such metallic half-shell arrays have potential applications such as trace detection and analysis in biological and chemical fields.
     2. We employed a flat ITO glass substrate as working electrode to electrochemically grow nickel within the pores of the colloidal crystals. The height of the inversed nickel opal microstructures could be precisely controlled by controlling the electrochemical deposition time. Furthermore, we employed two-dimensional metallic half-shell arrays as working electrodes to electrochemically grow zinc oxides within the spherical voids of polymer matrix. By tuning the electrochemical deposition time, zinc oxides half-shell and complete-shell microstructures have been obtained. As an initial step, we also experimentally characterized the photoluminescence spectra of the prepared zinc oxide microstructures. We hope such morphology, size and composition controllable metal and metal oxide microstructures prepared by the combination of template method and electrochemical method could provide variant research platforms for studying the magnetic and photoluminescence related properties.
引文
1.李正中著,《固体理论》高等教育出版社(1991).
    2. H. Raether, Excitation of Plasmons and Inerband Transitions by Electrons, Springer, Berlin,1980.
    3. H. Raether, SPRINGER TRACTS IN MODERN PHYSICS 111,1-133 (1988).
    4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin,1988.
    5. E. Kretschmann, and H. Raether, Z. Naturforsch. A.23,2135 (1968).
    6. A. Otto, Z Phys.216,398 (1968).
    7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667(1998).
    8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424,824 (2003).
    9. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54,3 (1999).
    10. R. Hillenbrand, T. Taubner, F. Keilmann, Nature 418,159 (2002).
    11. D. A. Schultz, Curr. Opin. Biotechnol. 14,13 (2003).
    12. S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, Anal. Biochem. 309,109 (2002).
    13. R.Varma, J.R. Selman, Surface-Enhanced Raman Spectroscopy in Techniques for Characterization of Electrodes and Electrodes and Electrochemical Processes, (John Wiley&Sons,1991).
    14. R. G. Freeman, K. C. Grabar, K. J. Allison, Science 267,1629 (1995).
    15. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G W. Bryant, F. J. Garcia de Abajo, Phys. Rev. Lett.90,057401 (2003).
    16. S. Oldenburg, R. Averitt, et al., Chem. Phys. Lett.288,243 (1998).
    17. C. Charnay, A. Lee, S. Q. Man, C. E. Moran, C. Radloff, R. K. Bradley, N. J. Halas,J. Phys. Chem. B 107,7327 (2003).
    18. H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, Nano Lett.6,827 (2006).
    19. R. Jin, et al., Science 294,1901 (2001).
    20. L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc.122,12700 (2000).
    21. B. Zheng, C. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Nano Lett.2,895 (2002).
    22. F. Huang, H. Zhang, J. F. Banfield, Nano Lett.3,373 (2003).
    23. M. Tian, J. Wang, J. Kurtz, T. E. Mallouk, M. H. W. Chan, Nano Lett.3,919 (2003).
    24. M. Kawasaki, M. Hori,J. Phys. Chem. B.107,6760 (2003).
    25. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, Van Duyne, J. Phys. Chem. B.103,3854 (1999).
    26. L. Guczi, G. Peto, A. Beck, K. Frey, O. Geszti, G. Molnar, C. Daroczi,J. Am. Chem. Soc.125,4332 (2003).
    27. T. S. Eagleton and P. C. Searson, Chem. Mater.16,5027 (2004).
    28. P.Jiang, J.Cizeron and J.F.Bertone,J. Am. Chem. Soc.121,7957 (1999).
    29. Judith E. G. J. Wijnhoven, et al, Adv. Mater.12,888 (2000).
    30. Z. L. Wang, C. T. Chan, W. Y. Zhang, N. B. Ming, and P. Sheng, Phys. Rev. B 64, 113108(2001).
    1. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, Small 1,439 (2005).
    2. G. Zhang, D. Y. Wang, and H. Mohwald, Chem. Mater.18,3985 (2006).
    3. P. Ball, The Self-Made Tapestry:Pattern Formation in Nature. (Oxford University Press, New York,1999).
    4. A. Klug, Angew. Chem. Int. Ed. Engl.22,565 (1983).
    5. R. Mayoral, J. Requena, J.S. Moya, Adv. Mater.9,257 (1997).
    6. B.T. Mayers, B. Gates, Y. Xia.,Adv. Mater.12 1629(2000).
    7. R.C. Hayward, D.A. Saville, I.A. Aksay, Nature 404,56 (2000).
    8. P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Chem. Mater.11,2132 (1999).
    9. Z. Chen, P. Zhan, Z. L. Wang, J. H. Zhang, W. Y. Zhang, N. B. Ming, C. T. Chan, and P. Shen, Adv. Mater.16,417 (2004).
    10. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, Adv. Mater.18,1612 (2006).
    11. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, Appl. Phys. A 92, 291 (2008).
    12. J. Sun, Y.Y Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, Adv. Mater.20,123 (2008).
    13. Z. Chen, H. Dong, J. Pan, P. Zhan, C.J. Tang, and Z. L. Wang, Appl. Phys. Lett. 96,051904(2010).
    14. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, Optics Express 18,3546 (2010).
    1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667(1998).
    2. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, Nano Lett.6,827 (2006).
    3. R. Bukasov, and J. S. Shumaker-Parry, Nano Lett.7,1113 (2007)..
    4. E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, Nano Lett.7,1256 (2007)..
    5. A. Dmitriev, C. Hagglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Kall, and D. S. Sutherland, Nano Lett.8,3893 (2008).
    6. L. J. Sherry, S. H. Chang, G. C. Schatz, and R. P. V. Duyne, Nano Lett.5,2034 (2005).
    7. A. D. McFarland, and R. P. V. Duyne, Nano Lett.3,1057 (2003).
    8. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, Appl. Phys. A 92, 291 (2008).
    9. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, Optics Express 18,3546 (2010).
    10. N. Herzer, S. Hoppener, U. S. Schubert, H. Fuchs, and U. C. Fischer, Adv. Mater. 20,346 (2008)
    11. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney,J. Phys. Chem. B 104,564 (2000)
    12. A. Lesuffleur, H. IM, N. C. Lindquist, and S. H. Oh, Appl Phys. Lett.90,243110 (2007).
    1. R. Konenkamp, C. W. Robert, C. Schlegel, Appl. Phys. Lett.85,6004 (2004).
    2. F. Endres, Chem. Phys. Chem.3,144 (2002).
    3. J. L. Yang, G. T. Duan, and W. P. Cai,J. Phys. Chem. C.113,3973 (2009).
    4. Timothy Andrew Kelf, Light-Matter Interactions on Nano-Structured Metallic Films, Southampton,2006.
    5. Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, and Z. L. Wang, Appl. Phys. Lett. 98(3),031903(2011).
    6. D. Gal, G. Hodes, D. Lincot and H.-W. Schock, Thin Solid Films 361,79 (2000).
    7. S. K. Park, J. H. Park, K. Y. Ko, S. Yoon, K. S. Chu,W. Kim, and Y. R. Do, Crystal Growth & Design,8,3615 (2009).
    8. Th. Pauporte', D. Lincot,J. Electro. Chem.517,54 (2001).
    9. R. Liu, A. A. Vertegel, E. W. Bohannan, Th. A. Sorenson, and J. A. Switzer, Chem. Mater.13,508 (2001).
    10. G. T. Duan, W. P. Cai, Y. Y. Luo, Y. Li, and Y. Lei, Appl. Phys. Lett.89,181918 (2006).
    11. J. Wijnhoven, S. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Adv. Mater.12,889 (2000).
    12. Z. Chen, H. Dong, J. Pan, P. Zhan, C.J. Tang, and Z. L. Wang, Appl. Phys. Lett. 96,051904(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700