用户名: 密码: 验证码:
亚波长金属十字孔结构在量子阱红外光探测器应用中的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的量子阱红外光探测器(QWIP,Quantum Well Infrared Photodetector)探测效率低,利用亚波长金属孔微结构可以提高量子阱红外光探测器的光吸收效率,从而提高探测器的探测效率。
     金属中包含大量的自由电子,它们可以与电磁波耦合,在金属表面形成表面等离极化激元(SPP)。表面等离极化激元的电场局域在金属的表面,随着离开金属的距离呈指数衰减。金属孔结构可以激发表面等离极化激元产生独特的光学性质。如:透射增强、光学天线、负折射材料、荧光增强等。日前表面等离极化激元是科学界研究的热点方向。亚波长金属微纳结构是激发和控制表面等离极化激元的主要结构。表面等离极化激元的金属微纳结构的光子器件不仅能够改善传统器件的性能,而且还会产生一些新奇的物理现象和实现新的器件功能。
     本文研究了周期性亚波长金属十字孔阵列的近场电场增强特性。我们用时域有限差分(FDTD)方法模拟了一系列的周期性亚波长金属十字孔阵列的光学特性。
     1)光从空气-金属-量子阱材料(正面)入射,研究了表面等离极化激元(SPP)、局域表面等离激元(LSR)、透射增强(EOT)之间的关系。研究发现局域表面等离激元能够调节入射光与等离极化激元结构之间的耦合,表面等离极化激元能够维持光子-电子的长时间的共振,提高了光子的共振寿命。
     2)光从量子阱材料-金属-空气(背面)入射,此时金属孔是通的,研究了表面等离极化激元、局域表面等离激元、法布里-帕罗(F-P)腔、近场电场增强之间的关系。金属很薄时,虽然背面入射的反射光谱与正面入射的反射光谱相同,但是背面入射的近场电场增强要比正面入射的透射增强要强。在背面入射的结构中,我们利用的是金属-量子阱一侧的光,因此金属可以变得很厚。
     3)对于背面入射,透射到空气中的光是不会与量子阱中的电子耦合的,因此我们又设计了单端开口的十字孔金属光栅结构,研究了表面等离极化激元、局域表面等离激元、法布里一帕罗腔、近场电场增强之间的关系,此时,在量子阱处,有很高的电场分量,能够增加量子阱中电子与光子的耦合效率。
     这些研究亚波长周期性金属孔结构的方法,也适用于不同结构的耦合光栅的研究。
The detectivity of traditional quantum well infrared photodetector is low. Subwavelength metal hole microstructure can improve optical absorption efficiency of quantum-well infrared photodetector, enhancing the photodetector's detectivity.
     The metal possesses a large number of free electrons, which may couple with the electromagenetic waves, the coupling between free electrons and electromagnectic waves forms surface plasmon plasmon (SPP). The SPP's electric filed is localized on the metal surface and decays exponentially with the distance away from the metal surface. The perforated metal structure can excite the SPP mode on its surface and have unique optical properties, for example:enhanced optical transmission (EOT), optical antenna, negative refraction, enhanced fluorescence etc. Today it has become one of the research hot topics. Subwavelength metal microstructure is the main method of exciting and controling SPP mode. The photodevice of subwavelength metal microstructure of SPP can improve the performance of the tranditional devices, and still can produce some novel physical phenomenon and realize new device functions
     In this paper, the near-field enhanced transmission of periodic sunwavelength metal cross-hole arrays is studied. We simulate the optical properties of subwavelength metal hole arrays from Finite Diffence Time-Domain (FDTD).
     1) Light incidents from air-metal-quantum well material (front incidence), the relationship of surface plasmon plariton (SPP), localized surface plasmon (LSR) and enhanced optical transmission (EOT) are studied. We found that localized surface plasmon mediates the coupling between the incident light and plasmonic structure, and the surface plasmon plariton provides long-lived resonance, increasing photon resonance lifetime.
     2) Light incidents from quantum well-metal-air (back incidence), the metal holes are open, surface plasmon plariton, localized surface plasmon and Fabry-Perot cavity are studied, which may affect the near-field electric intensity. When the metal is thin, the reflection spectra of light back incidence is identical to the front incidence of light. But the near-field electric intensity of light back incidence is higher than the electric intensity of light front incidence. In the structure of light back incidence, we utilize the light from metal-quantum well side, so we can thicken the metal.
     3) The light that transmits to the air won't couple with electrons in the quantum well, so we design another kind of coupling structure which is closed on another side of the hole. Then the surface plasmon plariton, localized surface plasmon and Fabry-Perot cavity are studied, which may affect the near-field electric intensity. In the quantum-well place, the electric component in the z direction is high, which enhances the optical coupling efficiency with the electrons.
     For couplers with other different hole shapes, similar analysis can be performed.
引文
[1]Jackson, D. John. Classical Electrodynamics,3rd edition. (John Wiley& Sons, Inc.,New York, NY, (1999).
    [2]H. A. Bethe. Theory of diffraction by small holes. Phys. Rev.66,163-182 (1944).
    [3]T. W. Ebbesen, H. J. Lezec, H. F Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391,667-669 (1998).
    [4]Barnes. W. L, Dereux. A, Ebbesen. T. W. Surface plasmon subwavelength optics. Nature,424:824-830 (2003).
    [5]Lezec. H. J, Degiron. A, Devaux. E, et al. Beaming light from a subwavelength aperture. Science,297:820-822 (2002).
    [6]Martin-Moreno L, Garcia-Vidal F. J, Lezec H. J, et al. Theory of extraordinary optical transmission through subwavelenrth hole arrays. Phys. Rev. Lett.86: 1114-1117(2001).
    [7]Salomon. L, Grillot. F, Zayats A. V. Optical transmission of a metal film with periodic subwavelength holes:a near-field view. Phys. Rev. Lett.86:1110-1113 (2001).
    [8]Damanyan.S. A, Zayats A. V. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:an analytical study. Phys. Rev. B,67:035424 (2003).
    [9]Degiron A, Lezec H.J, et al. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys.Lett,81:4327 (2002).
    [10]Novotny. L. Bian R. X. Xie. X. S. Thoery of nanometric optical tweezers. Phys. Rev. Lett.79:645-648 (1997).
    [11]Jersch J, Demming F, Dickmann. K. Nanostructuring with laser radiation in the nearfield of a tip from a scanning force microscope. Appl. Phys. A 64:29-32 (1997).
    [12]R. A. Shelby, D. R. Smith, Schultz. Experimental verification of a negative index of refraction. Science 292,77-79 (2001).
    [13]L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, J. A. Kong. Microwave solid-state left-handed material with a broad bandwidth and anultralow loss. Phys. Rev. B 70,073102(2004).
    [14]H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong. Negative refraction of a combined double S-shaped metamaterial. Appl. Phys. Lett.86, 151909(2005).
    [15]Hung-Ta Chien, Hui-Ting Tang, Chao-Hsien Kuo, Chii-Chang Chen, Zhen Ye. Directed diffraction without negative refraction. Phys. Rev. B 70,113101 (2004).
    [16]V. M. Shalaev, W. Cai, U.K. Chettiar, H. K. Sarychev, V. P. Drachev, A. V. Kildishev. Negatie index of refraction in optical metamaterials. Opt. Lett.30,3356 (2005).
    [17]J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis. Negative index materials using simple short wire pairs. Phys. Rev. B 73,041101 (2006).
    [18]S. Zhang, W. Fan, B. K. Minhas, Fauenglass, K. J. Malloy, S. R. J. Brueck. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett.94,037402 (2005).
    [19]D. Gevaux. Nano-antenna picks up gree light. Nature photonics 1,90 (2007).
    [20]T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch, A. Leitenstorfer. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett.103,257404 (2009).
    [21]D. J. Bergman, M. I. Stockman. Surface plasmon amplication by stimulated emission or radiation:quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett.90,027402 (2003).
    [22]K. Li, X. T. Li, M. I. Stockman, D. J.Bergman. Surface plasmon amplication by stimulated emission in nanolenses. Phys. Rev. B 71,115409 (2005).
    [23]N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov. Lasing spaser. Nature photonics 2,351 (2008).
    [24]J. Seidel, S. Grafstrom, L. Eng. Stimulation emission of surface plasmon at the interface between a silver film and optically pumed dye solution. Phys. Rev. Lett.94, 177401 (2005).
    [25]M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy. Stimulated emission of surface plasmon polariton. Phys. Rev. Lett.101,226806 (2008).
    [26]M. A.Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout. E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature 460,1110 (2009).
    [27]G. Gupa, J. Kondoh. Tuning and sensitivity enhancement of surface plasmon resonance sensor. Sens. Actuators B 122,381 (2007).
    [28]D. K. Roper. Determing surface plasmon resonance response factors for deposition onto three-dimensional surfaces. Chem. Engineering Science 62 1988 (2007).
    [29]D. Wei, O. A. Oyarzabal, T. S. Huang, S. Balasubramanian, S. Sista, A. L. Siminian. Development of a surface plasmon resonance biosensor for the identification of campylobacter jejuni. J. Microbiological methods 69,78 (2007).
    [30]S. Owega, D. Poitras. Local similarity matching algorithm for determing SPR angle in surface plasmon resonance sensors. Sens. Actuators B 123,35 (2007).
    [31]K. Vasilev, W. knoll, M. Kreiter, J. Chem. Fluoresence intensities of chromophores in front of a thin metal film. Phys.120,3439-3445 (2004).
    [32]M. J. R. Previte. YX. Zhang, K. Asian, C. D. Geddes. Surface plasmon coupled fluorescence from copper substrate. Appl. Phys. Lett.91,151902 (2007).
    [33]J. R. Lakowicz. Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission. Anal. Biochem.337,171-194 (2005).
    [34]C. D. Geddes, J. R. Lakowicz. Metal-enhanced fluorescence. J. Fluoresc.12 121 (2002).
    [35]A. V.Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of Surface plasmon polaritons. Phys. Rep.408,131 (2005).
    [36]黄成平。“微结构材料中电磁波的耦合物理效应”博士论文(2006)。
    [37]W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature,424,824 (2003).
    [38]E. Kretschmann, H. Raether. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsh. A 23 2135-2136 (1968).
    [39]A. Otto. Excitation of surface plasmon waves in silver by the method of frustrated total reflection. Z. Phys 216 398 (1968).
    [40]B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett.77,1889 (1996).
    [41]J. Renger, R. Quidant, N. van Hulst, S. Palomba, L. Novotny. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett.103,266802 (2009).
    [42]蔡圣善,朱耘,徐见军。《电动力学》,高等教育出版社,(2002)。
    [43]S. A. Maier. Plasmonics:fundamentals and applications, Springer (New York), (2007).
    [44]葛德彪,闫小波。《电磁波时域有限差分方法》,西安电子科技大学出版社,(2002)。
    [45]Yee. S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Trans. Antenaas Propagat.14(3):302-307 (1966)
    [46]Taflove A, Brodwin M E. Numerical solution of steady-state EM scattering prolems using the time-dependent Maxwell's equation. IEEE Trans. Microwave Theory Tech.MIT(23):623-630 (1975).
    [47]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.114(2):185-200 (1994).
    [48]Williams BS. Terahertz quantum-cascade laser. Nat Photonics 1:517-525 (2007).
    [49]Perche JL, Desieres Y, De Lamaestre ER Plasmon-based photosensors comprising a very thin semiconducting region. Appl Phys Lett 94:181104 (2009).
    [50]Nickels P, Matsuda S, Ueda T, An Z, Komiyama S Metal hole arrays as resonant photo-coupler for charge sensitive infrared phototransisitors. IEEE J Quant Electron 46:384(2010).
    [51]An Z, Chen JC, Ueda T, Komiyama S, Hirakawa K. Infrared phototransistor using capacitively coupled two-dimensional electron gas. Appl Phys Lett 86:172106 (2005).
    [52]An Z, Ueda T, Komiyama S, Hirakawa K. Metastable excited states of a closed quantum dot with high sensitivity to infrared photons. Phys Rev B 75:085417 (2007).
    [53]CONCERTO 7.0 Vector Field Limited, England (2008).
    [54]Jiang Y W, Tzuang LD,Ye YH, Wu YT, Tsai MW, Chen CY, Lee SC. Effect of Wood's anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with defferent aspect ratio. Opt Express 17:2631-2637 (2009).
    [55]Diwekar M, Matsui T, Agrawal A, Nahata A, Vardeny ZV. Midinfrared optical response and thermal emission from plasmonic lattices on Al films. Phys Rev B 76: 195402(2007).
    [56]Lee JW, Seo MA, Kang DH, Khim KS, Jeoung SC, Kim DS. Terahertz electromagnetic wave transmission through random arrays of sigle rectanglar holes and slits in thin metallic sheets. Phys Rev Lett 99:137401 (2007).
    [57]Wu W, Bonakdar A, Mohsehi H. Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96:161107 (2010).
    [58]Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes:the role of localized waveguide resonances. Phys Rev Lett 96;233901 (2006).
    [59]Mary A, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ. Theory of light transmission through an array of rectangular holes. Phys Rev B 76:195414 (2007).
    [60]Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S, Mahajan S, Russell AE, Bartlett PN. Localized and delocalized plasmon in metallic nanovoids. Phys Rev B 74:245415 (2006).
    [61]Garcia de Abajo FJ, Gomez-Medina R, Saenz JJ. Full transmission through perfect-conductor subwavelength hole arrays. Phys Rev E 72:016608 (2005).
    [62]C. Genet, T. W. Ebbesen. Light in tiny holes. Nature (London) 445,39-46 (2007).
    [63]T. Schwarzl, M. Eibelhuber, W. Heiss, E. Kaufmann,G Springholz, A Winter, H. Pascher. Mid-infrared high finesse microcavities and vertical-cavity lasers based on IV-VI semiconductor/BaF2 broadband Bragg mirrors. J. Appl. Phys.101,093102 (2007).
    [64]A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. C ho. Single-mode surface-plasmon laser. Appl. Phys. Lett.76,2164 (2000).
    [65]Z. Yu, G. Veronis, S. Fan, M. L. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Brongersma, Appl. Phys. Lett.89,151116 (2006).
    [66]Y. M. Zhang, H. B. Chen, Z. F. Li, N. Li, X. S. Chen, W. Lu. The optical coupling improvement of THz quantum well infrared photodetectors based on the plasmonic induced near-field effect Phys B:405 552-554 (2010).
    [67]Chenggang Hu, Zeyu Zhao, Xunan Chen, Xiangang Luo. Realizing near-perfect absorption at visible frequencies OPTICS EXPRESS:17 11039-11044 (2009).
    [68]Hideki, Miyazaki.Controlled plasmon resonance in closed metal/insulator/ metal nanocavities Appl Phys Lett 89,211126 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700