用户名: 密码: 验证码:
双光子吸收材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双光子吸收为最常用的多光子吸收过程,是指介质同时吸收两个光子向高能级跃迁。双光子吸收在化学、物理和生物等各个领域都有重要的作用,是目前国际上最活跃的研究领域之一。本论文对卟啉衍生物,咔唑衍生物和杯[4]芳烃衍生物进行了系统的理论研究。首先利用密度泛函方法(DFT)对分子结构进行优化,得到基态平衡几何构型,在此基础上再利用半经验ZINDO方法、完全态求和公式及我们自己设计编制的FTRNLO软件进行组态相互作用计算,得到分子的单光子和双光子吸收性质等信息,揭示了结构和双光子吸收性质间的关系,为实验研究提供了有价值的理论依据,为进一步探索具有大的双光子吸收响应的材料做出了重要贡献。同时为理论上设计并在实验上合成具有大的双光子吸收截面的有机材料提供理论依据。
Two-photon absorption is a third-order nonlinear optical process. Molecular two-photon absorption has attracted growing interest over recent years owing to its applications in advanced scientific fields. Design and synthesis of materials with large two-photon absorption cross-section is the important basis of its development. A series of novel organic two-photon absorption materials have been systematic theoretical investigated. The density functional theory has been applied to optimize the molecular equilibrium geometries. On the basis of the optimized structures, one- and two-photon absorption properties are obtained by ZINDO program combined SOS equation and self-compiled FTRNLO program. The investigation in this thesis will provide some useful information and valuable basis on the theoretical designing and experimental synthesizing new two-photon absorption materials with large two-photon absorption cross-section values.
     1. Two series of porphyrin-thiophene chromophores which were theoretically studied exhibit large two-photon absorption cross-section in the visible region. The results show that the number of thiophene units affects the properties of one-photon absorption and two-photon absorption. Porphyrin-thiophene chromophores featuring two or three thiophene units have wide two-photon absorption response ranges; they can be applied to many nonlinear optical areas, such as optical limiting. Intervening ethynyl unit is beneficial to extend the conjugated pathway, and increase the two-photon absorption cross-section. At the same time, the one-photon absorption and two-photon absorption wavelengths are bathochromially shifted. From viewpoint of the high transparency and large nonlinear optical response, porphyrin-thiophene chromophores will be promising two-photon absorption materials.
     2. The electronic structures, one-photon absorption and two-photon absorption properties of the azulenylporphyrins and azulene-fused porphyrins have been comparatively studied. With the number of azulenyl groups increasing, the one-photon absorption wavelengths of all molecules are red-shifted in range of 400~600 nm, at the same time, two-photon absorption cross-section are gradually enlarged. The azulene-fused structures facilitate expanding conjugated area and increasing two-photon absorption cross-section. The origin of two-photon absorption properties of studied compounds is studied with two-level model. In summary, the azulene-fused porphyrins exhibit strong two-photon absorption.
     3. Two types of donor-acceptor calix[4]arenes have been theoretically studied. The calculations show that the substitution of C≡C by the conjugation bridge C=C and N=N takes an important part in altering one- and two-photon absorption properties. The maximum one-photon absorption wavelengths of all studied compounds are less than 400 nm, which means high transparency. The geometry of the calixarenes strongly influences the two-photon absorption properties of the studied compounds. In addition, the nitro derivatives have wilder two-photon absorption response range than other non-nitro derivatives. The tetrasubsituted calix[4]arenes (type B calixarenes) exists larger two-photon absorption cross-section values than the bisubstituted calix[4]arenes (type A calixarenes).
     4. 3, 6- and 2, 7-carbazole derivatives have been investigated. The position of vinylpyridine substituents affects the properties of one-photon absorption and two-photon absorption. Compared with 3, 6-carbazo derivatives, the one-photon absorption wavelengths of 2, 7-carbazole derivatives are bathochromic shift and the oscillator strength increased; the TPA wavelengths are red-shifted and the two-photon absorption cross-section increased. 2, 7-carbazole derivatives will be more promising TPA materials.
引文
[1] G?ppert-Mayer M.über Elementarakte mit zwei Quantensprüngen [J]. Ann. Phys., 1931, 401: 273–294.
    [2] Dirac P A M. The Quantum Theory of the Emission and Absorption of Radiation [J]. Proc. R. Soc. London. A, 1927, 114: 243-265.
    [3] Maiman T H. Stimulated Optical Radiation in Ruby [J]. Nature, 1960, 187: 493-494.
    [4] Kaiser W, Garrett C G B. TWO-PHOTON EXCITATION IN CaF2:Eu2+ [J]. Phys. Rev. Lett. 1961, 7: 229-232.
    [5]过巳吉.非线性光学[M].西安:西北电讯工程学院出版社, 1986,p224.
    [6] He G S, Xu G C, Prasad P N, Reinhardt B A, Bhatt J C, McKellar R, Dillard A G. Two-photon absorption and optical-limiting properties of novel organic compounds [J]. Opt. Lett., 1995, 20: 435-437.
    [7] Van Stryland E W, Sheik-Bahae M. Characterization Techniques and Tabulations for Organic Nonlinear Materials, [M]. Marcel Dekker Inc., 1998, p655-692.
    [8] Sheik-Bahae M, Said A A, Van Stryland E W. High Sensitivity, Single Beam n2 Measurement [J]. Opt. Lett., 1989, 14: 955-957.
    [9] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive Measurement of Optical Nonlinearities Using a Single Beam [J]. IEEE J. Quantum Electron, 1990, 26: 760-769.
    [10] Xu C, Webb W W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm [J]. J. Opt. Soc. Am. B, 1996, 13: 481-491.
    [11] Parthenopouls D A, Rentzepis P M. Three-dimensional optical storage memory [J]. Science, 1989, 245: 843-845.
    [12] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248: 73-76.
    [13] Prasad P N, Williams D F. Introduction to Nonlinear Optical Effects in Molecules and Polymers, New York: Wiley, 1991, 232-237.
    [14] Bhawalkar J D, He G S, Prasad P N. Nonlinear multiphoton processes in organic and polymeric materials [J]. Rep. Prog. Phys., 1996, 59: 1041-1070.
    [15] He G S, Bhawalkar J D, Zhao C F, et al. Optical limiting effect in a two-photon absorption dye doped solid matrix [J]. Appl. Phys. Lett., 1995, 67: 2433-2435.
    [16] He G S, Yuan L, Cheng N, et al. Nonlinear optical properties of a new chromophore [J]. J. Opt. Soc. Am. B, 1997, 14: 1079-1087.
    [17] Albota M, Beljonne D, Brédas J L, et al. Design of organic molecules with large two-photon absorption cross section [J]. Science, 1998, 281: 1653-1656.
    [18] Chung S-J, Kim K-S, Lin T-C, et al. Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures [J]. J. Phys. Chem. B, 1999, 103: 10741-10745.
    [19] Kim O-K, Lee K-S, Woo H Y, et al. New Class of Two-Photon-Absorbing Chromophores Based on Dithienothiophene [J]. Chem. Mater., 2000, 12: 284-286.
    [20] Cho B R, Son K H, Lee S H, et al. Two Photon Absorption Properties of 1, 3, 5-Tricyano-2, 4, 6-tris(styryl)benzene Derivatives [J]. J. Am. Chem. Soc., 2001, 123: 10039-10043.
    [21] Zhou W, Kuebler S M, Braun K L, et al. An Efficient Two-Photon-Generated Photoacid Applied to Positive-Tone 3D Microfabrication [J]. Science, 2002, 296: 1106-1109.
    [22] Drobizhev M, Karoki A, Dzenis Y, et al. Strong Cooperative Enhancement of Two-Photon Absorption in Dendrimers [J]. J. Phys. Chem. B, 2003, 107:7540-7543.
    [23] Stellacci F, Bauer C A, Meyer-Friedrichsen T, et al. Ultrabright Supramolecular Beacons Based on the Self-Assembly of Two-Photon Chromophores on Metal Nanoparticles [J]. J. Am. Chem. Soc., 2003, 125: 328-329.
    [24] Kim H M, Jeong M-Y, Ahn H C, et al. Two-Photon Sensor for Metal Ions Derived from Azacrown Ether [J]. J. Org. Chem., 2004, 69: 5749-5751.
    [25] Porrès L, Mongin O, Katan C, et al. Enhanced Two-Photon Absorption with Novel Octupolar Propeller-Shaped Fluorophores Derived from Triphenylamine [J]. Org. Lett., 2004, 6: 47-50.
    [26] Kannan R, He G S, Lin T-C, et al. Toward Highly Active Two-Photon Absorbing Liquids. Synthesis and Characterization of 1, 3, 5-Triazine-Based Octupolar Molecules [J]. Chem. Mater., 2004, 16: 185-194.
    [27] He G S, Tan L-S, Zheng Q D, et al. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications [J]. Chem. Rev., 2008, 108: 1245-1330.
    [28] He G S, Zhao C F, Bhawalkar J D, et al. Two-photon pumped cavity lasing in novel dye doped bulk matrix rods [J]. Appl. Phys. Lett., 1995, 67: 3703-3705.
    [29] Zhao C F, He G S, Bhawalkar J D, et al. Newly Synthesized Dyes and Their Polymer/Glass Composites for One- and Two-Photn Pumped Solid-State Cavity Lasing [J]. Chem. Mater., 1995, 7: 1979-1983.
    [30] He G S, Liu S H. Physics of Nonlinear Ooptics [M]. New York: Wiley, 1984
    [31] Tutt L W, Boggess T F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials [J]. Prog Quantum Electron., 1993, 17, 299-338.
    [32] Spangle C W. Recent development in the design of organic materials foroptical power limiting [J]. J. Mater. Chem., 1999, 9: 2013-2020.
    [33] Dvornikov A S, Rentzepis P M. Accessing 3D memory information by means of nonlinear absorption.[J]. Opt. Commun., 1995, 119, 341-346.
    [34] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for Three-dimensional optical data storage and microfabrication [J]. Nature, 1999, 398: 51-54.
    [35] Kawata S, Kawata Y. Three-dimensional optical data storage using photochromic materials [J]. Chem. Rev., 2000, 100: 1777-1788.
    [36] Belfield K D, Schafer Katherine J, Liu Yong, et al. Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging [J]. J. Phys. Org. Chem., 2000, 13: 837-849.
    [37] Strickler J H, Denk W, Webb W W. Two-photon excitation in laser scanning microscopy [J]. Biophys. J. 1990, 57, A374.
    [38] Xu C, Zipfel W R, Shear J B, et al. Multiphoton fluorescence excitation: New spectral window for biological nonlinear microscopy [J]. Proc. Natl. Acad. Sci. U. S. A., 1996, 93:10763-10768.
    [39] Mertz J, Xu C, Webb W W. Single-molecule detection by two-photon-excited fluorescence [J]. Opt. Lett., 1995, 20: 2532-2534.
    [40] Denk W, Svoboda K. Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick [J]. Neuron, 1997, 18: 351-357.
    [41] Bhawalkar J D, Kumar N D, Zhao C F, et al. Two-photon photodynamic therapy [J]. J. Clin. Laser. Med. Surg., 1997, 15: 201-204.
    [42] Reinhardt B A, Brott L L, Clarson S J, et al. Highly Active Two-Photon Dyes: Design, Synthesis, and Characterization toward Application [J]. Chem. Mater., 1998, 10: 1863-1874.
    [43] Albota M, Beljonne D, Brédas J L, et al. Design of Organic Molecules with Large Two-Photon Absorption Cross Sections [J]. 1998, 281: 1653-1656.
    [44] Zyss J, Ledoux I. Non-linear optics in multipolar media: theory and experiments [J]. Chem. Rev., 1994, 94: 77-105.
    [45] (a) Cho B R, Piao M J, Son K H, et al. Nonlinear Optical and Two-Photon Absorption Properties of 1, 3,5-Tricyano-2, 4, 6-tris(styryl) benzene-Containing Octupolar Oligomers [J]. Chem. Eur. J., 2002, 8: 3907-3916. (b) Vagin S, Barthel M, Dini D, et al. Synthesis and Characterization of (Octaaryltetra-azaporphyrinato)indium(III) Complexes for Optical Limiting [J]. Inorg. Chem., 2003, 42: 2683-2694.
    [46] (a) Hurst S K, Humphrey M G, Isoshima T, et al. Organometallic Complexes for Nonlinear Optics. 28.1 Dimensional Evolution of Quadratic and Cubic Optical Nonlinearities in Stilbenylethynylruthenium Complexes [J]. Organometallics, 2002, 21: 2024-2026. (b) Alcaraz G, Euzenat L, Mongin O, et al. Improved transparency–nonlinearity trade-off with boroxine-based octupolar molecules [J]. Chem. Commun., 2003, 2766-2767.
    [47] Ray P C, Leszczynski J,“Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: Structure-function relationships and solvent effects [J]. J. Phys. Chem. A, 2005, 109: 6689-6696.
    [48] (a) Chung S-J, Kim K-S, Lin T C, et al. Cooperative Enhancement of Two-Photon Absorption in Multi-branched Structures [J]. J. Phys. Chem. B, 1999, 103: 10741-10745. (b) Lee W-H, Lee H, Kim J-A, et al. Two-Photon Absorption and Nonlinear Optical Properties of Octupolar Molecules [J]. J. Am. Chem. Soc., 2001, 123, 10658-10667. (c) Chung S J, Lin T C, Kim K S, et al. Two-Photon Absorption and Excited-State Energy-Transfer Properties of a New Multibranched Molecule [J]. Chem. Mater., 2001, 13: 4071-4076.(d) Lee H J, Sohn J W, Hwang J H, et al. Triphenylamine-Cored Bifunctional Organic Molecules for Two-Photon Absorption and Photorefraction [J]. Chem. Mater., 2004, 16: 456-465.
    [49] (a) Liu X-J, Feng J-K, Ren A-M, et al. One- and two-photon absorption of three-coordinate compounds with different centers (B, Al, N) and a 2, 2’-dipyridyl- nitrogen functional group [J]. J. Chem. Phys., 2004, 121: 8253-8260. (b) Zhou X, Feng J-K, Ren A-M. One- and two-photon absorption properties of octupolar molecules with tetrahedral structure [J].Chem. Phys. Lett., 2005, 403: 7-15.
    [50] Prasad P N, Willians D J. Introduction to Nonlinear Optical Effects in Molecules and Polymers [M]. New York: Wiley-Interscience, 1991, Chapter 10.
    [51] Rao D N, Chopra P, Ghoshal S K, et al. Third-order nonlinear optical interaction and conformational transition in poly-4-BCMU polydiacetylene studied by picosecond and subpicosecond degenerate four wave mixing [J]. J. Chem. Phys., 1986, 84: 7049-7050.
    [52] Adrononv A, Fréchet J M J, He G S, et al. Novel Two-Photon Absorbing Dendritic Structures [J]. Chem. Mater., 2002, 12: 2838-2843.
    [53] Drobizhev M, Karotki A, Rebane A, et al. Dendrimer molecules with record large two-photon absorption cross section [J]. Opt. Lett., 2001, 26: 1081-1083.
    [54] Tutt L W, Kost A. Optical limiting performance of C60 and C70 solution [J]. Nature, 1992, 356: 225-256.
    [55] Drenser K A, Larsen R J, Strohkendl F P, et al. Femtosecond, Frequency-Agile, Phase Sensitive Detected, Muti-Wave-Mixing Nonlinear Optical Spectroscopy Applied to p-Electron Photonic Materials [J]. J. Phys. Chem. A, 1999, 103: 2290-2301.
    [56] Lindle J R, Pong R G S, Bartoli F J, et al. Nonlinear optical properties of the fullerenes C60 and C70 at 1.064μm [J]. Phys. ReV. B, 1993, 48: 9447-9451.
    [57] Bezel I V, Chekalin S V, Matveets Y A, et al. Two-photon absorption of powerful femtosecond pulses in C60 film [J]. Chem. Phys. Lett., 1994, 218: 475-478.
    [58] (a) Zhou X, Ren A-M, Feng J-K. Theoretical investigation on the two-photon absorption of C60 [J]. Journal of Molecular Structure:THEOCHEM, 2004, 680: 237-242. (b) Zhou X, Ren A-M, Feng J-K, et al. A Relative Study on Two-photon Absorption Properties of C60 and C70 [J]. Chin. J. Chem., 2004, 22, 653-657.
    [59] Jiang B, Yang S-W, Wayne E J J, Conjugated Porphyrin Polymers: Control of Chromophore Separation by Oligophenylenevinylene Bridges [J]. Chem. Mater., 1997, 9: 2031-2034.
    [60] Kuebler S M, Dennings R G, Anderson H L. Large Third-Order Electronic Polarizability of a Conjugated Porphyrin Polymer [J]. J. Am. Chem. Soc., 2000, 122: 339-347.
    [61] Screen T E O, Lawton K B, Wilson G S, et al. Synthesis and third order nonlinear optics of a new soluble conjugated porphyrin polymer [J]. J. Mater. Chem., 2001, 11: 312-320.
    [62] Ogawa K, Zhang T, Yoshihara K, et al. Large Third-Order Optical Nonlinearity of Self-Assembled Porphyrin Oligomers [J]. J. Am. Chem. Soc., 2002, 124: 22-23.
    [63] (a) Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy [J]. Chem. Soc. ReV., 1995, 24, 19-33. (b) Prasad, P. N. Introduction to Biophotonics [J]. Wiley-Interscience: Hoboken, NJ, 2003, Chapter 12 and references therein.
    [64] (a)徐光宪,黎乐民.量子化学基础原理和从头计算法[M].北京:科学出版社, 1981. (b)封继康.基础量子化学原理[M].北京:高等教育出版社, 1987. (c)王德民,叶学其.神奇的预测:趣谈量子化学[M].湖南:湖南教育出版社, 2001.
    [65] Heitler W, London F. Wechselwirkung neutraler Atome und hom?opolare Bindung nach der Quantenmechanik [J]. Z. Physik., 1927, 44: 455-472.
    [66] Schr?dinger E.über das Verh?ltnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen[J]. Annalen der Physik, 1926, 79: 734-756.
    [67] Schr?dinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules[J]. Phys. Rev. 1926, 28: 1049-1070.
    [68] Born M, Oppenheimer R. Zur quantentheorie der molekeln[J]. Ann. Physik., 1927, 84: 457-484.
    [69] Born M, Huang K. Dynamical theory of crystal lattices[C]. New York: Oxford University Press, 1954.
    [70] Pauli W.über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren[J]. Z. Physik., 1925, 31: 765-783.
    [71] Hartree D R. The calculations of atomic structure[M]. New York: John Wiley & Sons, 1957.
    [72] Fork V. N?herungsmethode zur L?sung des quantenmechanischen Mehrk?rperproblems[J]. Z. Physik., 1930, 61: 126-148.
    [73] Slater J C. Note on Hartree′s Method[J]. Phys. Rev., 1930, 35:210-211.
    [74] Roothaan C C J. New Developments in Molecular Orbital Theory[J]. Rev. Mod. Phys., 1951, 23: 69-89.
    [75] Hall G G. The Molecular Orbital Theory of Chemical Valency. VIII. AMethod of Calculating Ionization Potentials[J]. Proc. R. Soc. Lond. A, 1951, 205: 541-552.
    [76] Hobenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev. B, 1964, 136: 864-871.
    [77] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A, 1965, 140: 1133-1138.
    [78] Slater J C. Vol. 4: Quantum theory of molecular and solids[M]. New York: McGraw-Hill, 1974.
    [79] Salahub D E, Zerner M C. The challenge of d and f electrons[M]. ACS: Washington D. C. 1989.
    [80] Parr R G, Yang W. Density-functional theory of atoms and molecules[M]. Oxford: Oxford University Press, 1989.
    [81] Labanowski J K, Andzelm J W. Density functional methods in chemistry[M]. New York: Springer-Verlag, 1991.
    [82] Pople J A, Gill P W M, Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem. Phys. Letter., 1992, 199: 557-560.
    [83] Johnson B G, Frisch M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J. Chem. Phys., 1994, 100: 7429-7442.
    [84] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789.
    [85] Decke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38: 3098-3100.
    [86] Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr[J]. Chem. Phys. Lett., 1989, 157: 200-206.
    [87] Hoffmann R. An Extended Hückel Theory. I. Hydrocarbons[J]. J. Chem. Phys., 1963, 39: 1397-1412.
    [88] Pople J A, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap[J] . J. Chem. Phys., 1965, 43: S136-S151.
    [89] Pople J A, Beveridge D L.江元生译近似分子轨道理论方法[M].北京:科学出版社,1976.
    [90] Ridley J E, Zerner M C. Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines[J]. Theo. Chim. Acta., 1976, 42: 223-236.
    [91] Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model[J]. J . Am. Chem. Soc., 1985, 107: 3902-3909.
    [92] Stewart J J P. Optimization of parameters for semiempirical methods I. Method[J]. J. Comput. Chem., 1989, 10: 209-220.
    [93] Condon E U, Shortley G H. The Theory of Atomic Spectra[M]. UK: Cambridge University Press, 1953.
    [94] Slater J C. The Quantum Theory of Atomic Structure[M]. McGraw-Hill, 1960, Vol. 1.
    [95] Mataga N, Nishimoto K. Z. Physik. Chem(Frankfrut), 1957, 13, 140.
    [96] Pariser R, Parr R G. A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II [J]. J. Chem. Phys., 1953, 21: 767-776.
    [97] Ridley J, Zerner M. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy" Pyrrole and the Azines [J]. Theor. Chim. Acta., 1973, 32: 111-134.
    [98] A.Ishitany et al., Theor.Chim.Acta(Bel.), 1973, 32: 111.
    [99] Blak P, et al., Rec. Trav. Chim., 1975, 76, 907.
    [100]周世勋.量子力学[M].上海:上海科技出版社,1963.
    [101] Orr B J, Ward J F. Perturbation theory of the non-linear optical polarization of an isolated system[J]. Molec Phys., 1971, 20: 513-526.
    [102] Dick B, Hochstrasser R M, Trommmsdorf H P. Resonant Molecular Optics: Nonlinear Optical Properties of Organic Molecules and Crystals [M]. Academic Press, 1987, Vol. 12, p. 159.
    [103] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photo-absorbed photopolymerization [J]. Opt. Lett. 1997, 22: 132-134.
    [104] Kawwata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices-Micromachines can be created with higher resolution using two-photon absorption [J]. Nature, 2001, 412: 697-698.
    [105] Maruo S, Ikuta K. Fabrication of freely movable microstructures by using two-photon three-dimensional microfabrication [J]. Proc. Soc. Photo-Opt. Instrum. Eng. 2000, 3937: 106-112.
    [106] Pudavar H E, Joshi M P, Prasad P N, et al. High-density three-dimensional optical datastorage in a stacked compact disk format with two-photon writing and single photon readout [J]. Appl. Phys. Lett. 1991, 74: 1338-140.
    [107] Fleitz P A, Sutherland R A, Stroghendl F P, et al. Nonlinear measurements on AF-50 [J]. SPIE Proc. 1998, 3472: 91-97.
    [108] Ehrlich J E, Wu X-L, S Lee I-Y, et al. Two-photon absorption and broadband optical limiting with bis-donor stilbenes [J]. Opt. Lett. 1997, 22: 1843-1845.
    [109] Rumi M, Ehrlich J E, Heikal A A, et al. Structure?Property Relationships for Two-Photon Absorbing Chromophores: Bis-DonorDiphenylpolyene and Bis(styryl)benzene Derivatives [J]. J. Am. Chem. Soc. 2000, 122: 9500-9510.
    [110] (a) Liu X-J, Feng J-K, Ren A-M, et al. Theoretical Studies of the Spectra and Two-photon Absorption Cross Section for Porphyrin and Carbaporphyrins [J]. Chem. Phys. Lett., 2003, 373: 197-206. (b) Zhou X, Ren A-M, Feng J-K, et al. The One-photon and Two-photon Absorption Properties for Porphyrin-Derived Monomers and Dimers [J]. ChemPhysChem, 2003, 4: 991-997. (c) Zhou X, Ren A-M, Feng J-K, et al. Theoretical Studies on the One- and Two-Photon Absorption of tetrabenzoporphyrins and phthalocyanines [J]. Can. J. Chem., 2004, 82: 19-26. (d) Zhang X-B, Feng J-K, Ren A-M, et al. A comparative study of two-photon properties of zinc(II)-porphyrin, meso-meso singly-linked zinc(II)-diporphyrin and zinc(II) meso, meso-coupled porphyrin dimmer via hydrogen bonding interactions [J]. Journal of Molecular Structure : THEOCHEM, 2006, 767: 165-173. (e) Yang Z-D, Feng J-K, Ren A-M, et al. Theoretical Investigation of One-Photon and Two-Photon Absorption Properties for Multiply N-Confused Porphyrins [J]. J. Phys. Chem. A, 2006, 110: 13956-13965. (f) Zhang X-B, Feng J-K, Ren A-M, et al. A comparative study of one- and two-photon absorption properties of meso–meso singly, meso-βdoubly and meso–mesoβ–ββ–βtriply linked ZnII-porphyrin oligomers [J]. Journal of Molecular Structure: THEOCHEM, 2007, 804: 21-29.
    [111] Ray P. C., Sainudeen Z. Very Large Infrared Two-Photon Absorption Cross Section of Asymmetric Zinc Porphyrin Aggregates: Role of Intermolecular Interaction and Donor?Acceptor Strengths [J]. J. Phys. Chem. A, 2006, 110: 12342-12347.
    [112] Mullen K, Wegner G. Electronic Materials: The Oligomer Approach [M]. New York Wiley-VCH, 1998.
    [113] Fichou D. Handbook of Oligo- and Polythiophene [M]. New York: Wiley-VCH, 1999.
    [114] McCullough D R. The chemistry of conducting polythiophenes [J]. Adv. Mater., 1998, 10: 93-116.
    [115] Fichou D. Structural order in conjugated oligothiophenes and its implications on opto-electronic devices [J]. J. Mater. Chem., 2000, 10: 571-588.
    [116] (a) Dimitrakopoulos C D, Malenfant P R L. Organic Thin Film Transistors for Large Area Electronics [J]. Adv. Mater., 2002, 14: 99-117. (b) Katz H E, Lovinger A J, Laquindanum J G.α,ω-Dihexylquaterthiophene: A Second Thin Film Single-Crystal Organic Semiconductor [J]. Chem. Mater., 1998, 10: 457-459. (c) Garnier F, Yassar A, Hajlaoui R, Horowitz G, et al. Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers [J]. J. Am. Chem. Soc., 1993, 115: 8716-8721. (d) Garnier F, Hajlaoui R, Kassmi A El, et al. Dihexylquaterthiophene, A Two-Dimensional Liquid Crystal-like Organic Semiconductor with High Transport Properties [J].Chem. Mater., 1998, 10: 3334-3339.
    [117] Mitschke U., B?uerle P. The electroluminescence of organic materials [J]. J. Mater. Chem., 2000, 10: 1471-1507.
    [118] (a) Videlot C, Kassmi A El, Fichou D. Photovoltaic properties of octithiophene-based Schottky and p/n junction cells: Influence of molecular orientation [J].Solar Energy Mater. Solar Cells, 2000, 63: 69-82. (b) Noma N, Tsuzuki T, Shirota Y. ? Thiophene octamer as a new class of photo-active material for photoelectrical conversion [J]. Adv. Mater. 1995, 7: 647-648.
    [119] He M Q, Leslie T M, Sinicropi J A. Synthesis of Chromophores withExtremely High Electro-optic Activity. 1. Thiophene-Bridge-Based Chromophores [J].Chem. Master., 2002, 14: 4662-4668.
    [120] Zhang T-G., Zhao Y X, Asselberghs I, et al. Design, Synthesis, Linear, and Nonlinear Optical Properties of Conjugated (Porphinato)zinc(II)-Based Donor-Acceptor Chromophores Featuring Nitrothiophenyl and Nitrooligothiophenyl Electron-Accepting Moieties [J]. J. Am. Chem. Soc., 2005, 127: 9710-9720.
    [121] Cha M, Torruellas W E, Stegeman G I, et al. Two photon absorption of dialkylaminonitrostilbene side chain polymer [J]. Appl. Phys. Lett., 1994, 65: 2648-2650.
    [122] Kogej T, Beljonne D, Meyers F, et al. Mechanisms for enhancement of two-photon absorption in donor-acceptor conjugated chromophores [J]. Chem. Phys. Lett., 1998, 298: 1-6.
    [123] Bishop D M, Luis J M, Kirtman B. Vibration and two-photon absorption [J]. J. Chem. Phys., 2002, 116: 9729-9739.
    [124] Morel Y, Irimia A, Najechalski P, et al. Two-photon absorption and optical power limiting of bifluorene molecule [J]. J. Chem. Phys., 2001, 114: 5391-5396.
    [125] LeCours S M, Dimagno S G., Therien M J. Exceptional Electronic Modulation of Porphyrins through meso-Arylethynyl Groups. Electronic Spectroscopy, Electronic Structure, and Electrochemistry of [5,15-Bis[(aryl)ethynyl]-10,20-diphenylporphinato]zinc(II) Complexes. X-ray Crystal Structures of [5,15-Bis[(4‘-fluorophenyl)ethynyl]-10,20- diphenylporphinato]zinc(II) and 5,15-Bis[(4‘-methoxyphenyl)ethynyl]- 10,20-diphenylporphyrin [J]. J. Am. Chem. Soc. 1996, 118: 11854-11864.
    [126] Drobizhev M, Karotki A, Kruk M, et al. Resonance enhancement of two-photon absorption in porphyrins [J]. Chem. Phys. Lett. 2002, 355, 175-182.
    [127] K?hler R H, Cao J, Zipfel W R, et al. Exchange of protein moleculesthrough connections between higher plant plastids [J]. Science, 1997, 276: 2039-2042.
    [128] Bhawalkar J D, He G S, Prasad P N. Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting [J]. Opt. Commun., 1995, 119: 587-590.
    [129] Strickler J H, Webb W W. 3-D optical data storage by two-photon excitation [J]. Adv. Mater., 1993, 5: 479-481.
    [130] Zheng Q, He G S, Lin T C, et al. Synthesis and properties of substituted (p-aminostyryl)-1-(3-sulfooxypropyl)pyridinium inner salts as a new class of two-photon pumped lasing dyes [J]. J. Mater. Chem., 2003, 13: 2499-2504.
    [131] Abbotto A, Beverina L, Bozio R, et al. Push-Pull Organic Chromophores for Frequency-Upconverted Lasing [J]. Adv. Mater., 2000, 12: 1963-1967.
    [132] Verbiest T, Houbrechts S, Kauranen M, et al. Second-order nonlinear optical materials: recent advances in chromophore design [J]. J. Mater. Chem., 1997, 7: 2175-2189.
    [133] Marder S R, Kippelen B, Jen A K Y, et al. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications [J]. Nature (London), 1997, 388: 845-851.
    [134] Dalton L R, Steier W H, Robinson B H, et al. From molecules to opto-chips: organic electro-optic materials [J]. J. Mater. Chem., 1999, 9: 1905-1920.
    [135] Wolff J J, Wortmann R. Organic Materials for Second-Order Nonlinear Optics [J]. Adv. Phys. Org. Chem., 1999, 32: 121-217.
    [136] Ma H, Jen A K-Y. Functional Dendrimers for Nonlinear Optics [J]. Adv. Mater. 2001, 13: 1201-1205.
    [137] (a) Gouterman M. in The Porphyrins [M] Vol.Ⅲ, edited by D.Dolphin, New York: Academic Press, 1978. (b) Huang W-T, Li Y, Xiang H, et al. Ultrafast third-order optical nonlinearity of several sandwich-type phthalocyaninato and pophyrinato europium complexes [J]. Chin. Phys., 2005, 14: 2226-2230. (c)陈志峰,黄锦江,计亮年,等.卟啉和钌二元体的超快能量转移[J].物理学报, 2008, 57: 7354-7359.
    [138] Beer M B, Longuet-Higgins H C. Anomalous Light Emission of Azulene [J]. J. Chem. Phys., 1995, 23: 1390-1391.
    [139] Woodford J N, Wang C H, Asato A E, et al. Hyper-Rayleigh scattering of azulenic donor–acceptor molecules at 1064 and 1907 nm [J]. J. Chem. Phys., 1999, 111: 4621-4628.
    [140] Kurotobi K, Osuka A, Synthesis of meso-Azulenylporphyrins [J]. Org. Lett., 2005, 7: 1055-1058.
    [141] Kurotobi K, Kim K S, Noh S B, et al. A Quadruply Azulene-Fused Porphyrin with Intense Near-IR Absorption and a Large Two-Photon Absorption Cross Section [J]. Angew. Chem. Int. Ed., 2006, 45: 3944-3947.
    [142] Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 03 Revision C02, Gaussian, Inc Wallingford CT, 2004.
    [143] Anderson W P, Edwards W D, Zerner M C. Electronic Spectra of Hydrated Ions of the First Row Transition-Metals from Semi-Empirical Calculations [J]. Inorg. Chem. 1986, 25: 2728-2732.
    [144] Flescher E B, Miller C K, Webb L E. Crystal and Molecular Structures of Some Metal Tetraphenylporphines [J]. J. Am. Chem. Soc., 1964, 86: 2342-2347.
    [145] Edwards L, Dolphin D H, Gouterman M. Porphyrins : XVI. Vapor absorption spectra and redox reactions: Octalkylporphins [J]. J. Mol. Spectrosc., 1970, 35: 90-109.
    [146] Spellane P J, Gouterman M, Antipas A, et al. Porphyrins. 40. Electronic spectra and four-orbital energies of free-base, zinc, copper, and palladium tetrakis(perfluorophenyl)porphyrins [J]. Inorg.Chem. 1980, 19: 386-391.
    [147]封继康,高旭岭,费浩生,等.卟啉镍分子的激发态和反饱和吸收[J].化学学报, 1992, 50: 874-876.
    [148] Luo Y, Oscar R P, Guo J D, et al. Charge-transfer Zn-porphyrin derivatives with very large two-photon absorption cross sections at 1.3–1.5μm fundamental wavelengths [J]. J. Chem. Phys., 2005, 455: 96101-96102.
    [149] Oscar R P, Agren H. Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives [J]. J. Chem. Phys., 2006, 124: 094310.
    [150] (a) Casnati A, Sciotto D, Arena G.. in Calixarenes 2001 [M]. (Eds: Z. Asfari, V. B?hmer, J. Harrowfield, J. Vicens), Dordrecht: Kluwer Academic, 2001, p440-456M. (b) Mandolini L, Ungaro R, Calixarenes in Action [M]. London: Imperial College Press, 2000. (c) Gutsche C D. Calixarenes [M], RSC, Cambridge, 1998. (d) Iokeda A, Shinkai S. Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding [J]. Chem. Rev., 1997, 97: 1713-1734.
    [151] Vicens J, Bohmer V. Calixarenes: A Versatile Class of Macrocyclic Compounds [M]. The Netherlands: Kluwer Academic Publishers, Dordrecht, 1991.
    [152] Thallapally P K, Lloyd G.O, Atwood J L, et al. Diffusion of water in a nonporous hydrophobic crystal [J].Angewandte Chemie (International ed. in English), 2005; 44 ,3848-3451.
    [153] Purse B W, Gissot A, Rebek J Jr. A Deep Cavitand Provides a Structured Environment for the Menschutkin Reaction [J]. J. Am. Chem.Soc., 2005, 127, 11222-11223.
    [154] Zhao C-F, He G S, Bhawalkar J D, et al. Newly Synthesized Dyes and Their Polymer/Glass Composites for One- and Two-Photon Pumped Solid-State Cavity Lasing [J]. Chem. Mater., 1995, 7: 1979-1983.
    [155] Calvete M, Yang G Y, Hanack M. Porphyrins and phthalocyanines as materials for optical limiting [J]. Synth. Met., 2004, 141: 231-243.
    [156] (a) He G S, Markowicz P P, Lin T-C, et al. Observation of stimulated emission by direct three-photon excitation [J]. Nature, 2002, 415: 767-770. (b) Xu C, Zipfel W, Shear J B, et al. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy [J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 10763-10768.
    [157] Belfield K D, Schafer K J. A New Photosensitive Polymeric Material for WORM Optical Data Storage Using Multichannel Two-Photon Fluorescence Readout [J]. Chem. Mater. 2002, 14: 3656-3662.
    [158] Sun H-B, Mizeikis V, Xu Y, et al. Microcavities in polymeric photonic crystals [J]. Appl. Phys. Lett., 2001, 79: 1-3.
    [159] (a) Kannan R, He G S, Yuan L, et al. Diphenylaminofluorene-Based Two-Photon-Absorbing Chromophores with Variousπ-Electron Acceptors [J]. Chem. Mater., 2001, 13: 1896-1904. (b) Wang C-K, Macak P, Luo Y, et al. Effects ofπcenters and symmetry on two-photon absorption cross sections of organic chromophores [J]. J. Chem. Phys., 2001, 114: 9813-9820.
    [160] (a) Ventelon L, Charier S, Moreaux L, et al. Nanoscale Push-Push Dihydrophenanthrene Derivatives as Novel Fluorophores for Two-Photon-Excited Fluorescence [J]. Angew. Chem. Int. Ed., 2001, 40: 2098-2101. (b) Abotto A, Beverina L, Nozio R, et al. Novel Heterocycle-Based Two-Photon Absorbing Dyes [J]. Org. Lett., 2002, 4: 1495-1498.(c) Strehmel B, Sarker A M, Detert H. The Influence ofσandπAcceptors on Two-Photon Absorption and Solvatochromism of Dipolar and Quadrupolar Unsaturated Organic Compounds [J]. ChemPhysChem., 2003, 4: 249-259.
    [161] (a) Bhawalkar J D, He G S, Park C-K, et al. Efficient, two-photon pumped green upconverted cavity lasing in a new dye [J]. Opt. Commun., 1996, 124: 33-37. (b) He G S, Yuan L, Prasad P N, et al. Two-photon pumped frequency-upconversion lasing of a new blue-green dye material [J].Opt. Commun., 1997, 140: 49-52. (c) Abotto A, Beverina L, Bozio R, et al. Push-Pull Organic Chromophores for Frequency-Upconverted Lasing [J]. Adv. Mater., 2000, 12: 1963-1967.
    [162] (a) Painelli A, Del Freo L, Terenziani F. Vibronic contributions to resonant NLO responses: two-photon absorption in push–pull chromophores [J].Chem. Phys. Lett., 2001, 346: 470-478. (b) Zalesny R, Bartowiak W, Styrcz S, et al. Solvent Effects on Conformationally Induced Enhancement of the Two-Photon Absorption Cross Section of a Pyridinium-N-Phenolate Betaine Dye. A Quantum Chemical Study [J]. J. Phys. Chem. A, 2002, 106: 4032-4037. (c) Lei H, Huang Z L, Wang H Z, et al. Two-photon absorption spectra of new organic compounds [J]. Chem. Phys. Lett., 2002, 352: 240-244.
    [163] Kelderman E, Derhaeg L, Verboom W, et al. Calix[4]arenes as molecules for second order nonlinear optics [J]. Supramol. Chem., 1993, 2: 183-190.
    [164] Kenis P J A, Kerver E G, Snellik-Ru?l B H M, et al. High Hyperpolarizabilities of Donor- -Acceptor-Functionalized Calix[4]arene Derivatives by Pre-organization of Chromophores [J]. Eur. J. Org. Chem., 1998, 1998: 1089-1098.
    [165] Hennrich G, Murillo M T, Prados P, et al. Alkynyl Expanded Donor-Acceptor Calixarenes: Geometry and Second-Order Nonlinear Optical Properties [J]. Chem. Eur. J., 2007, 13: 7753-7761.
    [166] (a) Zhou X, Ren A-M, Feng J-K. An Insight into a Novel Class of Self-Assenbled Porphyrins: Geometric Structures, Electronic Structure, One- and Two-photon Absorption Properties [J]. Chem. Eur. J., 2004, 10: 5623-5631. (b) Zhang X-B, Feng J-K, Ren A-M, et al. Theoretical Study of Two-Photon of a Series of Ferrocene-Based Chromophores [J]. J. Phys. Chem. A, 2006, 110: 12222-12230. (c) Zhang X-B, Feng J-K, Ren A-M. Theoretical Study of One- and Two-Photon Absorption Properties of D2d and D3 Bipyridyl Metal Complexes [J]. J. Phys. Chem. A, 2007, 111: 1328-1338.
    [167] Gompper R, Mair H J, Polborn K, Synthesis of Oligo(diazaphenyls). Tailor-Made Fluorescent Heteroaromatics and Pathways to Nanostructures [J]. Synthesis 1997, 6: 696.
    [168] (a) Ohta K, Antonov L, Yamada S, et al. Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules [J]. J. Chem. Phys., 2007, 127: 084504. (b) Beljonne D, Wenseleers W, Zojer E, et al., Role of Dimensionality on the Two-Photon Absorption Response of Conjugated Molecules: The Case of Octupolar Compounds [J]. Adv. Funct. Mater., 2002, 12: 631-641.
    [169] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory [J], Science, 1989, 245: 843-845.
    [170] Denk W. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions [J]. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 6629-6633.
    [171] Ehrlich J E, Wu X L, Lee Y-L S, et al. Two-photon absorption andbroadband optical limiting with bis-donor stilbenes [J]. Opt. Lett., 1997, 22: 1843-1845.
    [172] Hoegl H.. On Photoelectric Effects in Polymers and Their Sensitization by Dopants [J]. J. Phys. Chem., 1965, 69: 755-766.
    [173] BO Dong-Sheng(薄冬生), REN Ai-Min(任爱民), FENG, Ji-Kang(封继康), et al. 3,9-咔唑聚合物基态和激发态性质的理论研究[J]. Chem. J. Chinese Universities(高等学校化学学报), 2007, 28(5): 955-959.
    [174] Chang C C, Wu J-Y, Chien C-W, et al. A Fluorescent Carbazole Derivative: High Sensitivity for Quadruplex DNA [J] Anal. Chem., 2003, 75: 6177-6183.
    [175] Chang C C, Kuo I-C, Lin J-J, et al. A Novel Carbazole Derivative, BMVC: a Potential Antitumor Agent and Fluorescence Marker of Cancer Cells [J] CHEMISTRY & BIODIVERSITY, 2004, 1: 1377-1384.
    [176] Chang C C, Kuo I-C, Ling I-F, et al. Detection of Quadruplex DNA Structures in Human Telomeres by a Fluorescent Carbazole Derivative [J]. Anal. Chem., 2004, 76: 4490-4494.
    [177] Yang Z-D, Feng J-K, Ren A.-M. Theoretical Investigation of One- and Two-Photon Absorption Properties of Platinum Acetylide Chromophores [J]. Inorg. Chem., 2008, 47: 10841-10850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700