用户名: 密码: 验证码:
准球面汇聚冲击波高压回收装置及材料的冲击合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击波加载技术作为一种极具潜力的材料科学研究手段正逐渐为人们所重视。它被用于研究材料在极端高压条件下组成—结构—性能之间的关系,发现和认识新的物质存在形式及高压介稳相。常用的冲击波加载回收装置为平面和柱面两种形式,对所研究的材料能产生100GPa以下的冲击压力。为了获得更高的冲击压力,人们对利用球面装置进行冲击波汇聚产生超高压力发生了兴趣。
     本文旨在利用准球面汇聚冲击波原理,研究能够产生超高冲击压力的准球面汇聚冲击波加载回收装置。通过对起爆方式、装置结构、回收球体及回收试样的系统性研究和试验验证,成功地研制出了能产生300GPa以上汇聚压力、成本低、试样回收可靠性高的准球面汇聚冲击波加载装置,并对该装置中影响压力汇聚的诸因素形成了一些规律性认识。此外,本文还利用各种冲击波加载装置进行了一些材料的冲击合成研究。通过研究得出以下结论和认识:
     1.装置采用钢质球体、球壳形炸药和钢质球形外壳三层结构,由十二个均匀分布于炸药表面的起爆点同步起爆,试验的材料样品安置于球体内。经十二次试验,除一次因炸药用量过大导致球体破坏,样品未能回收外,其余试验均获成功,表明该准球面汇聚冲击波超高压装置设计合理,具有较好的实用性和可靠性。根据压力的理论估算结果并结合回收球体金相组织的变化情况推测,本装置在中心球体的球心附近可实现超过300GPa的压力(相当于铁中),为研究材料在超高压高温条件下的结构、性能及物理化学变化创造了条件。
     2.为了实现十二点同步起爆,最简便的办法是采用十二个高同步性雷管,但这会使装置成本大大提高。本装置采用的起爆方式为两个高同步性雷管起爆十二根柔爆索,再通过柔爆索起爆分布于炸药球壳表面各起爆点的传爆药柱,从而实现十二点同步起爆。通过试验,由十二个起爆点发出的爆轰波通过相互作用在回收球体的表面留下了近乎标准的正十二面体刻痕图案,球体表面的每一道刻痕都是相邻两个起爆点所发出的爆轰波相互作用的结果,每一道刻痕与相邻两个起爆点的位置关系反映了该两个起爆点的起爆同步性情况。表明该起爆方式具有良好的起爆同步性,不仅保证了冲击波的球面汇聚,而且大大降低了装置成本。
     3.炸药种类对装置的实用性和材料试样的回收可靠性有重要影响,试验中对
    
     准球面汇聚冲击波高压回收装置及材料冲击合成研究
     JQ习 59固体炸药和硝基甲烷液体炸药进行了对比。通过对两种炸药在回收
     球体表面留下的刻痕深浅程度和刻痕图案对称性进行对比分析,可以得出结
     论;液体炸药比固体炸药更有利于冲击波汇聚和试样的完整回收。虽然固体
     炸药爆能较高,可以获得比液体炸药更高的汇聚压力,但固体炸药在球体表
     面留下的刻痕细而深,因此对球体的破坏作用更大。而液体炸药对球体的破
     坏作用相对较小。对回收装置而言,汇聚压力的提高应以保证样品完整回收
     为前提,在此前提下,可以通过增加液体炸药厚度和改变球体尺寸来实现球
     体所能承受的最大压力。从产生的球面波对称性来看,液体炸药的密度比固
     体炸药更均匀、传爆速度更稳定。同时,由于传爆药柱与两种炸药的接触方
     式不同,在液体炸药中表现为局部面起爆,而在固体炸药中表现为点起爆。
     这些都诀定了液体炸药产生的球面波比固体炸药具有更好的球对称性,更容
     易实现压力汇聚。因此,采用液体炸药对于实现冲击波汇聚和提高样品回收
     可靠性是有利的。
    4.多点起爆的同步性是影响球面波汇聚的主要因素,同步偏差越大,汇聚波的
     球面对称性越差,汇聚压力越小。回收球体表面的刻痕反映了两个相邻起爆
     点发出的爆轰波在球体表面相遇的位置,因此可以通过回收球体表面刻痕间
     的位置关系测定相邻起爆点的起爆时间差。基于此,文中建立了评价多点起
     爆同步性偏差的检测方法——刻痕法,并对该方法在球面多点起爆同步性检
     测中的适用条件进行了分析讨论。该方法不仅适用于多点起爆的球形装置,
     同样适用于起爆器件产品的起爆同步性误差的检测,且该方法操作简便、成
     本低。
    5.将样品安放于偏离球心的适当位置,可以在一定程度上避免球体开裂对样品
     的破坏,有利于样品的完整回收。虽然样品位置的压力不如球心高,但可以
     通过改变球体尺寸和炸药厚度来提高样品的冲击压力和温度。此外,这种样
     品安置方式可以增加球体中样品的安置个数,提高装置的利用率。
     ;____,、_.___,。_..、。,h__,__、__、;_,,_、___,。。
    6.炸药厚度u)与炸药层外径(ro+h)之比一二上一是影响汇聚波形与汇聚压力的
     ro+h
     ___、,,_;h。。____。__,_、__、t_。,__、___,
     重要参数。增大——的取值,有利于改善汇聚波形、提高汇聚压力与球体
     ro+h
     互二
As a prosperous method for material science research, the technology of shock wave loading is becoming more and more emphatic. This technique is being widely used to find the relations on component, construction and performance of materials under the super-pressure, and to discover the new forms of matters and high-pressure metastable phases. The normally used shock wave loading and recovery devices can be divided into two forms: planar or cylindrical, producing shock wave less than 100 GPa on the materials. For getting higher shock pressures, more interest is now being paid on trying to use the spherical converging shock wave and get super-pressure. This paper is to study the super-pressure loading and recovery device that can intensify the shock wave based on the
    principle of quasi-spherical converging shock wave. Through a systematic research and experimental validation on the detonating method, the device structure, the recovered sphere and sample, we have successfully established a quasi-spherical converging shock wave loading and recovery device that can produce a pressure more than 300 GPa, with low cost and high reliability on sample recovery, and obtained some rule and knowledge on the factors that influence the converging of shock wave. In addition, we demonstrate with this paper the synthesis of some new materials by using this spherical device and other conventional set-ups (planar and cylindrical ones). Followings are some conclusions: 1. The construction of the spherical device consists of three parts: centre steel sphere, spherical
    shell explosive and steel spherical outer shell. It is detonated synchronously with 12 spots evenly distributed on the explosive surface, and the testing material sample is placed inside the steel sphere. Among 12 tests, except one which lost sample because of the sphere broken since too much explosive, all the other tests were successful, showing that the quasi-spherical converging shock-wave device has reasonable design, good practicability and well reliability. According to the theoretical calculation on pressure and combing with the observation of the metal phase changes from the recovered sphere, the device has produced a pressure more than 300GPa in the centre of the sphere, which provides
    
    
    a condition for studying the material's construction, performance and physical/chemical reaction under super pressure and temperature.
    2. To realize the 12 points synchronized detonating, the simplest way is to use 12 high-synchronized detonators, but the cost will be quite high. In our device, we have used 2 high-synchronized detonators to detonate 12 mild detonating fuse (MDF) that then initiate 12 boosters on the explosive shell, making 12 spots synchronously detonated. The shock wave has made a nearly standard dodecahedron pattern on the surface of centre sphere. This pattern is the result of shock waves interaction from two adjacent detonating spots, and its position shows how the detonating of two adjacent spots acts, synchronized or not. The nice dodecahedron stroke patterns on the surface of recovered centre sphere indicate that this detonating method has good synchronization and spherical converging shock-wave. This method not only has guaranteed a good shock wave convergence, but also drops a lot of cost for the experiment.
    3. Different kinds of explosive have big influence on the practicability of the device and on reliability of recover of material samples. This paper has compared JQ-9159 solid explosive and nitromethane liquid explosive experimentally. Based on the analyses of symmetry and deepness of stroke pattern made by two explosives on the recovered sphere surface, we conclude that: the liquid explosive is better for sample recovery and shock wave converging. Though the solid explosive has high exploding power, could get higher shock pressure, but it makes deeper stroke pattern on recovered sphere, and produces more destruction to the sphere. In the view of recovery device, the shock pressure intensif
引文
1 Minshall, S. Phys. Rev. 98, 271(1955)
    2 Linse, V., Chairman, National Materials Advisory Board, Dynamic Compaction of Metal and Ceramic Powders, NMAB-394, National Academic Press, Washington, DC, 1983.
    3 Dourdin, W.H., Dynamic Consolidation of Powders, Progress in Materials Science, 30,39, 1986.
    4 Thadhani, N.N., Shock Compressing of Powders, Adv. Matl. &. Manufac. Proc., 3(4) , 493, 1988.
    5 DeCarli, P.S. And Jamieson, J.C., Formation of Diamond by Explosive shock, Science, 133, 1821, 1961.
    6 DeCarli, P.S. And Milton, D.J., Stishovite: Synthesis by Shock Wave, Science, 147, 144, 1965.
    7 Nobumassa Funamori and Raymond Jeanloz, High-Pressure Transformation of AI2O3, Science Vol. 278, 7 November, 1109-1111, 1997.
    8 Riabinin, Yu.M., "Certain Experiments on dynamic Compression of Substances," soviet Phys. Tech., Phys., 1, 2575-2576, 1956.
    9 Dremin, A.N., and Bruesov, O.N., Processes Occurring in Solids Under the Action of Powerful Shock Waves, Russian Chemical Reviews, 37 (%), 392 (1968) .
    10 Duvall, G., Chairman, Shock compression chemistry in Materials Synthesis and Processing," National Materials Advisory Board, NMAB-414, National Academy Press, Washington, DC, 1984.
    11 Graham, R.A., Morosin, B., Venturini, E.L., and Carr, M.J., "Materials Modification and Synthesis Under High Pressure Shock Compression," Ann. Rev. Mater. Sci., 16,315(1986) .
    12 T. Seking, HongLiang He, T. Kobayasni, et al, Shock-induced of β-Si3N4 to a high-pressure cubic-spinel phase, Applied physics letters Vol 76, No 25 2000, 3706-3708.
    13 Lee,Y,K., Williams, F.L.. Graham, R.A., Specific Surface Area Studies of Shock Modified Inorganic Powders, J. Mat. Sci., 20, 2488, 1985.
    14 Jianjun Liu, Yingchun Yu, Hongliang He, Xiaogang Jin, Kang Xu, Photocatalytic activity of shock-treated TiO2 powder, Materials Research Bulletin 35, 2000,
    
    377-382
    15 Grover, R., Christian, R.H., Alder, B.J., Bull. Am. Phys. Soc. 3, 230, 1958
    16 Milton, D.J., DeCarli, P. S., Science 140, 670-71, 1963
    17 Huriguchi, Y. and Kimura, Y, An Explosive Synthesis of Titanium Carbide, Bull. Chem. Soc. Jap., 36, 486,1963.
    18 Adadurov, G.A., Barkalov, I.M., Goldanskii, V.I., Dremin, A.M., Ignatovich. T.N., et al. Polymer Sci. USSR 7 196-97, 1965
    19 Batsanov, S.S., Deribas, A.A., Dulepov, E.V., Ermakov, M.G., Kudinov, V.M. Combust. Explos. Shock Waves USSR 1 47-49, 1965
    20 Adadulov, G.A., Z.G., Aliev, L.O., Atovmyan, T.V., Bavina, Yu.G., Borodko, O.N. Breusov , A.N. Dremin , A.kh.Muranevich and S.V. Pershin , Sov.Phys.Doklady 12, 173-175, 1967;
    21 DeCarli P.S, Bull.Am.Phys.Rev.12, 1127, 1967
    22 Akashi, T.K., and Sawaoka, A. B., U.S. Patent 4,655,830, April 7, 1987.
    23 rebe, H.A., Advani, A., and Thadhani, N.N., Shock Induced Reaction Synthesis of Borides, in AIP Conference Proceedings 231, on Boron-rich Solids, eds., D. Emin, T.L., Aselage, A.C. Switendick, Morosin, B., and C.L., Beckel, American Institute of Physics, New York, 501-504. 1991,
    24 Akashi, T.K., and Sawaoka, A.B., J. Mat. Sci., 22,1127, 1987.
    25 Ward, R., Thadhani, N.N., and Persson, P.A., Shock Compression of High-Performance Ceramics, in Metal and Ceramic Matrix Composites: Procession, Modelling and Mechanical Behavior, eds. R.B. Bhagat, A.H. Clauer, P. Kumar, and A.M. Ritter, (TMS, Warrendale, Pennsylvania, 1990) , 193-200.
    26 Persson, P.A., Ward, R., Thadhani, N.N., Shock-induced Reaction Synthesis (SRS) Assisted Compaction of Ceramics, in Shock Wave in Condensed Matter, eds. S.C. Schmidt and N.C. Holmes, (North-Holland Publishers, 1990) , 539-542
    27 Ohlinger, O. and Newkirk, L.R., Bulk A15, High-Tc Nb3Si Synthesized by Shock Compression, Solid State Comm., 37, 613,1981.
    28 Steward, G.R., Olinger, B., and Newkirk, L.R., Solid State Comm., 39, 5, 1981.
    29 Bednorz, J.G. and Muller, K.A., Possible High-Tc Superconductors in the Ba-La-Cu-O System, Z. Phys., B64, 189,1986
    30 Wu, M.K., Ashburn, J.R., Jorng, C.J., Hor, PH., Meng, R.L., et al, Phys. Rev. Lett., 58,908,1987.
    
    
    31 Maeda, H., Tanaka, Y., Furutomi, M., and Agano, T., Japan-J. Applied Phys., 27, 138,1988
    32 Shang, Z.Z., and Herrmann, A.M., Nature 332, 138, 1988
    33 Morosin, B., Venturini, E.L., Graham, R.A., and Ginley, D.S., High-Pressure Shock Modification and Synthesis of Superconducting Ceramic Oxides, Synthetic Metals, 33, 185-224, 1989.
    34 Schmidt, S.C., et al. (editors), Shock Compression of Condensed Matter, APS Topical Conference, Elsevier, Amsterdam, 1989.
    35 Graham, R.A., Venturini, E.L., Morosin, B., Ginley, D.S., Phys. Lett. A., 123, 87, 1987
    36 Miller, A.R., in Proc. Of 1st Workshop on Industrial Applications of Shock Processing Powders, New Mexico Tech, Socorro, New Mexico, June 1-3, 1988.
    37 Morosin, B., Graham, R.A., Venturini, E.L., Ginley, D.S., and Hammetter, W.F., in Shock Waves in Condensed Matter-1987, eds. S.C. Schmidt and N.C., Holmes, Elsevier, Amsterdam, 439, 1988
    38 Matizer, E.V., Deribas, A.A., Neterenko, V.G., Pershin, S.A., et al, Proc. Int. Seminar on High Energy Working of Rapidly Solidfied Materials, Novosibirsk, USSR, October 10-14, 1988.
    39 Iqbal, Z., Thadhani, N.N., et al., Shock Compression of Condensed Matter-1989, eds., S.C., Schmidt, J.N., Johnson, and L., Davison, Elsevier Science Publishers B.V., 599, 1990.
    40 Iqbal, Z., Thadhani, N.N., et al., in Shock Waves and High Strain Rate Phenomena in Materials, M.A., Meyers, L.E., Murr, & K.P.,Staudhammer, eds., Marcel Dekker, 821-830, 1991.
    41 Iqbal, Z., Superconducting Properties and Microstructure of Shock Synthesized High-Tc Cuprates, inProc. Of 2nd World Congress on Superconductivity, Houston, Texas, 1990.
    42 Horie, Y., Graham, R.A., and Simonsen, I.K., Synthesis of Nickel Aluminides Under High-Pressure Shock Loading, Materials Letters, 3, 9, 1985.
    43 Horie, Y, Graham, R.A., and Simonsen, I.K., Observations on the shock Synthesis of Intermetallic Compounds, in Metallurgical Applications of Shock-Wave and Hihh-Strain-Rate Phenomena, L.E. Murr, K.P. Standhammer, and M.A. Meyers, eds., Marcel Dekker, Inc., New York, 1023, 1986.
    44 Horie, Y, Hoy, D.E.P., Simonsen, I., Graham, R.A., and Morosin, B., Shock-wave
    
    Synthesis of Titanium Aluminides, in Shock Waves in Condensed Matter, ed., Y.H. Gupta, Plenum Press, New York, 749, 1986.
    45 Thadhani, N.N. Shock-Induced Chemical synthesis of Intermetallic Compounds, in Shock Compression of Condensed matter,-1989, eds, Schmidt, J.N. Johnson, and L.W. Davison, Elsevier Science Publishers B.V., 503, 1990.
    46 Aizawa, T., Tamagawa, J., Tanaka, K., and Kihara, J., Explosive Powder Forming of Ti-Al Intermetallic Compound System, Proceeding of the 18th International Conference on Shock Waves, Sendia, Japan, July, 1991.
    47 Yu, L.H., Meyers, M.A. and Thadhani, N.N., Reaction-assisted Shock Consolidation of RSR Ti-Al Alloys, J. Matl. Res., 5(2) , 302-312, 1990.
    48 Stavrev, S., Gospodinov, V., Doichev, A., and Radev, R., Synthesis of Intermetallic Compounds by Dynamic Compaction of Metal Powders, Proc. Of X International Conference on High Energy Rate Fabrication, Ljubljana, Yugoslavia, 123-130, 1989.
    49 Hammtter, W.F., Graham, R.A., Morosin, B., and Horie, Y, Effects of Shock Modification on the Self-Propagating High Temperature Synthesis of Nickel Aluminides, in Shock Waves in Condensed Matter-1987, eds. S.C. Schmidt and N.C., Holmes, Elsevier Science Publishers B.V., 431, 1988
    50 Song, I., and Thadhani, N.N., Shock-induced Chemical Reactions and Synthesis of Nickel Aluminides, Metall. Trans., 23 A, 41, 1992.
    51 Thadhani, N.N., Costello, M.J., Song, I., Work, S., and Graham, R.A., Shock-induced Reaction Synthesis of Aluminides and Silicides, in solid State Powder Processing, eds., A.H.,Clauer and J.J., deBarbadillo, The Minerals, Metals, and Materials Society, Warrendale, PA, 97-109, 1990.
    52 Krueger, B.R., and Vreeland, T. Jr., Correlation of Shock Initiated and Thermally Initiated Chemical Reactions in a 1:1 Atomic Ratio Nickel-Silicon Mixture, J. Appl. Phys., 70(10) , 5362, 1991.
    53 Yu, L.H., and Meyers, M.A., Shock-Induced Consolidation and Synthesis of Silicides, J. Matls. Sci., 26, 601-611, 1991.
    54 Meyers, M.A., Yu, L.H., and Vecchio, K., Shock Synthesis of Silicides, in Shock Waves in Condensed Matter-1991, eds., S.C., Schmidt et al. (in press)
    55 Krueger, B.R., Mutz, A.H., and Vreeland, T. Jr., Shock Induced Reactions in 5;3 Atomic Ratio Titanium/Silicon Powder Mixtures, Metall, Trans., 23 A, 55, 1991.
    56 Advani, A., and Thadhani, N.N., Chemical Reaction Synthesis of Isomorphous
    
    Copper-Nickel and Immiscible Copper-Niobium Materials by Shock Compression, Scripta Metall., 27, 29-34, 1992.
    57 T. Seking, HongLiang He, T. Kobayasni, et al, Shock-induced of β-Si3N4 to a high-pressure cubic-spinel phase, Applied physics letters 76(25) , 3706-3708, 2000.
    58 Horie, Y, Mass Mixing and Nucleation and Growth of Chemical Reactions in Shock Compression of power mixtures, in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena 1995, eds. L.E. Murr et al..
    59 S.S., Batsanov, Effects of Explosions on Materials, Springer, New York,1994.
    60 Horie, Y.,"Kinetic Modeling of Shock Chemistry," Proc. Of the Workshop "Shock Synthesis of Materials," Georgia Institute of Technology, May 24-26,1994.
    61 Graham R.A, and Webb, D.M, Fixtures for Controlled Explosive Loading and Preservation of Powder Samples, In Shock Waves In Condensed Matter-1983, J.M., Asay, Graham, R.A., and G,K., Straub, eds., Elsevier Science Publishers, 211-214,1984.
    62 Graham R.A., Webb D.M., Shock-Induced Temperature Distributed In Compact Recovery Fixtures, In Shock Waves In Condensed Matter-1985, Edited by Y.M., Gupta, Plenum Press, New York, 831-836, 1986,
    63 经福谦 实验物态方程导引(第二版) 科学出版社 1999年p141
    64 Anthony, S.B., George, R.C., Woodbury, N.J., U.S. Patent 3,667,911, June 7. 1987.
    65 M.A., Meyers and S.L., Wang, An Improved Method for Shock Consolidation of powders, Acta. MetalL Vol20, No4, 925-936, 1988.
    66 Frederick J. Mayer, Ann Arbor, Mich, U.S. Patent 4,552,742, Nov. 12, 1985.
    67 E.A., Kozlov, Experimental Check Of E.I.Zababahin Hypothesis Concerning Limitation Of Energy Cumulation In The Spherically Converging Shock-Wave Front In The Medium With Phase Transition,In Shock Compression Of Condensed Matter 1991,edited By S.C.. Schmidt, R.D., Dick, J.W., Forbes, D.G., Tasker, Elsevier Science Publishers B.V., 169-171, 1992
    68 E.A., Kozlov, B.V.. Litvinov, E.V.. Abakshin, A.V., Doblomyslov N.I.Taluts, N.V., Kazantsva. and G.G.. Taluts, Phase Trasformations And Structure Evalution of Zirconium Loaded by Spherical Converging Shock Waves, In Metallurgical And
    
    Materials Applications Of Shock-Wave And High-Strain-Rate Phenomena, eds, L.E., Murr, K.P., Staudhammer, And M.A., Meyers, Elsevier Science Publishers B.V., 763-770, 1995,
    73 Michael A. Hale, Dominic Clausi, C. Grant Willson, and Tim Dallas, Ultrahigh Pressure Cell for Materials Synthesis, Review of Scientific Instruments, 71(7) , 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700