用户名: 密码: 验证码:
内爆与外爆加载下壳体的力学状态及破坏模式分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在武器工程结构设计中,最为常见的应用是轴对称结构的柱壳和球壳,这是两类最为典型的“高能效、低能耗”结构。对这两种结构在爆炸作用下的变形与破坏研究,一直以来在学术界和工程界就有浓厚的兴趣。在科学研究方面,由于壳体的动态破坏与材料在强动载荷下的变形和破坏机理密切相关,这些课题一直是固体力学中的一个重要研究领域,并且关联到材料力学、断裂力学、固体物理及爆炸力学等多种学科之间的相互交叉和渗透。因此,关于柱壳和球壳在爆炸作用下变形与破坏的研究,既具有重要的理论研究价值,又具有十分重要的工程意义。在这些研究中,最关注的是结构破坏,因为在大多数情况下,武器结构在作战过程或放能过程中,结构的损伤与破坏是最重要的过程之一,而且这种破坏过程直接关系到武器效应的发挥。关注这些过程的细节,是现代武器设计中最重要的环节之一。
     为了较全面认识爆炸作用下柱壳和球壳的破坏模式,加深理解结构动态破坏的具体细节,为物理设计和工程设计提供较为清晰的物理图像,应深入研究内爆与外爆加载下壳体的力学状态及破坏模式。围绕上述目的,本论文开展了如下几方面的研究工作:固体中的冲击波传播、内爆加载下柱壳应力状态与破坏模式、外爆加载下柱壳应力状态与破坏模式、内爆加载下球壳应力状态与破坏模式、外爆加载下球壳应力状态与破坏模以及两个基本实验以及物态方程与本构关系的相关性。
     ①固体冲击压缩研究中的若干问题。基于连续介质力学基本理论,讨论了冲击动力学中的若干问题,如流体动力学近似、状态方程与本构方程的关联与本质、一维应力实验与一维应变实验、综合性实验与基础性实验等。
     ②内爆加载下柱壳应力状态与破坏模式。分析了平面应变加载问题,为简化分析起见,先采用静力分析,并忽略体力,寻找柱壳内的应力和应变的分布规律,为破坏模式的定性分析提供理论基础。之后分析滑移爆轰下柱壳内的应力状态以及层裂发生的位置。采用数值模拟,分析了滑移内爆作用下柱壳向心汇聚运动中的应力状态以及破坏模式。
     ③外爆加载下柱壳应力状态与破坏模式。采用数值模拟方法,分析了外爆加载下柱壳早期应力波传播、应力状态以及破坏模式;采用解析法分析了柱壳膨胀过程的应力状态以及破坏模式;介绍了柱壳膨胀的Mott统计断裂理论;对Gurson模型进行了详细的推导,给出了屈服函数、本构关系以及塑性应变的计算方法,以及Gurson模型中材料参数的识别方法。基于这些理论,将Gurson模型编写子程序并嵌入到HKS/Abaqus软件中,分析了柱壳膨胀断裂过程中的剪切型破坏。分析了外爆加载下厚壁柱壳的破坏模式。
     ④内爆加载下球壳应力状态与破坏模式。进行了外压作用下球壳的弹性应力状态的静力分析,并对柱壳和球壳的应力状态进行了比较,尽管是静力学分析,但对于壳体后期的运动分析是有帮助的;之后进行了外压作用下球壳和柱壳的动力学分析比较,给出了两种典型结构在冲击作用下的应力状态比较;对内爆加载下球壳塌陷过程进行了理论分析,比较了材料参数和压力参数等对塌陷过程的影响;对外表面弱冲击和强冲击加载下球壳应力状态进行了数值分析,并对内爆加载下的球壳与一维应变平板接触爆炸加载以及柱壳内聚爆炸进行了比较。最后开展了内爆加载下球壳层裂的数值模拟。
     ⑤外爆加载下球壳应力状态与破坏模。从理论方面分析外爆加载下球壳中的弹塑性球面应力波传播,并与一维应变波传播进行了比较;采用解析法分析了球壳膨胀过程中的应力状态以及失效模式;给出了球壳的膨胀破坏半径的近似分析以及参数的影响;给出了内部爆炸作用下球壳破裂时间的理论分析。采用数值分析法模拟了外爆加载下2169钢厚壁球的层裂破坏。
In the weapon engineering design, the most common applications are the axisymmetric structures:cylindrical and spherical shells. These are typical structures of more energy efficient and less energy consumption. The investigation into the deformation and fracture of such structures imparts great interest among academic circles and engineering field. In scientific studies, the dynamic fractures of shells are closely bound up with deformation and fracture of materials under dynamic loading. These research subjects have become an important area of research in solid mechanics, and related with material strength, fracture mechanics, solid physics and explosion mechanics. Thus the studies on the deformation and fracture of cylindrical and spherical shells are of great worth of theoretical study, and also of great importance of engineering applications. In these studies, the structural fracture attract the most attention. This is because in most cases the structural damage and fracture are most important processes in attacking or releasing energy, and these processes concerns weapons effects. The careful attention to the detail process is the key node in modern weapon design.
     In order to understand comprehensively the failure modes of cylinder and sphere subjected to blasting loading, recognize thoroughly the details in the structural fractures, provide physics design and engineering design with clear physics image, the mechanical states and failure modes of shells subjected to implosive and explosive loading should be investigated deeply. For these purposes the following studies are performed in this dissertation: 1) shock wave propagation in solid,2)the stress state and failure modes of cylindrical shell subjected to implosive loading,3)the stress states and failure modes of cylindrical shell subjected to explosive loading,4)the stress states and failure modes of spherical shell subjected to implosive loading,5)the stress states and failure modes of spherical shell subjected to explosive loading,6) the two basic experiments and correlation between EOS and constitutive relations.
     1) Some problems in studies of shock compression of solid. On the base of the fundamental theory in continuum mechanics, some problems in studies of shock compression of solid are discussed, such as hydrodynanic approximation, relationship between equation of state and constitutive equation, and their essential distinction, one-dimensional stress and one-dimensional strain experiments, integrated and basic experiments.
     2) The stress state and failure modes of cylindrical shell subjected to implosive loading. Plan strain problem is analyzed. For simplification the static analysis, not considering body force, is performed. The static analysis can provide the distributions of stress and strain, and can also provide the theoretical principle for qualitative analysis of failure modes. Then the stress state and spall fracture of cylinder subjected to sliding detonation loadings are analyzed. By means of numerical modeling, the stress state and fracture modes of collapsing cylinder subjected to sliding detonation loadings are simulated.
     3) The stress state and failure modes of cylindrical shell subjected to explosive loading. The stress wave propagation, stress state and fracture modes of cylinder at early stage are analyzed using numerical modeling. The stress state and fracture modes of expanding cylinder are studied by analytical method. The Mott statistical fracture theory for cylinders is introduced. The Gurson model is derived in detail. The yield function, constitutive equation and plastic strain formula are presented. The approach of Gurson parameter identification is given. The user subroutine of Gurson model is embedded in HKS/Abaqus. By Gurson model, the shear fracture mode of expanding cylinder is simulated. The fracture modes of think-walled cylinder are analyzed.
     4) The stress state and failure modes of spherical shell subjected to implosive loading. The static analysis of elastic stress state of sphere under external pressure is performed. The comparison between stress state of cylinder and that of sphere is made. Although the analysis is static, yet it is helpful for analysis of shell at later phase. Then, the dynamic analysis and comparison are given. The collapsing process of spherical shell under implosive loading is analyzed, and the parametric influences, such as material parameter, pressure parameter, are studied. The stress states in sphere under weak and strong shocks are analyzed. The compression between one dimensional strain, cylinder and sphere are made. At last, the spalling of sphere subjected to implosive loadings are modeled numerically.
     5) The stress states and failure modes of spherical shell subjected to explosive loading. The spherical stress wave propagation in sphere under explosive loading is analyzed theoretically, and also compared with one dimensional strain wave. The failure modes are studied. The fracture radius and fracture time of sphere are given. The spalling of think-walled sphere made by SS21-6-9 subjected to internal explosion is modeled.
引文
1朱建士、陈裕泽,核武器研制中的力学问题[J],力学与实践,第24卷第1期,2002年,67-71
    2孙承纬,卫玉章,周之奎.应用爆轰物理[M].北京:国防工业出版社,2000
    3 Nesterenko V F, Xue Q, Meyers M A. Self-organization of shear bands in stainless steel: grain size effects[J]. Journal of Physics(Ⅳ),2000, (10):269-274.
    4胡海波.金属圆柱在爆炸加载断裂中的单旋现象[J].爆炸与冲击,Vol.24,No.2,98-107,2004
    5李雪梅,金孝刚,李大红.钢圆管在内爆加载下的层裂特性研究[J].爆炸与冲击,2005,25(2),107-111
    6 Dobromyslov AV, Taluts N I, Kazantseva N V. Formation of adiabatic shear bands and instability of plastic flow in zr and zr-nb alloys in spherical stress waves[J]. Scripta mater.42 (2000) 61-71
    7 Keckes L J, Hall I W, Hot explosive consolidation of W-Ti alloys[C]. Proceedings of Int. Symp. Tungsten and Tungsten Alloys,1992, Washington, DC, November,155.
    8 Trucano T G, Chhabildas L C, Computational Design of Hypervelocity Launchers [J]. Int. J. Impact Eng.,1995, Vol.17, pp.849-860.
    9 Flugge W. Stresses in Shell (2nd edt)[M]. Springer-Verlag Berlin Heidelberg New York, 1973
    10 Batchelor G K, Moffatt H K, Worster M G. Perspectives in Fluid Dynamics:A Collective Introduction to Current Research[M]. Cambridge University Preess,2000.
    11经福谦.实验物态方程导引(第二版)[M],北京:科学出版社,1999
    12 Davison L, Graham R A. Shock compression of solids[J], Physics Reports (Review Section of Physics Letters) 55, No.4 (1979) 255-379. North-Holland Publishing Company
    13 Chou P C, Hopkins A K. Dynamic Response of Materials to Intense Impulsive Loading[R]. U. S. Air Force Materials Laboratory, Wright-Patterson, AFB, Ohio,1972
    14周兰,乔登江.脉冲束辐照材料动力学[M],北京:国防工业出版社,2002
    15中国大百科全书.力学[M],北京:中国大百科全书出版社,1985
    16 Wilkins M L. Calculation of elastic-plastic flow[C]. Methods in Computational Physics, 1964,(3)
    17郑哲敏,中科院力学所内部报告[R],1965年
    18吕洪生,曾新吾.连续介质力学(下)[M].长沙:国防科技大学出版社,1999
    19 Asay J R. Chhabildas L C. in Shock Wave and High Strain Rate Phenomena in Solid, p.417, Edited by M. A. Meyers and L. E. Murr, Plenum Press, NY,1981
    20 Barnes J F, Blewett P J, McQueen R G, Meyer K A, and Venable D. Taylor instability in solids[J]. J. Appl. Phys.45(1974),727.
    21 Bakrakh S M, Drennov O B, Kovalev N P, et. al., Hydrodynamic Instability in Strong Media[R], UCRL-CR-126710
    22 Drucker D C, Taylor Instability of Surface of an Elastic-Plastic Plate, Mechanics Today, edited by S. Nemmat-Nasser (Pergamon, Oxford),5 (1980),37
    23 Swegle J W, Robinson A C, Acceleration instability in elastic plastic solids[J]. J. Appl. Phys.,66(7),2838,1989.
    24 Robinson A C, Swegle J W, J. Acceleration instability in elastic-plastic solids. II. Analytical techniques [J]. Appl. Phys.,66(7),2859 (1989)
    25中国工程物理研究院,2007年度科学技术发展基金指南,2007年
    26李维新.一维不定常流与冲击波[M],北京:国防工业出版社,2003
    27国家自然科学基金委员会数学物理科学部.力学学科发展研究报告[M],北京:科学出版社,2007
    Curran D R, Seaman L. Dynamic failure of solids[J], Phys Reports,1987,147, Nos 5 & 6, 253-388
    29 Bai Y, Dodd B. Adiabatic Shear Localization, Occurrence, Theories and Applications[M]. Pergamon Press,1992.
    30 Bao Y and Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences,46(1):81-98,2004.
    31 Wierzbicki T. and Bao Y. Bridgman revisited:On the history effects on ductile fracture[J]. Journal of the Mechanics and Physics of Solids,2004.
    32陈裕泽,内爆和外爆冲击波对材料的损伤[R],中国国防科学技术报告,GF-A-0090520
    33王仁.塑性力学基础[M].北京:科学出版社,1998
    34余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    35钱伟长.穿甲力学[M].北京:国防工业出版社,1984.
    36 Woodward R L. Material failure at high strain rates[C]. In High Velocity Impact Dynamics[M], ed. by J. A. Zukas,65-125, John Wiley & Sons, Inc., New York,1990.
    37杜星文、宋宏伟.圆柱壳冲击动力学及耐撞击性设计[M].北京:科学出版社,2004
    38胡八一.金属圆筒在内部爆轰加载下的膨胀断裂机理研究[D].绵阳:中国工程物理研究院流体物体研究所,1993
    39中国力学学会,2006-2007力学学科发展报告[M],北京:中国科学技术出版社,2007
    40 Herie F. Traite de Balistique Experimentale. Paris Dumaine,1840
    41 Gurney R W, The Initial Velocities of Fragments from Bombs, Shells, and Grenades [R]. BRL Report 405,1943
    42 Drake J L, et al. Protective construction design manual:Fragment Protection[R]. Air Force Engineering and Services Center, Engineering and Services Laboratory, ESL-TR-87-57,1987
    43马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    44 Taylor G I. Fragmentation of Tubular Bombs[A], in Scientific Papers of G. I. Taylor [M], 1963, Vol.3, No.44. Cambridge University Press, pp.387-390
    45 Taylor G I. Analysis of the Explosion of a Long Cylindrical Bomb Detonated at One End. Scientific Papers of G. I. Taylor [M], Vol.3, No.30, Cambridge University Press, p.277-286.
    46徐皇兵,刘仓理,王彦平,方青.解析研究内部爆炸驱动金属圆筒的运动环境技术[J].2004 Vol.22 No.02,P.20-22
    47 Mott N R. Fragmentation of Shell Cases [J]. Proc. Roy. Soc. London,1947, Vol.189, pp. 300-30
    48 Magis S F.NWL-T-24/65,1965
    49 Bardes B P, Mechanisms of fragmentation of Si-Mn steels [R]. R-1918, Frankford Arsenal, Philadelphia, Pennsylivania,1969
    50 Slate P M B, Billings M J W, and Fuller P J A. The Rupture Behavior of Metals at High Strain Rates [J]. J. Inst. Metals,1967, Vol.95, pp.244-251.
    51 Manjit Singh, Suneja H R, Bola M S, Prakash S. Dynamic tensile deformation and fracture of metal cylinders at high strain rates[J]. International Journal of Impact Engineering 27 (2002)939-954
    52 Hoggatt C R, Recht R F. Fracture Behavior of Tubular Bombs [J], J. Appl Phys.,1968, Vol. 39, p.1856-1862
    53 Al-Hassani, S.T.S. et al, J. Appl. Phys.39(3),1968,1856-1862
    54 #12
    55 Beetle J C. et al, SEM/1971(Part Ⅰ), Proceedings of the fourth annual SEM Symposium IIT Research Institute, Chicago, Illinois,60616, USA, April,1971,137-144
    56 Lamborn P A. et al, Mechanical Properties at High Rates of Strain[C], J. Harding, eds, Inst. Phy. conf. Ser. No.21,1974,251-261
    57 Walsh B E. The influence of geometry on the natural frarentation of steel cylinders[R]. MRL Report 533,1973.
    58 Bedford A J. et al, NASA73-26915,1973
    59 Legowski Z. et al. Journal of Technical Physics,16(2),1975,175-184
    60 Stompor T et al, J. Tech. Phys.17(3),1976,253-265
    61胡八一等.爆炸金属管的绝热剪切断裂宏观研究[J].爆炸与冲击,1992,12(4),319-325
    62胡八一等.内部爆轰加载下的钢管膨胀断裂研究[J].爆炸与冲击,1993,13(1),49-54
    63胡八一等.爆炸金属管绝热剪切断裂的细观研究[J].爆炸与冲击,1993,13(4),305-312
    64 Mock W, Hotl W H. Fragmentation behavior of Armco iron and HF-1 steel explosive filled cylinders[J]. J. Appl. Phys.,54,2344-2351(1983)
    65汤铁钢等.爆轰加载下金属柱壳膨胀破裂过程研究[J].爆炸与冲击,2003,23(6),529-533
    66汤铁钢等.45钢柱壳膨胀断裂的应变率效应[J].爆炸与冲击,2006,26(2),129-133
    67徐皇兵等.爆炸加载下分层金属圆管膨胀破裂过程初探[J].爆炸与冲击,2005,1,5-8
    68胡海波,汤铁钢,胡八一,王德生,韩长生.金属柱壳在爆炸加载断裂中的单旋现象[C].第七届全国爆炸力学学术会议论文集
    69 Hu Haibo, Tang Tiegang, etc, Longitudinal propagation of frcture surface in cylindrical metal shells under explosive loading. in Shock Compression of Condensed Matter-2007. eds M. Elert, M. D. Furnish etc. American Institute of Physics, p.541-544
    70 Grady D E, Kipp M E and Benson D.. Energy and statistical effects in the dynamic fiagmentation of metal rings[C]. Chapter 2 in Mechanical Properties at High Rates of Strain. Edited by J. Harding. Bristol:Inst. Physics.1984.
    71 Kipp M E and Grady D E. Dynamic fracture growth and interaction in one dimension[J]. J. Phys. Mech. Solids.1985.33:399415
    72 Grady D E, Kipp M E. Impact Failure and Fragmentation Properties of Metals [R], Sandia Report SAND98-0387, March 1998
    73 Grady D E. Fragmentation of Rings and Shells[M]. Springer Heideberg New York,2006
    74 Meyers M A, Xue Q, Nesterenko V F. Evolution in the patterning of adiabatic shear bands..in Shock Compression of Condensed Matter[C], edited by Furnish M D, Thadhani N N, Horie Y. USA:American Institute of Physics,2001:567-570.
    75 Nesterenko V F, Xue Q, Meyers M A. Self-organization of shear bands in stainless steel: grain size effects [J]. Journal of Physics(Ⅳ),2000, (10):269-274.
    76 #12
    77汤铁钢.内爆加载下金属圆筒的热塑性失稳与断裂研究[D].绵阳:中国工程物理研究院流体物体研究所,2002
    78汤铁钢,胡海波,王德生,胡八一,李庆忠,张崇玉.内爆压缩加载下抗氢钢圆管剪 切断裂研究[J].爆炸与冲击,2002,16(1),75-79
    79汤铁钢等.高应变率压缩加载下LY12铝圆管的剪切断裂研究[J].爆炸与冲击,2003,17(2),129-134
    80 #12
    81李雪梅,金孝刚,李大红等.液体炸药滑移内爆加载下钢管的变形与层裂破坏研究[J].爆炸与冲击,2003,23(6),523-528
    82康丽霞,王耀华,史长根.内部爆炸载荷下薄壁柱壳膨胀断裂的研究[J].爆破器材,Vol.31,No.1,2002,34-37.
    83谭成文,王富耻,李树奎,王鲁.内爆炸加载条件下圆筒的膨胀、破裂规律研究[J],爆炸与冲击,2003,Vol.23,No.4,305-308
    84 Balagansky I A, etc, Fracture behavior of explosively loaded spherical molded steel shells[J]. Theoretical and Applied Fracture Mechanics 36(2001),165-173
    85 D. Verney, Evaluation de la limite elastique du cuivre et de l'uranium par des experiences d'implosion'lente'[M], in Behavior of Dense Media Under High Dynamic Pressures, Symposium H.D.P., Paris, September 1968 (Gordon & Breach, New York,1968).
    86 Kozlov E A, Shock adiabat features, phase transition macrokinetics and spall-different phase states[J]. High Pressure Res.10,541,1992
    87 Kozlov E A. et al., Phys. Met. Metallog.79,662 (1995);81,679 (1996)
    88 Kozlov E A. et al. Reports of Ac. Sci.360(N3),340 (1998).
    89 Dobromyslov AV, Taluts N I, Kazantseva N V. Formation of adiabatic shear bands and instability of plastic flow in zr and zr-nb alloys in spherical stress waves[J]. Scripta mater.42 (2000)61-71
    90陈裕泽,内爆和外爆冲击波对材料的损伤,中国国防科学技术报告[R],GF-A-0090520
    91陈裕泽,加强数值模拟的应用研究[R],中物院总体工程研究所报告,2006
    92 Crowe C R. et al, AD-A038306,1976
    93 Taylor J W, Harlow F H, Amsden A A. Dynamic Plastic Instabilities in Stretching Plates and Shells [J]. J. Appl. Mech.,1978, Vol.45, pp.105-110.
    94 Martineau R L, Anderson C A, and Fred F W. A Viscoplastic Model of Expanding Cylindrical Shells Subjected to High Explosive Detonations[R], Los Alamos National Laboratories, CONNF-981009,1998
    95 Martineau R L, Anderson C A and Fred F W. Expansion of Cylinder Shells Subjected to Internal Explosive Detonations[J], Experimental Mechanics Vol.40,no.2,pp.219-225,2000.
    96封加坡,经福谦,苏林祥,韩钧万,对薄壁柱壳爆炸膨胀断裂过程的研究[J],高压物理学报,1988,2(2),97-103
    97高重阳,施惠基,姚振汉,白春华.薄壁柱壳在内部爆炸载荷下膨胀断裂的研究[J].爆炸与冲击Vol.20,No.2,2000,160-167
    98董玉斌等.滑移爆轰作用下内爆柱形钢壳层裂的数值研究[J].高压物理学报,1989,3(1),1-10
    99李永池等.内爆炸载荷下圆管变形、损伤和破坏规律的研究[J].力学学报,1999,31(4),442-449
    100李永池等.内聚爆炸载荷下热塑性中厚球壳的变形和层裂[J].爆炸与冲击,2005,25(4),319-324
    101孙宇新等.内爆加载下热塑性管壳的应力波演化与层裂效应研究[J].高压物理学报,2005,19(4),319-324
    102张世文等.金属圆管内爆轰波相互作用效应的数值模拟研究[J].爆炸与冲击,2004,24(3),425-430
    103张世文等.对碰波作用下金属圆管材料参数对其运动特征影响的数值模拟[J].爆炸与冲击,2004,24(3),219-225
    104冯端等,金属物理学(第三卷).金属力学性质[M].科学出版社,1999
    105 Merers M A. Dynamic Behavior of Materials[M]. John Wiley & Sons, Inc.1994
    106 Johnson J N, Addessio F L, Tensile plasticity and ductile fracture[J]. J. Appl. Phys.,64, 12, (1988),6699.
    107 Thomason P F, Ductile Fracture of Metals[M], Pergamon Press, Oxford,1990.
    108 Yajima M, Ishii M, Kobayashi M. Int. J. of Fract. Mech.1970,6, p139
    109哈宽富,断裂物理基础[M].科学出版社,2000
    110 McClintock F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics,35:363-371,1968.
    111 Rice J R and Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,17:201-217,1969.
    112 Cockcroft M G and Latham D J. Ductility and the workability of metals[J]. Journal of In, 96:33-39,1968.
    113 Hancock J W and Mackenzie A C. On the mechanisms of ductile failure in high strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics and Physics of Solids, 24:147-169,1976.
    114 Gurson, A L. Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction[D]. Ph Dissertation of Brown University,1975
    115 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth, Part Ⅰ-Yield criteria and flow rules for porous ductile media[J]. Truns. ASME, Journal of Engineering Materials and Technology,1977,99,2-15.
    116 Johnson G R and Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 21(1):31-48,1985.
    117 Bao Y and Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences,46(1):81-98,2004.
    Wierzbicki T. and Bao Y. Bridgman revisited:On the history effects on ductile fracture[J]. Journal of the Mechanics and Physics of Solids,2004.
    119 McClintock F A. Local criteria for ductile fracture[J]. International Journal of Fracture 1968,4,103-130.
    120 Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions[J]. Int. J. Fracture 17,389-407,1981.
    121 Tvergaard V. On Localization in Ductile Materials Containing Spher-ical Voids[J]. Int. J. Fracture, Vol.18, pp.237-252,1982
    122 Tvergaard V, Needleman A. Analysis of cup-cone fracture in a round tensile bar[J].Acta Metall,1984,32, pp.57-169
    123 Bao Yingbin, Prediction of Ductile Crack Formation in Uncracked Bodies[D], PhD Dissertation of MIT,2003
    124黄西成,陈裕泽,朱建士,缺口试件拉伸试验中的材料失效函数确定方法,固体力学学报,V.29(4),2008
    125 Zurek A K, Dynamic Ductile Evolution and Tensile Fracture:New Experimental Insights for Models Evaluation[R], LA-U R-00-3811
    126 Johnson J N and Addessio F L. Tensile plasticity and ductile fracture[J]. J. Appl. Phys., 64(12):6699-6712,1988.
    127黄西成,陈裕泽.金属动态损伤张量模型讨论.西南交通大学学报(增刊),2006
    128 Murrell S A F. Rocks Mechanics, Proc. 5th Symp. Rocks Mech., ed. C. Fairhurst, Pergamon Press, p563
    129 Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel [J]. J Appl Phys, 1944,15(1):22-27.
    130 Bai Y L.A diabatic shear banding[J]. ReS Mechanica,1990,31:133-203.
    131王礼立,余同希,李永池.冲击动力学进展[M].合肥:中国科技大学,1992
    132 XU Yongbo, BAI Yilong, Meyers M A. Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys[J]. Journal of Materials Science & Technology,2006 Vol.22 No.6 P.737-746,867-868
    133 Bai Y, Dodd B. Adiabatic shear localization[M], Pergamon Press,1992
    134 Hooputra H H, Gese H. Dell, Werner H. A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions[J]. International Journal of Crashworthiness, vol.9, no.5, pp.449-464,2004
    135 Couque H. A hydrodynamic hat specimen to investigate pressure and strain rate dependence on adiabatic shear band formation[J]. J. Phys. Ⅳ France 110,2003
    136 Hanina E, Rittel D, Rosenberg Z. Pressure sensitivity of adiabatic shear banding in metals[J]. Applied Physics Letters 90,021915(2007)
    137 Murr L E. Metallurgical effects of shock and high-strain-rate loading. in:Materials at High Strain Rates[M], edited by T.Z. Blazynski (Elsevier Applied Science, London,1987), pp. 1-46.
    138唐志平.冲击相变基础[M].合肥:中国科技大学,1992
    139 Ashby, M.F., C. Gandhi, and D.M.R. Taplin, Fracture-Mechanism Maps and their Construction for F.C.C. Metals and Alloys[J]. Acta Materialia,1979.27(5):p.699-729.
    140 Didier Teirlinck, Influence of the Stress State on Various Fracture Modes[D], PhD Dissertation, McMaster University,1983
    1朱建士、陈裕泽,核武器研制中的力学问题[J],力学与实践,第24卷第1期,2002年,67-71
    2 Charles E Morris, Shock wave equation-of-state studies at Los Alamos[C], Shock Symposium, December 11-12,1990. TOKYO, JAPAN
    3 Marsh S P. LASL Shock Hugoniot Data[R]. University of California Press, Berkeley,1980
    4 Marsh S P. User's Manual for LASL Shock Hugoniot Data File[R], LA-7887-M
    5 Charles E M. Los Alamos Shock Wave Profile Data[R]. University of California Press, Berkeley,1982
    6经福谦,实验物态方程导引(第二版)[M],科学出版社,北京:1999年
    7李维新,一维不定常流动与冲击波[M],国防工业出版社.北京:2003年
    8王礼立,应力波基础(第二版)[M],国防工业出版社.北京:2005年
    9谭华,实验冲击波物理导引[M],国防工业出版社.北京:2007年
    10 Johnson J N, Cheret R. Classic Papers in Shock Compression Science[M], Springer-Verlag, New York,1998
    11 Asay J R, Shahinpoor M, High-Pressure Shock Compression of Solid[M], Springer-Verlag, New York,1993; Davison L, Grady D, Shahinpoor M, High-Pressure Shock Compression of Solid Ⅱ, Springer-Verlag, New York. etc.
    12 Graham R A, Solids under High Pressure Shock Compression:Mechanics, Physics and Chemistry[M], Springer-Verlag, New York,1993
    13 Davison L, Graham R A. Shock compression of solids, Physics Reports (Review Section of Physics Letters) [J],55, No.4(1979) 255-379. North-Holland Publishing Company
    14 Davison L, Fundamentals of Shock Wave Propagation in Solids[M]. Springer-Verlag, Berlin Heidelberg,2008
    15 McQueen R G. Shock waves in condensed media:their properties and the equations of state of materials derived from them[R]. LA-UR-90-1996
    16 Swegle J W, Grady D E. Shock viscosity and the prediction of shock wave rise times[J]. J. Appl. Phys.58,692,1985.
    17 Clifton R J. On the Analysis of elastic/visco-plastic waves of finite uniaxial strain, in Shock Waves and the Mechanical Properties of Solids[M], edited by J. J. Burke and V. Weiss, Syracuse University Press, Syracuse, N.Y.,1971, p.73.
    18 Wallace D C. Irreversible thermodynamics of flow in solid[J]. Phys. Rev. B,24, No 4, 1477-1486(1980). D.C. Wallace, Phys. Rev. B22,1487 (1980).
    19 Wallace D C. Equation of state from weak shocks in solid[J]. Phys. Rev. B,24, No.4, 1495-1502(1980).
    20陈裕泽,固体中的冲击波[R],中国国防科学技术报告,904-01-0307
    21卡涅尔(?)(?)等,凝聚介质中的冲击波现象[M],韩均万译,中物院流体所内部资料
    22 Kanel G I, Razorenov S V and Fortov V E. Shock-wave compression and tension of solids at elevated temperatures:superheated crystal states, pre-melting, and anomalous growth of yield strength[J], Journal of Physics:Condensed Matter,16, S1007-S1016,2004
    23 Molinari A, Ravichandran G. Fundamental structure of steady plastic shock waves in metals[J], J. Appl. Phys,95, No 4,2004,1718-1732
    24 #12
    25 #12
    26王礼立.应力波基础(第二版)[M],国防工业出版社,北京:2005年
    27德冈辰雄著,赵镇、苗天德、程昌钧译.理性连续介质力学入门[M],科学出版社,北京:1982年
    28陈至达.非线性力学的理论与应用[M],第46期《应用数学与力学》讲座讲义,杭州,1986年
    29钱令希、钱伟长等.中国大百科全书.力学[M],中国大百科全书出版社,北京,1985年
    30 Steinberg D J, Cochran S G, Guinan M W, J. Appl. Phys.,51,1498, (1980)
    31 Johnson G R, Cook W H, A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures[C]. Porc. Seventh Int. Nat. Symposium on Ballistcs, April 1983.
    32 Nemat-Nasser S, Phenomenological theories of elastoplasticity and strain localization at high strain rates, Appl. Mech. Rev.45 (1992), S19-S45.
    33匡震邦.非线性连续介质力学[M],上海:上海交通大学,2002
    34 Tonks D L. thermoelastic-plastic flow and ductile facture in solids[R], LA-UR-85-2529
    35 Chou P C, Hopkins A K. Dynamic Response of Materials to Intense Impulsive Loading[R]. U. S. Air Force Materials Laboratory, Wright-Patterson, AFB, Ohio,1972
    36 Wilkins M L. Calculation of elastic-plastic flow[C]. Methods in Computational Physics, 1964,(3)
    37郑哲敏,中科院力学所内部报告[R],1965年
    38吕洪生,曾新吾.连续介质力学(下)[M].长沙:国防科技大学出版社,1999
    39 Erkman J O, Christensen A B, and Fowles G R, Attenuation of shock wave in solids[R]. Technical Report No. AFWL-TR-66-72, Stanford Research Institute, Air Force Weapons Laboratory, May 1966
    40 Asay J R. Chhabildas L C. in Shock Wave and High Strain Rate Phenomena in Solid[M], p.417, Edited by M. A. Meyers and L. E. Murr, Plenum Press, NY,1981
    41 Meyers M A. Dynamic Behavior of Materials[M]. John Wiley & Sons, Inc.1994
    42谢贻权,林钟祥,丁皓江.弹性力学[M].杭州:浙江大学出版社,1988
    43 Haigh B P (1920) Elastic Limit of a ductile metal. Engineering 109,158-160
    44 Westergaard H M (1920) On the Resistance of Ductile Materials to Combined Stresses in Two or Three Directions Perpendicular to one Another[J]. Journal Franklin Institute,189, 627-640.
    Estrin Y, Molinari A, Mercier S. The role of rate e.ects and of thermomechanical coupling in shear localization[J]. J. Eng. Mater. Technol.1997.119,322-331.
    6 Klepaczko J R, Chiem C Y. On rate sensitivity of fcc metals, instantaneous rate sensitivity and rate sensitivity of strain-hardening[J]. J. Mech. Phys. Solids 1986,34,29-54.
    47 Zerilli F J, Armstrong R W. Dislocation-mechanics based constitutive relations for material dynamics calculations[J]. J. Appl. Phys.1987,61,1816-1825.
    48 Nemat-Nasser S, Ni L Q, Okinaka T, A constitutive model for fcc crystals with application to polycrystalline OFHC copper[J]. Mech. Mater.1998,30,325-341.
    49 Bodner S R, Partom Y, Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. J. Appl. Mech.1975,42,385-389.
    50 Estrin Y, Mecking H, A unified phenomenological description of work-hardening and creep based on one parameter models[J]. Acta Mater.1984,32,57-70
    51 Follansbee P S, Kocks U F, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state[J]. Acta Metall.1988,36,81-93
    52 Preston D L, Tonks D L, Wallace D C, J. Appl. Phys.93, pp.211-220,2003.
    53李旭红,黄西成,朱建士,陈裕泽,苏先樾,金属高率变形变化模型评述[J],2007(3)
    54 Ashby M F, Verrall R A, Micromechanisms of flow and fracture, and their relevance to rheology of the upper mantale[J], Phil. Trans. R. Soc.,1971, A288,59-95
    55 Spitzig W A, Richmond O, The Effect of Pressure on the Flow Stress of Metals[J], Acta Metall.32(3),1984,457-463
    56 Asay J R, Lipkin J J, A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material[J]. J. Appl. Phys.,1978,49(1),4242
    57 Asay J R, Chhabildas L C, Dandekar D. P. Shear modulus of shock-loaded polycrystalline tungsten., J. Appl. Phys.,1980,51(9),4774
    58 Kocks U F, Constitutive behavior based on crystal plasticity. In:Miller A. K. Unified Constitutive Equations for Creep and Plasticity. Elsevier, Amsterdam.
    59华劲松,经福谦,谭华.钨合金的高压强度研究[J].高压物理学报,1999,13(增刊),273-276
    60张江跃,谭华,虞吉林.双屈服法测定93W合金的屈服强度[J].高压物理学报,1997,11(4),254.15
    61李茂生,陈栋泉.高温高压下材料的本构模型[J].高压物理学报,2001,54-57
    62 Asay J R, Chhabildas L C, Dandekar D P. Shear modulus of shock-loaded polycrystalline tungsten. J Appl Phys,1980,51(9):4774-4783
    63 Steinberg D J, Cochran S G, and Guinan M W, A constitutive model for metals applicable at high-strain rate[J]. J. Appl. Phys.51,1498(1980)
    64 Steinberg D J, Lund C M, A constitutive model for strain rates from 10-4 to 106 s-1[J]. J. Appl. Phys 1989; 65:1528-1533
    65谭华,俞宇颖等,单轴应变:本构关系—它的的内容、方法和意义[J].高能量密度物理,第3期,2009年,133-143
    66谭华,俞宇颖等,单轴应变:本构关系—它的的内容、方法和意义(续)[J].高能量密度物理,第4期,2009年,182-192
    67李茂生,陈栋泉.高温高压下材料的本构模型[J].高压物理学报,2001,54-57
    68 Khan A S, Huang S, Continuum Theory of Plasticity[M], John Wiley& Sons, Inc,, NY, (1995)
    69 Goldthorpe B D, Journal De Physique IV, Colloque C3, Suppl. Au Journal De Physique Ⅲ, Vol. 1,p829,1991
    70 Marquis S D, In Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena[M], ed. K. P. Staudhammer, L. E. Murr, and M. A. Meyers, Elsevier, pp. 209-217 (2001).
    71 Rohr I., Nahme H., Thoma, K. Material characterization and constitutive modeling of ductile high strength steel for a wide range of strain rates[J]. International Journal of Impact Engineering,2005,31,401-433.
    72黄西成,陈裕泽,朱建士.冲击动力学中的两个基本实验[C],2006年全第四届爆炸力学实验技术论文集.
    73 Huang X C, Chen Y Z, Zhu J S.1-D Stress and 1-D Strain Basic Experiments and Relationship between EOS and Constitutive Equations[C]. Advances in Heterogeneous Material Mechanics 2008, Edt. Fan Jinghong, Chen Haibo, Destech Publications,2008.
    74 Gray III G T, Classic split-Hopkinson pressure bar testing, in ASM Handbook[M]. Vol.8: Mechanical Testing and Evaluation,2000 (H. Kuhn and D. Medlin, Eds) pp.462-476.
    75陈裕泽,一维应力实验和一维应变实验在冲击动力学研究中的作用[R],GF-A0092245G
    76 Wallace D C, Flow process of weak shocks in solid[J], Physical Review B, Vol 22, No4, 1980,1487-1497
    77 Wallace D C, Nature of process of overdriven shocks in metals[J], Physical Review B, Vol 24, No10,1981,5607-5615
    78胡昌明,贺红亮,胡时胜,不同应变率下45钢的层裂研究[J],实验力学,2003,18(2):246-250
    79 Swegle J W and Grady D E, in Shock in Condensed Matter-1985, eds. Y. M. Gupta, Plenum, New York,1986, p.353
    80 Swegle J W and Grady D E, J Appl. Phys.,58(1985),692.
    81陈大年,刘国庆,愈宇颖,高压、高应变率与低压、高应变率实验的本构关联性[J],高压物理学报,2005,19(3)
    82 Preston D L, Tonks D L, Wallace D C, Model of plastic deformation for extreme loading conditions[J], J. Appl. Phys.93, pp.211-220,2003
    83 Steinberg D Jand Lund C M, A Constitutive model for strain rates from 10-4 to 106 s-1[J], J.Appl.Phys.65(1989) 1526-1533.
    84 Johnson J N and Tonks D L. Dynamic plasticity in transition from thermal activation to viscous drag[R], LA-UR-91-1648
    85 Sia Nemat-Nasser, Physically based rate- and temperature-dependent constitutive models for metals, in Handbook of Materials Behavior Model[M], Academic Press,387-396, Jean Lemaitre eds., San Diego
    86 Hoge K G, Mukherjee A K, The temperature and strain rate dependence of the flow stress of tantalum[J]. J. Mater. Sci.12, pp.1666-1672
    87朱建士,综合性实验,中物院内部报告[R](ppt)
    1王继海.二维非定常流和激波[M].北京:科学出版社,1994.505-513
    2经福谦.实验物态方程导引[M].修订2版.北京:科学出版社,1999.153-159
    3 Rosenberg Z, Dekel E. A new approach to the deep penetration of rigid projectiles.8th Internation Conference on Shock and Impact Loads on Structures,2009, Adelaide, Australia, Ed. Chengqing Wu and Tat-Seng Lok, CI-Premier Conference Organisation, Singapore
    4 Timoshenko S and Gooder J. N, Theory of Elasticity. McGraw-Hill, New York,1956
    5李雪梅,金孝刚,李大红,内爆加载下钢圆管的变形和层裂研究[G],GF-A-0060610
    6李雪梅.内爆加载下钢圆管的变形、损伤及层裂研究[D].合肥:中国科学技术大学,2003
    7孙承纬,卫玉章,周之奎.应用爆轰物理[M],国防工业出版社,北京,2000
    8 Bai Y, Dodd B. Adiabatic shear localization[M]. Oxford:Pergamon,1992 p.24.
    9 Meyers M A. Dynamic behavior of materials[M]. J. Wiley,1994 Chapter 15.
    10 Clifton RJ. In:Material response to ultra high loading rates[M]. NRC Report No.356, Washington (DC):US National Material Advisory Board; 1980. Chapter 8.
    11 Bai Y. In:Meyers M A, Murr LE, editors. Shock waves and high-strain-rate phenomena in metals[M], New York:Plenum Press; 1981:277.
    12 Molinari A, Clifton R J. Analytical characterization of shear localization in thermo-visco-plastic solids[J]. J. Appl. Mech.54,806-812.
    13 Wright T W. Shear Band Susceptibility:Work. Hardening Materials[J], International Journal of. Plasticity,8,583-602
    14 Wright T W, Walter J W. J Mech Phys Solids 1987;32:119.
    15 Bowden P B. A criterion for inhomogeneous plastic deformation[J]. Phil Mag 1970; 22:455.
    16 Shockey D A. In:Murr LE, Staudhammer KP, Meyers MA, editors. Metallurgical applications of shock wave and high-strain-rate phenomena[M], New York:Marcel Dekker; 1986:633.
    17 Nesterenko V F, Meyers M A, Wright T W. Self-organization in the initiation of adiabatic shear bands[J], Acta Mater.,46,327-340,1995
    18 Xue Q, Meyers M A, Nesterenko V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy[J]. Acta Materialia 50 (2002) 575-596
    19 Grady D E. Shock deformation of brittle solids[J]. J Geophys. Res 85:913-924.
    20 Grady D E, Kipp M E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids[J]. J Mech Phys Solids 1987;35:95-118.
    21 Wright T W, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands[J], Int. J. Plasticity,12,927-934,1996.
    22 Molinari A. Collective behavior and spacing of adiabatic shear bands[J]. Journal of the Mechanics and Physics of Solids,45(9),1997, P.1551-1575.
    23 M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, and Q. Xue, Shear Localization in Dynamic Deformation of Materials:Microstructural Evolution and Self-Organization[J], Matls. Sci. and Eng. A317 (2001) 204-225.
    24 Q. Xue, M.A. Meyers, V.F. Nesterenko.Self organization of shear bands in stainless steel[J]. Materials Science and Engineering A 384 (2004) 35-46.
    25 M.A. Meyers and S.L. Wang, An Improved Method for Shock Consolidation of Powders[J], Acta Met.,36, p.925-936 (1988).
    26 Huang Xicheng, Chen Yuze, Zhu Jianshi. Dynamic failure of metal cylindrical tube subjected to implosive loading[C]. Proceedings of 8th International Conference on Shock & Impact on Structures, Ed. Chengqing Wu and Tat-Seng Lok, CI-Premier Conference Organation (ISBN:978-981-08-3245-2)
    27 Mott N F. Fragmentation of Shell Cases[J]. Proc. R. Soc. Lond. A May 1,1947 189: 300-308
    Xue Q, Spatial evolution of adiabatic shear localization in stainless steel, titanium and Ti-6Al-4V alloy[D]. Dissertation of University of California, San Diego,2001
    29胡时胜.材料动力学,中国科技大学教材,合肥,2000
    1王礼立.应力波基础(第二版)[M].国防工业出版社,2005年
    2 Couque H. A hydrodynamic hat specimen to investigate pressure and strain rate dependence on adiabatic shear band formation[J]. Journal de Physique Ⅳ France,110:423-428,2003.
    3 Couque H. Dynamic compression failure of two metals at 0.5 and 1.5 GPa. In N. Jones and C. A. Brebbia, editors, Proceedings of the Computational Ballistics Ⅱ Conference, Cordoba, Spain,2005. WIT Press.
    4 Hanina E, Rittel D, Rosenberg Z. Pressure sensitivity of adiabatic shear banding in metals [J]. Applied Physics Letters 90,021915(2007)
    5 Huang Xicheng, Chen Yuze, Zhu Jianshi, Collapse of spherical shell subjected to external pressure[C]. The 5th International Conference on Nonlinear Mechanics (ICNM5),2007, Proceedings of The 5th International Conference on Nonlinear Mechanics, Shanghai University Press.
    6孙承伟,卫玉章,周之奎.应用爆轰物理[M],北京,国防工业出版社,2000
    7 Johnson G R, Cook W H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J]. Eng. Fract. Mech.1985, Vol.21, no.1, pp.31-48.
    8 Century Dynamics, Autodyn User Manual,2007
    9 Grady D E. The Spall Strength of Condensed Matter[J], J. Mech. Phys. Solids,1988,36.
    10 Davison L, Graham R A. Shock compression of solids[J]. PHYSICS REPORTS (Review Section of Physics Letters) 55, No.4 (1979) 255-379. North-Holland Publishing Company
    1 Mott N R. Fragmentation of Shell Cases [J]. Proc. Roy. Soc. London,1947, Vol.189, pp. 300-30
    2王礼立.应力波基础(第二版)[M].国防工业出版社,2005年
    3 Grady D E, Kipp M E. The growth of unstable thermoplastic shear with applications to steady-wave shock compression in solids[J]. J. Mech. Phys. Solids,1987,35, (1),95-118
    4 Grady D E, Olsen M L. A statistical and energy based theory of dynamic fragmentation [J]. Int. J. ENG. Mech. Mech.2003,29,293-306
    5 Balagansky I A, etc, Fracture behavior of explosively loaded spherical molded steel shells[J]. Theoretical and Applied Fracture Mechanics 36(2001),165-173
    6 Davison L, Graham R A. Shock compression of solids[J]. PHYSICS REPORTS (Review Section of Physics Letters) 55, No.4 (1979) 255-379. North-Holland Publishing Company

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700