用户名: 密码: 验证码:
块体非晶复合材料爆炸焊接冲击动力学问题研究及其实验制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体非晶复合材料诸多优异的物理、力学性能,使其在民用及国防领域具有广泛的应用前景。但由于急冷凝固制备手段的冷却速率约束,使得三维尺寸难以形成大尺度块体而限制了实际应用。块体非晶复合材料制备是目前研究的热点,国内、外均开展了广泛而深入的研究,开发了诸多制备方法,使块体尺寸得以有效的扩大。其中爆炸焊接制备是重要的手段,得到了广泛的重视。应用此法制备块体非晶复合材料是典型的冲击动力学问题,以此为中心,本文开展了系列研究。
     对非晶薄带爆炸焊接制备块体非晶复合进行讨论。基于弹性薄板静载弯曲理论知实验不能采用间隙铺设;又由于表面粗糙度能为焊接提供层间碰撞空间,因而采用叠层铺设,并就薄带组叠层密度与冲击温升内在关系进行分析。再考虑到非晶薄带较高的硬度及温度敏感性,使其复合下限偏高而上限较低,导致复合窗口狭窄。针对以上困难,提出对非晶薄带进行了涂层;再根据应力波理论,借签损伤力学思想对实验装置进行缺陷设置,以加速反射拉伸波的衰减,从而相应提高焊接上限。另外,对薄带组受爆轰驱动的宏观运动过程进行研究,得到位移、密度及速度时程曲线;根据有限元理论对EPIC-2D程序进行相应的修改,以完成对爆炸焊接过程层间碰撞数值模拟,以了解碰撞过程中焊接界面应力、应变情况及碰撞产生的界面温度场。最后对多层薄带爆炸焊接制备非晶复合块体进行实验,将所得块体进行切割测试,并从冲击动力学及晶化动力学两个角度对实验效果进行分析。
     分析结果表明非晶薄带组爆炸焊接过程中冲击温升不可忽略,通过调节薄带组装填密度可以控制冲击温升。对薄带进行涂层不仅能降低焊接下限,且能改善薄带组受热状况,更有效地保护其亚稳态结构;而实验装置的缺陷设置可以加速反射拉伸波的衰减,保护复合界面不被撕裂,成功提高焊接上限;综合效果表现为扩大焊接窗口。薄带组三条宏观运动曲线均明确体现了冲击加载过程中的惯性及应变率延迟等效应;有限元法模拟得到的应力、应变及温度场云图说明碰撞过程中界面及内部非晶成分能保存完好。样品X射线衍射及DSC测试结果均表明其结构仍呈非晶态,SEM照片反映涂层界面及复合界面结合良好,薄带未因冲击而发生碎裂。认为隔离了爆轰产物直接作用,转移了碰撞应变、应变率及绝热剪切热,使非晶不能发生结构驰豫,又由于复合过程中压力及热效应的瞬态性,避免扩散形核晶化。
Metallic glass composite materials have some properties in mechanics and physics better than crystal metals, so it can be widely used in civil and national defense industry as structural material. But because of the rapidly solidified limitation of cooling rates, at present the actual application was restricted by its three dimensions size. At present, preparing bulk metallic glass composite is the research focus, so extensive and further researches have been done at home and abroad, and developed some prepared methods. As a result, bulk metallic glass composites were larger in size. Explosive welding is one of the most important method, people pay more attention on it. This method is a classical impact kinetics method, in this paper, series studies have been developed.
     The explosive welding of preparing bulk metallic glass composites by amorphous foils is first to be discussed. It can be deduced by theory of elasticity that the experiment can not lay as metal plate with macro clearance between layers. And because its surface roughness can provide acceleration, it can be laid as superposition which is the style that put one upon another without macro clearance. Then the relationship between initial density and impact temperature was analyzed. Second, prosperities of amorphous foils higher surface hardness and temperature sensitivity, they make the explosive welding low limitation higher and upper limitation lower respectively, so window is narrower. Considering difficulties mansion above, it has been done that coated with another metal at amorphous foils to reduce its surface hardness. Besides, based on the theory of stress wave transformation and reflection, we introduced ideas of damage mechanics to set defects on experiment device. These defects can accelerate the attenuation of tension wave, so the strength of tension wave which arrive at welding interface is weaker. And the upper limit was increased. In researches of impact response, the motion differential equation of integral compressible by detonation products was given out, and gained its numerical results which were used to draw curves of displacement, density and velocity. Besides, based on finite elements theory, the EPIC-2D computer program was modified to make sure it suitable for simulating impaction between layers during explosive welding. By its result, we can analysis stress, strain and temperature field of welding interfaces. Lastly, bulks metallic glass composite materials were prepared by multilayer explosive welding. Samples were cut to test, and results were explained by impact dynamics and crystallization kinetics.
     Results show out that the impact temperature of multilayer amorphous foils explosive welding can not be neglected, and it can be controlled by adjustment of density of amorphous foils. The coated metal not only decreased its low limitation, but also improved the heat situation of amorphous matrix. These effects are beneficial to protect amorphous as metastable state. Defects on experiment device can accelerate the attenuation of tension wave, so can protect welding interfaces from cracks and increased upper limitation. Lower low limitation and higher upper limitation make the welding window wider. In curves of impact response, characters of inertial and strain rate effect in dynamic mechanics were reflected, and by cloud pictures of stress, strain and temperature field of welding interfaces, it can be concluded that the interfaces and matrix can be preserved well. Both of curves of XRD and DSC confirmed that the amorphous foils matrixes metastable state was maintained in bulk. SEM images reflected conditions of welding interfaces and coating interfaces. It can be concluded by images information that foils didn't crack and interfaces combined each other very well. We believe that strain, strain rate and adiabatic shear energy were all concentrated on coated metal, and detonation products were isolated, these make sure amorphous matrixes didn't transform to liquid, so can not occur structural relaxation. And because of characters of transient physics in explosive welding, temperature and pressure were attenuated in few minutes, the time isn't enough to diffuse for atom, so can not form nucleus and crystallize.
引文
1 郭贻诚,王震西.非晶态物理学.北京:科学出版社
    2 Luborsky F.E.Amorphous Metallic Alloys.London:Butterworth,1983:1-5
    3 Monlnar A.,Smith G.V.,Bartok M.New catalytic materials from amorphous metal alloys.Adv.Catal.,1989,36(3):329-393
    4 陈雪莹.新型非晶态合金材料的设计合成及催化性能研究.复旦大学,2006
    5 谭晓华.铁磁性块体非晶合金磁性和晶化行为的研究.上海大学,2007
    6 D.Turnbull,M.H.Cohen.Concening reconstructive transformation and formation of glass.J.Chen.Phys,1958,29:1049
    7 W.Klement,R.Willens,P.Duwez.Non-crystalline structure in solidified good-silicon alloys.Nature,1960,187:869-870
    8 FR.R.Pond,R Maddin.Method of producing rapidly solidified filamentary castings.Met Soc of AIME-Trans,1969,245:2475-2476
    9 H.S.Chen.Thermodynamic Considerations on the Formation and Stability of Metallic Glass.Acta Metall.1974,22:1505-1510
    10 A.Inoue,H.Koshiba,T.Itoi.Ferromagnetic Bulk Glassy Alloys with Useful Engineering Properties.Mater.Sci.Forum.2000,343-346:81-90
    11 A.Inoue,T.Zhang,A.Takeuchi.Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe-TM-B(TM=Ⅳ-Ⅷ group transition metal) System.Appl.Phys.Lett.1997,71(4):464-466
    12 H.Chiriac,N.Lupu.Bulk Amorphous(Fe,Co,Ni)70(Zr,Nb,M)10B20(M=Ti,Ta or Mo) Soft Magnetic Alloys.J.Mag.Mag.Mater.2000,215-216:394-396
    13 S.J.Poon,G..J.Shiflet,F.Q.Guo,V.Ponambalam.Glass Formability of Ferrous- and Aluminum-based Structural Metallic Alloys.J.Non-Cryst.Solids.2003,317(1):1-9
    14 A.Inoue.Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys.Acta Mater.2000,48(1):279-306
    15 D.W.He,Q.Zhao,W.H.Wang.Pressure-induced Crystallization in a Bulk Amorphous Zr-based Alloy.J.Non-Cryst.Solids.2002,297(1):84-90
    16 何国,边赞,陈国良.Zr_(52.5)Al_(10)Ni_(14.6)Cu_(17.9)Ti_5块体玻璃合金等温晶化与结构转变.金属学报.1999,35(5):458-462
    17 S.Schneider,R Thiyagarajan,W.L.Johnson.Formation of nanocrystals based on decomposition in the amorphous Zr_(41.2)Ti_(13.8)Cu_(12.8)Be_(22.5) alloy.Metall.Mater.Trans.A. 1996,27:549-555
    18 W.L.Johnson,J.Lu,M.D.Demetriou.Deformation and Flow in Bulk Metallic Glasses and Deeply Undercooled Glass Forming Liquids-a Self Consistent Dynamic Free Volume Model.Intermetallic.2002,10(11-12):1039-1046
    19 R.Janlewing,U.K(o|")ster.Nucleation in Crystallization of Zr-Cu-Ni-Al Metallic Glasses.Mater.Sci.Eng.A.2001,304-306:833-838
    20 H.Habazaki,H.Ukai,K.Izumiya.Corrosion Behavior of Amorphous Ni-Cr-Nb-P-B Bulk Alloys.Mater.Sci.Eng.A.2001,318:77-86
    21 Y.B.Kim,H.M.Park,W.Y.Jeung,J.S.Bae.Vacuum Hot Pressing of Gas-Atomized Ni-Zr-Ti-Si-Sn Amorphous Powder.Mater.Sci.Eng.A.2004,368:318-322
    22 D.H.Xu,G.Duan,W.L.Johnson,C.Garland.Formation and Properties of New Ni-Based Amorphous Alloys with Critical Casting Thickness up to 5 mm.Acta Mater..2004,52(12):3493-3497
    23 A.Gebert,U.Wolff,A.John.Stability of the Bulk Glass-Forming Mg_(65)Y_(10)Cu_(25) Alloy in Aqueous Electrolytes.Mater.Sci.Eng.A.2001,299:125-135
    24 T.Zhang,A.Inoue.Ti-Based Amorphous Alloys with a Large Supercooled Region.Mater.Sci.Eng.A.2001,304-306:771-774
    25 E.D.Tabachnikova,V.Z.Bengus,V.V.Molokanov.Low Temperature Plasticity and Failure of a Bulk Cu_(50)Zr_(35)Ti_8Hf_5Ni_2 Metallic Glass.Mater.Sci.Forum.1996,225-227:107-112
    26 D.H.Xu,B.Lohwongwatana,G.Duan,W.L.Johnson,C.Garland.Bulk Metallic Glass Formation in Binary Cu-Rich Alloy Series-Cu10-xZrx(x=34,36,38.2,40 at.%)and Mechanical properties of Bulk Cu64Zr36 Glass.Acta Mater.2004,52(9):2621-2624
    27 J.H.Perepezko,R.J.Herbert,R.I.Wu,G.Wilde.Primary Crystallization in Amorphous A1-Based Alloys.J.Non-Cryst.Solids.2003,317(1):52-61
    28 G.J.Fan,J.F.L(o|")ffer,R.K.Wunderlich,H.-J.Fecht.Thermodynamics,Enthalpy Relaxation and Fragility of Bulk Metallic Glass-Forming Liquid Pd43Ni10Cu27P20.Acta Mater.2004,52(3):667-674
    29 H.Chiriac,N.Lupu.Magnetic Properties of(Nd,Ce,Pr)-Fe-(Si,Al) Bulk Amorphous Materials.J.Mag.Mag.Mater.1999,196-197:235-237
    30 Z.P.Lu,X.Hu,Y.Li.Glass Forming Ability of La-A1-Ni-Cu and Pd-Si-Cu Bulk Metallic Glasses.Mater.Sci.Eng.A.2001,304-306:679-682
    31 G.J.Fan,W.Loser,S.Roth.Glass-Forming Ability of RE-A1-TM Alloys(RE=Sm,Y; TM=Fe,Co,Cu).Acta Mater.2000,48(15):3823-3831
    32 F.Q.Guo,S.J.Poon,G.J.Shiflet.Metallic Glass Ingots Based on Yttrium.Appl.Phys.Lett.2003,83(13):2575-2577
    33 B.Zhang,M.X.Pan,D.Q.Zhao,W.H.Wang."Soft" Bulk Metallic Glasses Based on Cerium.Appl.Phys.Lett.2004,85(1):61-63
    34 O.N.Senkov,J.M.Scott.Formation and Thermal Stability of Ca-Mg-Zn and Ca-Mg-Zn-Cu Bulk Amorphous Glasses.Mater.Lett.2004,58(7-8):1375-1378
    35 陈庆军.铁基大块非晶合金的玻璃形成能力及断裂行为.哈尔滨工业大学,2006
    36 王庆.大块非晶合金的力学行为及其微观机理研究.上海交通大学,2006
    37 王晓军.镁基非晶态合金的制备及其结构与性能研究.兰州理工大学,2006
    38 张可,Fe基和Co基非晶合金的形成能力、稳定性及磁阻抗效应.吉林大学,2007
    39 闰鸿浩.非晶态合金薄带的爆炸焊接研究.大连理工大学,2003
    40 李波.块体锆基非晶合金焊接物理冶金机理的研究.华中科技大学,2005
    41 Inoue A.Slowly-cooled bulk amorphous alloys.Mater.Sci.Forum.1995,179-181:691-700
    42 Inoue A.Bulk amorphous alloys with soft and hard magnetic properties.Mater.Sci.Eng.A,1997,226-228:357-363
    43 Uhlmann D R.Kinetic treatment of glass formation.J.Non-Cryst.Solids,1972,17(4):337-348
    44 Inoue A.High strength bulk amorphous alloys with low critical cooling rates.Mater.Trans.JIM,1995,36(7):866-875
    45 D.Wang,Y.Li,B.B.Sun et,al.Bulk metallic glass formation in the binare Cu-Zr system.Applied Physics Letters,2004,84(20):4029-4031
    46 R Yu,H.Y.Bai,M.B.Tang,W.L.Wang.Excellent galss-forming ability in simple Cu_(50)Zr_(50)-based alloys.Jorunal of Non-Crystalline Solids,2005.351(14-15):1328-1332
    47 Inoue,N.Nishiyama,S.G.Kim,T.Masumoto.Fabrication and mechanical properties of Mg-Zn-La amorphous alloys containing nanoscale hcp-Mg particles.Materials Transactions,JIM,1992,33(4):360-365
    48 Hyung-Seop Shin,Young-Jin Jeong,Ho-Yeon Choi,Hidemi Kato,Akihisa Inoue.Joining of Zr-based bulk metallic glasses using the friction welding method.Journal of Alloys and Compounds,2007,434-435:102-105
    49 Takuo Shoji,Y.Kawamura,Y.Ohno.Friction welding of bulk metallic glasses to different ones.Materials Science and Engineering A,2004,375-377:394-398
    50 Y.Kawamura,T.Shoji,Y.Ohno.Welding technologies of bulk metallic glasses. Journal of Non-Crystalline Solids,2003,317:152-157
    51 Jonghyun Kim,Y.Kawamura.Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal.Scripta Materialia,2007,56:709-712
    52 A.J.Swiston Jr.,T.C.Hufnagel,T.P.Weihs.Joining bulk metallic glass using reactive multilayer foils.Scripta Materialia,2003,48:1575-1580
    53 B.Li,Z.Y.Li,J.G.Xiong,L.Xing,D.Wang,Y.Li.Laser welding of Zr_(45)Cu_(48)Al_7bulk glassy alloy.Journal of Alloys and Compounds,2006,413:118-121
    54 李晓杰,张凯.多层薄带爆炸焊接原理.高压物理学报,1993,7(3):214-219
    55 Binghuang Shao,Zhiyue Liu,XiaotiZhang.Explosive consolidation of amorphous cobalt-based alloys.Journal of Materials Processing Technology,1999,85:121-134
    56 Y.Kawamura.Liquid phase and supercooled liquid phase welding of bulk metallic glasses.Materials Science and Engineering A,2004,375-377:112-119
    57 高玉来,沈军,孙剑飞,大块非晶合金的性能、制备及应用(2003年6月第11卷第2期)
    58 孙军,张国君,刘刚.大块非晶合金力学性能研究进展.西安交通大学学报,2001,35(6):640-645
    59 赵德强 杨元政 李喜峰 仇在宏。大块非晶合金的形成能力及研究进展金属功能材料,2003,10(3):
    60 王文魁.非晶合金的高压变态.物理学进展,1984,4(4):525-549
    61 M.Martin,L.Kecskes and N.N.Thadhani.Dynamic compression of a zirconium-based bulk metallic glass confined by a stainless steel sleeve.Scripta Materialia,2008,59:688-691
    62 C.Yang,R.P.Liu,Z.J.Zhan,L.L.Sun,W.K.Wang.High speed impact on Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass.Materials Science and Engineering A,2006,426:298-304
    63 Ghatu Subhash,Robert J.Dowding,Laszlo J.Kecskes.Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy.Materials Science and Engineering A,2002,334:33-40
    64 刘应开,周效峰,刘佐权。非晶态Fe-B-Si合金系激波晶化研究。云南大学(自然科学版),1998,20(物理学专辑):147-150
    65 刘应开,周效峰,刘佐权,侯德东。Fe_(78)B_(13)Si_9、(Fe_(0.99)Mo_(0.11)_(78) B_(13)Si_9非晶合金的激波晶化实验研究。高压物理学报,1999,13(3)230-236
    66 赵鹤云,阚家德,王海,刘佐权.FeCuNbBSi等多种Fe基非晶态合金激波晶化的DSC研究.高压物理学报,2002,16(2)131-136
    67 周效锋,刘应开,刘佐权,李德修.Fe_(73.5)Cu_1Nb_3B_9Si_(13.5)非晶态合金的激波纳米晶化研究.物理学报,1999,48(11)2098-2013
    68 刘应开,刘佐权,王广厚.激波对多层非晶合金的作用及影响.材料工程,2005,5:12-15
    69 赵鹤云,阚家德,柳清菊,刘佐权。几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究。物理学报,2005,54(4)1711-1718
    70 贺红亮,金孝刚,陈攀森,王文魁.Fe_(40)Ni_(40)P_(12)B_8非晶合金的冲击晶化实验研究,高压物理学报,1989,3(3),211-219
    71 李晓杰,张凯,杨文彬,奚进一,孙明.非晶合金条带的爆炸焊接.高压物理学报,1993,7(4):265-271
    72 李晓杰,赵铮,闫鸿浩,王金相,张越举,李瑞勇.非晶态合金薄带爆炸焊接界面传热分析.爆破器材,2004,33(3):8-11
    73 闫鸿浩,李晓杰,奚进一,董守化.多层非晶薄带爆炸焊接温度场模型.高压物理学报,2002,16(1):65-69
    74 钱伟长.弹性力学.北京:科学出版社,1980:253-274
    75 邵丙璜,张凯.爆炸焊接原理及其工程应用.大连:大连工学院出版社,1987,120
    76 王继海.二维非定常流和激波.北京:科学出版社.1994:498
    77 段卫东,熊祖钊,马建军.爆炸焊接中射流形成的临界条件和复板允许的不平整度.武汉科技大学学报(自然科学版),2003,26(2):149-151
    78 D.K.Djiken,J.Th.M.De Hosson.Thermodynamic model of the compaction of powder materials by shock waves.J.Appl.Phys.1994,75(1):203-209
    79 D.K.Djiken,J.Th.M.De Hosson.Shock wave equation of state of powder material.J.Appl.Phys.1994,75(2):809-813
    80 戴道生,韩汝琪.非晶态物理.北京:电子工业出版社,1984:652
    81 汤文辉,张若棋,胡金彪.冲击温度的近似计算方法.力学进展,1998,28(4):479-487
    82 杨扬,李正华,吕培成,高文柱,颜学柏,裴大荣,张新明.爆炸复合界面温度场模型及应用.稀有金属材料与工程,2000,29(3):161-163
    83 陆金甫,关治.偏微分方程数值解法.北京:清华大学出版社,2003:14-28
    84 俞昌铭.热传导及其数值分析.北京:清华大学出版社,1982:420-425
    85 K(o|")ster U,Sch(u|")themann U,M.Blank-Bewersdorff,S.Brauer,M.Sutton,G.B.Stephenson.Nanocrystalline materials by crystallization of metal-metalloid glasses.Materials Science and Engineering A,1991,133(15):611-615
    86 经福谦.实验物态方程导引.第2版.北京:科学出版社,1999:82
    87 M.Cedergren and G.B(a|")ckstr(o|")m.Crystallization temperature of amorphous Fe_(80)B_(20)under pressure.J.Non-Crystalline Solids,1978,30,69
    88 M.Cedergren and G.B(a|")ckstr(o|")m.Pressure and heating rate dependence of the crystallization temperature for amorphous(Fe_(65)Ni_(35))_(75)P_(16)B_6Al_3 and Ti_(50)Be_(40)Zr_(10).J.Non-Crystalline Solids,1980,37,213
    89 李晓杰,张凯.多层薄带爆炸焊接原理.高压物理学报,1993,7(3):214-219
    90 Berad crosslang.Explosive welding of Metals and Application.Qxford:clarendon press,1982
    91 布拉齐恩斯基(李富勤等译).爆炸焊接、成形与压制.北京:机械工业出版社,1988
    92 李晓杰.双金属爆炸焊接上限.爆炸与冲击,1991,4(2):134-138
    93 孙淑萍,邱竹贤.非晶态铝锰合金镀层的研究.表面技术,2003,32(32):34-36
    94 俞宇颖,陈大年,谭华.三角形波致LY12铝层裂的平板冲击实验研究.固体力学学报,2006,27(3):261-267
    95 王礼立.应力波基础.北京:国防工业出版社,1983:46
    96 余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997:10
    97 孙宇新.混凝土抗贯穿问题研究.合肥:中国科学技术大学,2002:90
    98 李永池,魏勇,丁启财.弹塑性激波衰减规律的一种简便解法.爆炸与冲击,1988,8(3):193
    99 王海福,冯顺山.密实介质中冲击波衰减特性的近似计算.兵工学报,1996,17(1):79-81
    100 Cristescu.N.Dynamic Plasticity.Amsterdam:North-Holland Publ.Co.1967
    101 李晓杰,杨文彬,奚进一.双金属爆炸焊接下限.爆破器材,1999,28(3):22-26
    102 杨世铭,陶文铨.传热学(第四版).北京:高等教育出版社,2006,123-133
    103 张凯,金小石.滑移爆轰时计算飞板飞行姿态的理论发展及其应用.爆炸与冲击,1984,4(3):20-26
    104 郭佑雄,赵福兴,周祖荣.滑移爆轰作用下飞板运动规律的研究—双P-M法.爆炸与冲击,1998,18(2):123-130
    105 谭多望,孙承纬.滑移爆轰作用下飞板运动的解析解.高压物理学报,1999,13(2):120-126
    106 K.H.Oh,P.A.Persson.A constitutive model for the shock Hugoniot of porous materials in the incomplete compaction regime.Journal of Applied Physics.1989,66(10):4736-4742.
    107 南京大学数学系计算数学专业编.常微分方程数值解法.北京:科学出版社. 1979:43
    108 赵铮.颗粒增强铜基复合材料的爆炸压实和数值模拟研究.大连理工大学,2007
    109 W.Tong,G.Ravichandran.Dynamic pore collapse in viscoplastic materials.Journal of Applied Physics,1993,74:2425-2435
    110 Akihisa Abe.Numerical simulation of the plastic flow field near the bonding surface of explosive welding.Journal of Materials Processing Technology,1999,85:162-165
    111 Sir Geoffrey Taylor.Oblique impact of a jet on a plane surface.Phil.Trans.Roy.Soc.1966,260:96-100
    112 Robinson J.L.Mechanics of wave formation in impact welding.Philos.Magazine.,1975,31(3):587-597
    113 El-Sobky H,Blazynski T Z.Analysis of the mechanism of collision in multilayered composites.Proc.7th Int.Conf.on high energy rate fabrication.Leeds:University of Leeds,1981:100-112
    114 谢飞鸿,罗冠炜,廖军生.基于δ函数的爆炸焊接界面应力场数值分析.中国有色金属学报.2007,17(12):2029-2033
    115 李晓杰,闫鸿浩,王金相,张建臣,奚进一,董守华.爆炸焊接驻点近区应变率分布规律计算.爆炸与冲击,2002,22(4):315-320
    116 S.A.A Akbari,Mousavi,S.T.S.Al-Hassani,Finite element simulation of explosively-driven plate impact with application to explosive welding.Materials and Design,2008,29:1-19
    117 V.E.Fortov,V.V.Kim,I.V.Lomonosov,A.V.Marveichev,A.V.Ostrik.Numerical modeling of hypervelocity impacts.International Journal of Impact Engineering.2006,33:244-253
    118 S.Ryan,F.Schaefer,W.Riedel.Numerical simulation of hypervelocity impact on CFRP/AL HC SP spacecraft structures causing penetration and fragment ejection.International Journal of Impact Engineering,2006,33:703-712
    119 王瑁成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997
    120 Gordon R.Johnson.“EPIC-2,A Computer Program for Elastic-Plastic Impact Computation in 2 Dimensions Plus Spin”,Honeywell Inc.,Defense Systems Division,June,1978
    121 杨桂通,树学峰.塑性力学.北京:中国建材工业出版社,2000
    122 刘振海.分析化学手册.北京:化学工业出版社,2000:13-18
    123 梁志德,王福.现代物理测试技术.北京:冶金工业出版社,2003:207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700