用户名: 密码: 验证码:
金刚石基片上压电薄膜的制备及其生长特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石膜化学气相沉积(CVD)技术发展日趋成熟,CVD方法得到的金刚石膜与天然金刚石膜性能相差无几,且制备成本相对较低,因此具有广阔的应用和商业前景。本文以CVD方法制备的自持金刚石厚膜为基片,沉积压电薄膜并系统研究了压电薄膜的各项性能。
     压电薄膜/自持金刚石厚膜结构可以用于制备声表面波(SAW)器件,此结构既利用了金刚石最高表面声速的性能,又可以充分利用金刚石最高热导率的特性,从而使器件具有比常规器件更优异的性能。在具体的沉积工艺中,选择较平整的金刚石成核面作为功能薄膜的沉积表面,可以大大降低金刚石基板机械抛光的困难。通过这种简单的工艺方法,在自持金刚石厚膜(FTDF)的成核面上制备了性能良好、达到应用要求的压电薄膜,为进一步的器件制备和应用打下了良好的基础。
     本文采用三种方法在自持金刚石厚膜上制备了ZnO和GaN薄膜,主要通过“如何在这种特殊的衬底上得到性能良好的压电薄膜这一主题”开展了系统的研究工作。工作内容主要分三个部分,结论如下:
     1、利用超高真空磁控溅射系统在自持金刚石厚膜上沉积ZnO薄膜,研究发现:
     (1)随着基片温度的升高,FTDF上ZnO薄膜的晶体质量有所提高,这与硅片上沉积的ZnO薄膜的变化趋势稍有差异。FTDF和硅片上表面形貌的变化趋势相一致,也都得到了较高的基片温度下,样品紫外发光较强的结论。因此说明基片温度对FTDF上ZnO薄膜的性能有决定性的影响,FTDF衬底的影响较小。
     (2)其他工艺条件,比如:射频功率、工作气压和氧气流量变化对FTDF上ZnO薄膜的结晶性能、表面形貌和发光性能的影响不大,ZnO薄膜性能的差异主要与基片本身所含缺陷和晶界相对较多密不可分。
     (3)经检测FTDF上沉积的所有样品均为高阻,符合SAW器件的要求。
     (4)FTDF上沉积ZnO薄膜的多取向成核机制以及表面团簇的形成机制表明FTDF基片表面对沉积ZnO薄膜的性能有重要影响。
     2、利用等离子体增强MOCVD系统在自持金刚石厚膜上沉积ZnO薄膜,研究发现:
     (1)工作气压为38 Pa、基片温度为600℃的条件下在FTDF上得到了较高c轴取向的未掺杂的ZnO薄膜。其表面岛状团簇密度一致,有很清晰的边界,没有明显的起伏,表面平整。
     (2)基片温度从500℃升高到700℃时,FTDF上N掺杂ZnO薄膜的结晶特性、表面形貌特性和光学特性均有所下降。这主要是由于温度升高引发的结构缺陷增多引起的,并通过低温变温光谱发现的与结构缺陷有关的激子发光峰增多的现象证实。基片温度为500℃时样品具有较为平整的表面、较高的结晶质量、较强的紫外发射、较高的电阻率、相对较高的Zn/O原子比和较高的Zn-O结构的相对含量。
     (3)FTDF上未掺杂ZnO薄膜合适温度区间的存在主要是化学反应和表面原子脱附共同作用的结果,FTDF上N掺杂ZnO薄膜晶粒尺寸减小则与N_2O引入有一定关系。
     3、利用电子回旋共振MOCVD系统在自持金刚石厚膜上沉积GaN薄膜,研究表明:N_2富足的气氛有利于GaN薄膜(101)方向择优生长和表面团簇的长大。不同N_2流量下得到的样品表面岛状团簇均匀,平整度非常高,可以预期以此制备的SAW器件会具有较低的插入和传输损耗。
Recently,study of Chemical Vapor Depostion(CVD) diamond films is going maturity. CVD diamond films have excellent characteristics nearly the same as natural diamond while with much lower cost.Therefore,CVD diamond films have a very bright future in their application and the market.In this dissertation,Freestanding Thick Diamond Films(FTDF) prepared by CVD method are applied as substrates of piezoelectric materials and the piezoelectric films are investigated systematically.
     Piezoelectric films/FTDF can be used as substrates of Surface Acoustic Wave(SAW) devices,which can make full use of the highest SAW velocity and heat conductivity of diamond.So,piezoelectric films/FTDF structure SAW devices can be expected to be more excellent than conventional devices.In the deposition technique,the use of smooth nucleation side of FTDF avoids the tedious task of diamond polishing.With this simple method, piezoelectric films of high quality on FTDF were prepared,which can meet the requirement of application and would lead to the elaboration of high quality and high power durability SAW devices in the future.
     In this work,ZnO and GaN films were deposited on FTDF by three different methods and how to prepare piezoelectric films of high quality on the special substrates has been studied systematically.The results mainly in three parts are summarized as follows:
     1 ZnO films were deposited on FTDF by the reactive radio-frequency magnetron sputtering method.
     (1) The results demonstrate that the crystalline quality of ZnO films on FTDF can be improved with substrate temperature increasing,which is slightly different from the tendency on silicon.The surface morphology tendency of ZnO films on FTDF is accorded with the tendency on silicon.Higher substrate temperature can lead to stronger Ultraviolet(UV) emission of ZnO films.Substrate temperature plays a key role on the quality of ZnO films on FTDF while FTDF has little effect at the same time.
     (2) Other process conditions,such as radio-frequency power,working pressure and O_2/Ar ratio,have little influence on the crystalline quality,surface morphology and optical property of ZnO films on FTDF,while the defects and grain boundary of FTDF are closely related with the quality of ZnO films deposited on FTDF.
     (3) All the samples are of high resistivity,which can meet the requirement of SAW devices.
     (4) Multi-orientation texture and cluster development mechanism of ZnO films on FTDF indicate that characteristics of ZnO films are closely related with surface of FTDF.
     2 ZnO films were deposited on FTDF by plasma enhanced MOCVD system.
     (1) Highly c-axis-oriented undoped ZnO films on FTDF are obtained at 38 Pa and 600℃with a strong UV emission.The ZnO grains are of uniform density with clear boundaries and a clean surface.
     (2) With substrate temperature increasing from 500℃to 700℃,the morphological, crystalline and optical qualities of N-doped ZnO films tend to decline,which maily result from the increase of structural defects induced by high temperature.From variable temperature PL spectra,it can be proved by the increase of emission of exciton bound related with structural defects.The sample at 500℃has a cleaner surface,narrower FWHM,higher resistivity and stronger PL intensity with a relatively higher Zn/O atomic ratio and relatively more Zn-O bond structure.
     (3) Both chemical reaction and surface atom diffusion render an appropriate substrate temperature for ZnO films on FTDF.The grain size of N doped ZnO films decreases with substate temperature increasing,which may be due to the increase of chemical active O~(2-). induced by N_2O.
     3 GaN films were deposited on FTDF by Electron Cyclotron Resonance MOCVD (ECR-MOCVD) system.
     N_2 affluent atmosphere may lead to GaN film growth in a preferred orientation and a very smooth surface with larger clusters.GaN films with different N_2 flowrates have a very smooth surface with a probability of the fabrication of SAW device with a lower insertion and transmission loss.
引文
[1]Derjaguin B V,Spitzyn B V,Builov L L et al.Diamond Crystal Synthesis on Nondiamond Substrrates.Sov.Phys.Dokl.1976,21(11):676-680..
    [2]Matsumoto S,Sato Y,TsuTsumi M et al.Growth of diamond particals from methane-hydrogen gas.J.Mater.Sci.1982,1:3106-3112.
    [3]Kamo M,Sato Y,Matsumoto S et al.Diamond synthesis from gas phase in microwave plasma.J.Cryst.Growth.1983,62:642-647.
    [4]金曾孙.金刚石薄膜的研究进展与展望.薄膜科学与技术.1995,8(3):172-175.
    [5]Matsumoto S.Development of diamond synthesis techniques at low pressures.Thin Solid Films,2000,368:231-236.
    [6]Huh J M,Yoon D Y.Enhanced nucleation of diamond on polycrystalline Ni by d.c.glow discharge in hot filament CVD.Diam.Rel.Mater.2000,9(8):1475-1479.
    [7]Yoshihiko T,Masanori N,Isao S.Superconductivity in diamond thin films well above liquid helium temperature.Appl.Phys.Lett.2004,85(14):2851-2853.
    [8]Hollman P,Alahelisten A,Olsson M et al.Residual stress,Young's modulus and fracture stress of hot flame deposited diamond.Thin Solid Films.1995,270(1-2):137-142.
    [9]Sch(a|¨)fer L,Fryda M,Stolley T,Xiang et al.Vapor deposition of polycrystalline diamond films on high-speed steel.Sur.& Coating Tech.1999,116-119(1-3):447-451.
    [10]French P J,Muro H,Shinohara T et al.SOI pressure.Sensors and Actuators A:Physical.1992,35(1):17-22.
    [11]Sussmarm R S,Brandon J R,Scarsbrook G A et al.Properties of bulk Polycrystalline CVD diamond.Diam.Rel.Mater.1994,3(4-6):303-312.
    [12]Sussmann R S,Brandon J R,Coe S E et al.CVD diamond:a new engineering material for thermal,dielectric and optical applications.Industr Diamond Rev.1998,58(578):69-77.
    [13]Kagan H.Recent advances in diamond detector development.Nuel.Instr.Meth,2005,541(1-2):221-227.
    [14]Pickrell D J K,Kline K A,Taylor R E.Thermal ezpansion of polycrystalline diamond produced by chemical vapor deposition.Appl.Phys.Lett.1994,64(8):2353-2355.
    [15]Zhu X W,Aslam D M,Tang Y X et al.The fabrieation of all-diamond Packaging Panels with build-in interconnects for wireless integrated Microsystems,J.Microelectromechan.Syst.2004,13(3):1-10.
    [16]Gray K J.Effeetive thermal conduetivity of a diamond coated heat spreader.Diam.Rel.Mater.2000,9(2):201-204.
    [17]Ryu Y.R,Lee T.S.Properties of arsenic-doped p-type ZnO grown by hybrid bean deposition.Appl.Phys.Lett.2003,83(1):87-89.
    [18]Jaffe J E and Hess A C.Hartree-Foek study of phase changes in ZnO at high pressure.Phys.Rev.B.1993,48:7903-7909.
    [19]Kisi E and Elcombe M M.Acta Crystallogr.,Sect.C:Cryst.Struct.Commun.C45.1989.
    [20]Chisholm J A,Lewis D W,Bristowe P D.Classical simulations of the properties of group-Ⅲ nitrides.J.Phys:Condens.Matter.1999,11:L235-L239.
    [21]Jain S C,Willander M,Narayan J et al.Ⅲ- nitrides:Growth,Characterization,and properties.J.Appl.Phys.2000,87:965-1006.
    [22]Maruska H P,Tietjen J J.The preparation and progerties of vapor-deposited single-crystalline GaN.Appl.Phys.Lett.1969,15(10):327-329.
    [23]Nakamura.S,Mukai T,Senoh M.Si and Ge doped GaN films grown with GaN buffers layers.Jpn.J.Appl.Phys.1992,31:2883-2889.
    [24]Shuji N,Masayuki S,Shin-ichi Net al.Characteristics of InGaN multi-quantum-well-structure laser diodes.Appl.Phys.Lett.1996,68(23):3269-3271.
    [25]Dingle R,Ilegems M.Donor-acceptor pair recombination in GaN.Solid State Commun.1971,9:175.
    [26]Dingle R,Sell D D,Stokowaki S E et al,Absorption,Reflectance,and Luminescence of GaN Epitaxial Layers.Phys.Rev.1971,B4(4):1211-1218.
    [27]Lord Rayleigh.Proc.London Math,Soc,1885.
    [28]日本电子材料工业会.许昌昆等译.声表面波器件及其应用.北京:科学出版社,1984:8
    [29]吴连法编.声表面波器件及其应用.北京:人民邮电出版社:1983.
    [30]Mason W P.Physical Acoustics and the properties of solids.The Journal of the Acoustical Society of America.1958,28(6):1197-1206.
    [31]Campbell J J,Jones W R.IEEE Trans.Sonics Ultrasonics.1968,SU-15(4):233-233
    [32]Ken-ya HaShimoto.声表面波器件模拟与仿真.王景山等译.北京:国防工业出版社:2002.
    [33]Schuler T,Aegerter M A.Optical,electrical and structural properties of sol gel ZnO:Al coatings,Thin Solid Films.1999,351(1-2):125-131.
    [34]Kamalasanan M N,Chandra S.Sol-gel sythesis of ZnO thin films.Thin Solid Films.1996,288(1-2):112-115.
    [35]Sagar P,Kumar M,Mehra R M et al.Epitaxial growth of zinc oxide thin films on epi-GaN/sapphire (0001) by sol-gel technique.Thin Solid Films.2007,515(7-8):3330-3334.
    [36]Natsume Y,Sakata H.Zinc oxide films prepared by sol-gel spin-coating.Thin Solid Films.2000,372(1-2):30-36.
    [37]Ohyama M,Kozuka H,Yoko T.Sol-gel preparation of ZnO films with extremely preferred orientation along(002) plane from zinc acetate solution.Thin Solid Films.1997,306(1):78-85.
    [38]Craciun V,Elders J,Gardeniers J G E et al.Characteristics of high quality ZnO thin films deposited by pulsed laser deposition.Appl.Phys.Lett.1994,65(23):2963-2965.
    [39]Premchander P,Manoravi P,Joseph M et al.Optical study of GaN epilayer grown by metalorganic chemical vapor deposition and pulsed laser deposition.J.Cryst.Growth.2005,273(3-4):363-367.
    [40]Vispute R D,Talyansky V,Trajanovic Z et al.High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for Ⅲ-Ⅴ nitrides.Appl.Phys.Lett.1997,70(20):2735-2737.
    [41]Hong S K,Hanada T,Ko H J et al.Control of Polarity of ZnO films grown by Plasma-assisted molecular-beam epitaxy:Zn- and O-polar ZnO films on Ga-polar GaN templates.Appl.Phys.Lett.2000,77(22):3571-3573.
    [42]Vigue F,Vennegues P,Vezian S et al.Defect characterization in ZnO layers grown by plasma-enhanced molecular-beam epitaxy on(0001) sapphire substrates.Appl.Phys.Lett.2001,79(2):194-196.
    [43]Storm D F,Katzer D S,Roussos J A et al.Microwave performance and structural characterization of MBE-grown A1GaN/GaN HEMTs on low dislocation density GaN substrates.J.Cryst.Growth.2007,305(2):340-345.
    [44]Heo Y W,Ip K,Pearton S J et al.Growth of ZnO thin films onc-plane Al_2O_3:by molecular beam epitaxy using ozone as an oxygen source.App.Suf.Sci.2006,252(20):7442-7448.
    [45]Ohtomo A,Kawasaki M,Sakurai Y et al.Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE.Mater.Sci.Eng.1998,54(1-2):24-28.
    [46]Onishi S,Esehwei M,Wang W C.Transparent and highly oriented ZnO films grown at low temperature by sputtering With a modified sputter gun.Appl.phys.Lett.1981,38(6):419-421.
    [47]Wacogne B,Roe M P,Pattinson T J et al.Effective Piezoelectric activity of zinc oxide films grown by radio-frequency planar magnetron sputtering.Appl.Phys.Lett.1995,67(12):1674-1676.
    [48]Webb J B,Williams D F,Buchanan M.Transparent and highly conductive films for ZnO Prepared by reactive magnetron sputtering.Appl.Phys.Lett.1981,39(8):640-642.
    [49]Yamaya K,Yamaki Y,Nakanishi H et al.Use of a helicon-wave excited plasma for aluminum-doped ZnO thinfilm sputtering.Appl.Phys.Lett.1998,72(2):235-237.
    [50]Hata T,Noda E,Morimoto Oet al.High rate deposition of thick Piezoelectric ZnO films using a new magnetron sputtering technique.Appl.phys.Lett.1980,37(7):633-635.
    [51]Park W I,An S J,Yi G C et al.Metal organic vapor phase epitaxial growth of high-quality ZnO films on Al_2O_3(0001),J.Mater.Res.2001,16(5):1358-1362.
    [52]Park W I,Yi G C.Photoluminescent properties of ZnO thin films grown on SiO_2/Si(100) by Metal-Organic Chemical Vapor Deposition.J.Electron Mater.,2001,30(10):L32-L37.
    [53]Acord J D,Weng X J,Dickey E C et al.Effects of a compositionally graded buffer layer on stress evolution during GaN and Al_xGa_(1-x)N MOCVD on SiC substrates.J.Cryst.Growth.2008,310(7-9):2314-2319.
    [54]Bethke S,Pan H,Wessels B W.Luminescence of heteroepitaxial zinc oxide.Appl.Phys.Left.1988,52(2):138-140.
    [55]Kashiwaba Y,Katahira F,Haga K et al.Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method.J.Cryst.Growth.2000,221(1-4):431-434.
    [56]郑伟涛等.薄膜材料与薄膜技术.化学工业出版社,北京,2004.
    [57]Assouar M B,Elmazria O,Rioboo R J et al.Modelling of SAW Filter Based on ZnO/diamond/Si Layered Structure Including Velocity Dispersion.App.Suf.Sci.2000,164:200-204.
    [58]Nakahata H,Higaki K,Hachigo A et al.High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure.Jpn.J.Appl.Phys.1994,33:324-328.
    [59]Nakahata H,Hachigo A,Fujii S et al.Equivalent Circuit Parameters of Surface-Acoustic-Wave Interdigital Transducers for ZnO/Diamond/Si and SiO_2/ZnO/Diamond Structures,Jpn.J.Appl.Phys.2002,41:3489-3493.
    [60]Nakahata H,Fujii S,Higaki K et al.Diamond-based surface acoustic wave devices.Semiconductor Science and Technology.2003,18:1238-1242.
    [61]Nakahata H,Hachigo A,Itakuta K et al.Fabrication of high frequency SAW filters from 5 to 10 GHz using SiO_2/ZnO/diamond structure.IEEE Ultrason Symp Proc,2000:349
    [62]Hachigo A,Nakahata H,Itakuta K et al.10 GHz narrow band SAW filters using diamond.IEEE Ultrason Symp Proc,1999:325.
    [63]Uemura T,Fujii S,Kitabayashi H.Low-loss surface acoustic wave devices using small-grain poly-crystalline diamond.Jpn.J.Appl.Phys.2002,41:3476-3479.
    [64]Ishiihara M,Manabe T,Kumagai T.Synthesis and surface acoustic waver property of aluminum nitride thin films fabricatedon silicon and diamond substrates using the sputtering method.Jpn.J.Appl.Phys.2001,40:5065-5069.
    [65]Shikata S,Nakahata H,Hachigo A.New Material Systems for Diamond Surface Acoustic Wave Devices.New Diamond & Frontier Carbon Technol.1999,9(1):75-92.
    [66]Assouar M.B.Bénédic F.Elmazria O et al.MPACVD Diamond Films for Surface Acoustic Wave Filters.Diam.Rel.Mater.2001,10:681-685.
    [67]Bi B,Huang W S,Asmussen J et al.Surface Acoustic Waves on Nanocrystalline Diamond.Diam.Rel.Mater.2002,11:677-680.
    [68]Chen J J,Zeng F,Li D M et al.Deposition of High-quality Zinc Oxide Thin Films on Diamond Substrates for High-frequency Surface Acoustic Wave Filter Applications.Thin Solid Films.2005,485:257-261.
    [69]Seo S H,Shin W C,Park J S.a Novel Method of Fabricating ZnO/diamond/Si Multilayers for Surface Acoustic Wave(SAW) Device Applications.Thin Solid Films.2002,416:190-196.
    [70]Shih W C,Wang M J,Lin I N.Characteristics of ZnO thin film surface acoustic wave devices fabricated using nanocrystalline diamond film on silicon substrates.Diam.Rel.Mater.2008,In Press,Corrected Proof.
    [71]El Hakiki M,Elmazria O,Assouar M B et al.ZnO/AlN/diamond Layered Structure for SAW Devices Combining High Velocity and High Electromechanical Coupling Coefficient.Diam.Rel.Mater.2005,14:1175-1178.
    [72]Jin Z S,Jiang Z G,Bai Y Z et al.Synthesis of Thick Diamond Film by Direct Current Hot-Cathode Plasma Chemical Vapor Deposition.Chin.Phys.Lett.2002,19:1374-1376.
    [73]Bai Yi Z,Jiang Zhi Gang,Wang Chun Lei et al.Effects of Alcohol Addition on the Deposition of Diamond Thick Films by dc Plasma Chemical Vapor Deposition Method.Chin.Phys.Lett.1998,15:228-229.
    [74]Bai Y Z,Jin Z S,Lv X Y et al.Influence of Cathode Temperature on Gas Discharge and Growth of Diamond Films in DC-PCVD Processing.Diam.Rel.Mater.2005,14:1494-1497.
    [75]金曾孙,姜志刚,白亦真等.直流热阴极PCVD法制备金刚石厚膜.新型炭材料.2002,17(2):9-12.
    [76]Bai Y Z,Jin Z S,Lv X Y et al.High Rate Growth of Thick Diamond Films by High-current Hot-cathode PCVD.J.Cryst.Growth.2005,280:539-544.
    [77]白亦真,金曾孙,姜志刚等.热阴极辉光放电对金刚石膜沉积的影响.材料研究学报,2003,17(5):537-540.
    [78]Abraham M H.Organometallic compounds.Part2.The autoxidation of dialkylzines.J.Chem.Soc.1960:4130.
    [79]秦福文.RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长:(博士学位论文).大连:大连理工大学,2004.
    [80]王叶安.稀磁半导体GaMnN薄膜的ECR-PEMOCVD生长和特性研究:(硕士学位论文).大连:大连理工大学,2007.
    [81]吴刚.材料结构表征及应用.北京:化学工业出版社教材出版中心,2002.
    [82]Van der Pauw L J.A method of measuring specific resistivity and Hall effect of discs of arbitrary shape.Philips Research Reports,1958,13(1):1-9.
    [83]Assouar M B,Elmazfia O,Le Brizoual Let al.Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition New Orleans,USA,2002:333.
    [84]Uemura T,Fujii S,Kitabayashi H et al.Proceedings of 2002 IEEE Ultrasonic Symposium,2002:416.[85]Fujii S,Seki Y,oshida K Y et al.'Diamond Wafer for SAW Application'1997 IEEE Ultrasonics Symposium,1997:183.
    [86]Le Brizoual L,Lamara,Sarry F et al,Characterization of ZnO/diamond SAW devices elaborated on the smooth nucleation side of MPACVD diamond,phs.star.sol.(a).2002,202(11):2217-2223.
    [87]Thompson C V,Carel R.Texture development in polycrystalline thin films.Mater.Sci.Eng.1995,B32:211-219.
    [88]Li B S,Liu Y C,Chu Z S et al.High Quality ZnO Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition.J.App.Phys.2002,91:501-505.
    [89]孙成伟,刘志文,秦福文.生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响.物理学报.2006,55:1390-1397.
    [90]Wang Y G,Jeong T S,Ham M S et al.Comprehensive Study of ZnO Films Prepared by Filtered Cathodic Vacuum Arc at Room Temperature.J.Appl.Phys.2003,94:1597-1601.
    [91]王恩哥.薄膜生长理论.物理学进展.2003,23:1-98.
    [92]Emanetoglu N W,Gorla C,Liu Y et al.Epitaxial ZnO piezoelectric thin films for saw filter.Materials science in semiconductor processing.1999,2:247-252.
    [93]Cho S,Ma J,Kim Y et al.Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn.Appl.Phys.Lett.1999,75:2761-2763.
    [94]Spanhel L,Anderson M A.Semiconductor Clusters in the Sol-Gel Process:Quantized Aggregation,Gelation,and Crystal Growth in Concentrated ZnO Colloids.J.Am.Chem.Soc.1991,113:2826-2833.
    [95]Studenikin S A,Golego N,Cocivera M.Fabrication of green and orange photoluminescent,undoped ZnO films using spray pyrolysis.J.Appl.Phys.1998,84:2287-2294.
    [96]Vanheusden K,Warren W L,Seager C H et al.Mechanisms behind green photoluminescence in ZnO phosphor powder.J.Appl.Phys.1996,79:7983-7990.
    [97]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003.
    [98]刘志文.反应磁控溅射ZnO薄膜在Si基片上的生长行为:(博士学位论文).大连:大连理工大学,2006.
    [99]刘志文,谷建峰,付伟佳,等.工作气压对磁控溅射ZnO薄膜结晶特性及生长行为的影响.物理学报.2006,55(10):5479-5486.
    [100]刘志文,谷建峰,孙成伟,等.磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究.物理学报.2006,55(4):1965-1973.
    [101]Beckers M,Schell N,Martins R M S et al.The influence of the growth rate on the preferred orientation of magnetron sputtered Ti-Al-N thin films studied by in situ x-ray diffraction.J.Appl.Phys.2005,98:44901.
    [102]Yoshino Y,Inoue K,Takeuchi M et al.Effect of substrate surface morphology and interface microstructure in ZnO thin films formed on various substrates.Vacuum.2000,59(2-3):403-410.
    [103]Tang I T,Wang Y C,Hwang W C et al.Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions.J.Cryst.Growth.2003,252:190-198.
    [104]Murbach H P,Wilman H.The Origin of Stress in Metal Layers Condensed from the Vapour in High Vacuum.Proc.Phys.Soc.B.1953,66(11):905-910.
    [105]Hachigo A,Nakahata H,Higaki K et al.Heteroepitaxial growth of ZnO films on diamond(111) plane by magnetron sputtering.Appl.Phys.Lett.1994,65(20):2556-2558.
    [106]Bethke S,Pan H,Wesseis B W.Luminescence of heteroepitaxial zinc oxide.Appl.Phys.Lett.1988,52(2):138-140.
    [107]Chen Y,Bagnall D M,Koh H J et al.Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire:Growth and characterization.J.Appl.Phys.1998,84(7):3912-3918.
    [108]Zu P,Tang Z K,Wong G K L et al.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature.Solid State Commun.1997,103(8):459-463.
    [109]Hasse M,Weller H,Hengleinn A.Photochemistry and radiation chemistry of colloidal semiconductors.23.Electron storage on zinc oxide particles and size quantization.J.Phys.Chem.1988,92(2):482-487.
    [110]Minami T,Nanto H.,Takata S.UV emission from sputtered zinc oxide thin films.Thin Solid Films.1983,109(4):379-384.
    [111]Zhong J,Kitai A H,Mascher P.The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO.J.Electrochem.Soc.1993,140(12):3644-3649.
    [112]Srikant V,Clarke D R.On the optical band gap of zinc oxide.J.Appl.Phys.1998,83(10):5447-5451.
    [113]Dingle R.Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide.Phys.Rev.Lett.1969,23:579-581.
    [114]Pierce B S,Hengehold R L.Depth-resolved cathodoluminescence of ion-implanted layers in:zinc oxide.J.Appl.Phys.1976,47:644-651.
    [115]Wang X Q,Yang S R,Wang J.Z et al.Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition.J.Cryst.Growth.2001,226:123-129.
    [116]Look D C,Reynolds D C.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy.A ppl.Phys.Lett.2002,81(10):1803-1806.
    [117](O|¨)zg(u|¨)r(U|¨),Alivov Y I,Liu C et al.A comprehensive review of ZnO materials and devices.J.Appl.Phys.2005,98:041301.
    [118]Meyer B K,Alves H,Hofmann D M et al.Bound exciton and donor-acceptor pair recombinations in ZnO.Phys.stat.sol.(b).241(2):231-260.
    [119]Hamby D W,Lucca D A.Klopfstein M J.Temperature dependent exciton photoluminescence of bulk ZnO.J.Appl.Phys.2003,93(6):3214-3218.
    [120]李璠,硅基ZnO薄膜的生长及ZnO:H薄膜的特性研究:(博士学位论文).南昌:南昌大学,2007.
    [121]Look D C,Farlow G C,Reunchan P et al.Evidence for Native-Defect Donors in n-Type ZnO.Phys.Rev.Lett.2005,95:225502.
    [122]Thonke K,Gruber T,Teofilov N et al.Donor-acceptor pair transitions in ZnO substrate material.Physica B.2001,308-310:945-948.
    [123]Ma Y,Du G T,Yang S R et al.Control of conductivity type inundoped ZnO thin films grown by metalorganic vapor phase epitaxy.J.Appl.Phys.2004,95(11):6268-6272.
    [124]Zhang B P,Manh L H,Wakatsuki K et al.Epitaxial Growth and Polarity of ZnO Films on Sapphire (0001) Substrates by Low-Pressure Metal Organic Chemical Vapor Deposition.Jpn.J.Appl.Phys.2003,42:2291-2295.
    [125]Bae S H.,Lee S Y,Jin B J et al,Growth and characterization of ZnO thin films grown by pulsed laser deposition.Appl.Surf.Sci.2001,169-170:525-528.
    [126]Ma Y,Du G T,Yang T P et al.Effect of the oxygen partial pressure on the properties of ZnO thin films grown by metalorganic vapor phase epitaxy.J.Cryst.Growth.2003,255:303-307.
    [127]Jin B J,Bae S H,Lee S Y et al.Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition.Materials Science and Engineering B.2000,71:301-305.
    [128]G.Schoen,Acta Chem.Scand.1973,27:2623.
    [129]Nefedov V I,Firsov M N,Shaplygin I S.Electronic structures of MRhO_2,MRh_2O_4,RhMO_4 and Rh_2MO_6 on the basis of X-ray spectroscopy and ESCA data.J.Electron.Spectrosc.Relat.Phenom.1982,26(1):65-78.
    [130]Chen F G,Ye Z Z,Xu W Z et al.Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source.J.Cryst.Growth.2005,281:458-462.
    [131]Sun J C,Yang T P,Du G T et al.Influence of annealing atmosphere on ZnO thin films grown by MOCVD.Appl.Surf.Sci.2006,253(4):2066-2070.
    [132]Walker D,Monroy E,Kung P.High-speed low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN.Appl.Phys.Lett.1999,74:762-764.
    [133]Binet F,Duboz J Y,Rosencher E et al.Mechanisms of recombination in GaN photodetectors.Appl.Phys.Lett.1996,69:1202-1806.
    [134]Monroy E,Calle F,Pau J L et al.Analysis and modeling of Al_xGa_(1-x)N-based Schokky barrier photodiodes.J.Appl.Phys.2000,88(6):2081-2091.
    [135]Strite S,Morkoc.GaN,AlN and InN:A review.J.Vac.Sci.Technol.B.1992,10(4):1237-1266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700