用户名: 密码: 验证码:
多角单次弯曲件回弹规律及智能化控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板材弯曲在汽车、农机、航空航天、仪表等领域中应用极为广泛。弯曲成形中最突出的问题是弯曲回弹难以精确控制,尤其是形状复杂的弯曲件。影响弯曲回弹的因素很多,即使是同牌号、同批次的板材,由于材料性能及工艺条件的波动也会引起弯曲件回弹量的较大变化。当前制造业市场的发展趋势是对高精度、多品种、小批量的弯曲件的需求日益增加,而原材料成本与最终产品价格的差额逐渐减小,并且竞争日趋激烈,迫使制造业寻求更为有效的方法,降低生产成本,提高生产率。采用智能化控制技术来实现弯曲回弹的精确控制,是解决上述问题的一种有效途径。
     板材弯曲智能化是将每个坯料看成性能各异的个体,在弯曲成形过程中,实时识别出每个个体的性能参数及工况参数,进而预测出最优的工艺参数,并以最优的工艺参数完成弯曲成形及其卸载的过程,从而达到更高的精度。
     本文在板材拉深成形和V形件自由弯曲成形智能化控制的研究成果基础上,分析了板材帽形件弯曲智能化需要解决的关键技术,在理论解析、参数识别及最优工艺参数的预测等方面的相关问题展开了系统研究。
     在板材弯曲智能化控制所要求的四个基本要素中,参数识别模型和最优工艺参数预测模型的建立是基于对弯曲成形规律认识的基础上的。利用板材成形塑性理论,根据弯曲变形特点,对多角单次弯曲成形及回弹机理进行了深入的理论研究,建立了能够描述多角单次弯曲成形及其回弹过程的U形件自由弯曲模型和帽形件弯曲模型。得出了几何参数和力学参数对弯曲回弹的影响规律,为帽形件弯曲智能化控制提供了理论依据。
     利用理论解析、有限元模拟和实验等研究手段,分析了对U形件自由弯曲和帽形件弯曲成形及卸载后回弹有影响的主要因素,从而确定了帽形件弯曲智能化控制过程中的参数识别及最优工艺参数预测模型。网络拓扑结构选择前向神经网络结构,Levenberg-Marquarat算法作为网络优化算法,并利用Matlab编程语言编写了神经网络算法程序。通过数值模拟和实验得到数据样本,进行网络训练,使得识别收敛精度达到1‰,且识别的泛化精度较高。此外,研究了样本数据和隐层节点数目对网络模型的效率、精度和泛化能力的影响规律。
     采用虚拟仪器控制软件LabVIEW、6062E数据采集卡及相关模块,建立了便携式数据采集系统。在该系统上开发了信号采集和传感器标定等程序,获得了令人满意的信号检测与控制的速度和精度。开发了信号采集程序与识别和预测模型之间的接口程序,从而实现了帽形件弯曲过程中材料参数的实时识别与最优工艺参数的实时预测及控制。建立了帽形件弯曲智能化控制系统,通过控制压边力,实现了弯曲回弹的精确控制,从而实现了帽形件弯曲成形的智能化控制。四种板材的帽形件弯曲智能化实验结果表明,按前述理论和实验研究结果建立的智能化弯曲系统是成功的。
Sheet metal bending is widely used in the industry field of automobile, agriculture machine, aviation, instrument and so on. The most prominent problem in bending process of sheet metal is that it is difficult to control bending springback accurately, especially complex shape bending workpiece. There are many factors that effect the springback of bending, even if is the same trademark、batch plate, because the material performance and the craft condition undulation also can cause the springback comparatively big change. The current manufacturing industry market trend of development is to the high accuracy, the multi-varieties, the small batch bending workpiece demand increases day by day, but the difference between raw material cost and the final product price reduces gradually, and the competition in market change intensely day by day, so seeks a more effective method is needed to reduce the production cost and to enhance the productivity. Uses the intellectualization to realize the springback accurately controlled, is one effective way to solve above question.
     The intellectualization of sheet metal bending regards each blank as individual with different performance, identifies in real-time the performance parameter of each individual, consequently confirms the optimal craft parameter, and accomplishes the process of bending forming and unloading with the optimization craft parameter, accordingly achieves the high precision.
     Based on the research achievements of intelligent control of deep drawing and v bending, the key technologies of intelligent bending are analyzed, and the relevant issues to the theoretic analysis, the identification of parameters, the prediction of optimal technological parameter and the establish of control system is studied in this paper.
     Among the four basic elements required by intelligent bending of sheet metal, the establishment of the identification model of parameters and the prediction model of optical technological parameter is dependent upon the level of understanding the forming law for bending. Based on sheet metal plastic forming theory, according to the bending characteristic, has completed the thorough fundamental research to the U bending forming and the mechanism of springback, has established the U free bending model and cap-bending model which can describe precisely the forming of U bending, has obtained the influence rule of the geometry parameter and mechanics parameter to the bending springback, has provided the basic theory for the real-time identification and real-time prediction of bending intellectualized control.
     The dominant factors influenced on U bending forming and springback after unloading has been analyzed by using theoretic analysis、finite element method simulation and experiments, and then the identification model of parameters and the prediction model of optimal technological parameter are determined. The Levenberg-Marquarat is chosen as optimal algorithm of neural network whose topology structure is feed forward network, and Matlab language has been used to compile the neural network arithmetic program. The network has been trained using the date sample obtained by experiments and numerical simulation. Convergence precision of the identification network reaches 1‰, and generalization precision of identification is high. Furthermore, the influence of sample date and hidden nodes on network convergence efficiency, precision as well as generalization has been studied.
     A portable DAQ system is established by applying virtual instrument control software LabVIEW、6062E card and other modules. Based on portable DAQ system, the signal acquisition and sensor calibration are developed, and get the satisfied speed and precision to monitoring and control of signals. Interface programs between DAQ and the model of identification and prediction have been developed, accordingly has realized the real-time identification and the optimal craft parameter real-time predication and control. The intellectualization control system of cap bending is established, the bending springback is controlled precisely through control pressure accordingly the intelligent control of sheet metal bending forming is realized. The results of four kind of plate in intelligent bending experiment indicated that the system is successful.
引文
1 Masami Konishi. Artificial Intelligence for Plastic Deformation. Journal of the Japan Society for Technology of Plasticity (JSTP), Vol. 34, 1993(387), 345-351
    2 Kozo Osakada Yang. G.B.The State-of-the-Art and Perspectives of Knowledge Bases of Metal Forming.Journal of the JSTP, 1993,3 4(387): 226-332
    3 Matsuo Miyagawa. Expecting the Intelligent Process for Incremental Forming. Journal of the JSTP, 1994, 35(406): 1251
    4柳本潤.知能化技术.Journal of the JSTP, 1995, 36(415): 886
    5杨明.知能化技术.Journal of the JSTP, 1996, 37(427): 859-860
    6 Ken-ichi Manabe, M. Yang. Intelligent Technology on Sheet Metal Forming. Journal of the JSTP, 1993, 34(387): 398-404
    7 H.J. Park et al. A Fuzzy Self-Learning Control Method with Application to Hydroforming Processes. Trans. ASME, Journal of the JSTP, 2004, 117: 197-303
    8 Ken-ichi Kawai. Intelligent Spinning Technology,. Journal of the JSTP, 1993, 34(387): 391-397
    9 Ken-ichi Kawai. Intelligent and/or Flexible Spinning, Journal of the JSTP, 2002, 35(406): 1286-1290
    10许勇顺,邢渊,阮雪榆.基于神经网络的塑性加工缺陷诊断与预测的方法研究.锻压技术, 1998 (1): 36-40
    11 Koukichi Nakanishi. Knowledge Based System for Forming-Sequence Design of Multistage Cold Forming. Journal of the JSTP, 2003, 387(34): 416-421
    12 M. Bakhshi-Jooybari. Development of an Intelligent Knowledge-Based System (IKBS) for Forging Die Design. Journal of Material of Processing and Technology, 1994, 45: 689-694
    13 L. Xu. Analysis of Ring Compression Using Artificial Neural Network. Journal of Material of Process and Technology, 1994, 44: 301-308
    14 R. Roy. Interpolation of Forming Preform Shape Using Neural Network. Journal of Material of Processing and Technology, 2005, 45: 695-702
    15 T. Hirai, K. Hara, T. Katayamaetal. Intelligent CAD System for Cold Forging Using Fuzzy Theory. Journal of the JSTP, 1993, 387(34): 428-435
    16刘汉武,顾迎新,丁桦,等.基于有限元模拟的型材挤压专家系统.模具工业, 2000, (1): 16-18
    17翟福宝,张质良,夏萼辉,等.基于有限元模拟的筒形件错距旋压智能参数优化系统研究.锻压机械, 2000, (2): 44-45
    18 K. Hans Raj, Rahul Swarup Sharma et al.. Modeling of Manufacturing Processes with ANNs forIntelligent Manufacturing. International Journal of Machine Tools and Manufacture, 2000, 40(6): 851-868
    19潘筱剑.冲压工艺方案的模糊决策与实现.模具技术, 2000 (3): 8-13
    20 Brezocnik, Miran, Balic, et al.. Emergence of Intelligence in Next-Generation Manufacturing Systems. Robotics and Computer-Integrated Manufacturing Systems, 2003, 19(1-2): 55-63
    21 Grauel, L. A. Ludwig, G. Klene. Comparison of Different Intelligent Methods for Process and Quality Monitoring, International Journal Approximate Reasoning, 1997, 16(1): 89-117
    22赵军.圆锥形件拉深成形智能化的研究. [哈尔滨工业大学博士学位论文]. 1997: 1-60
    23 K. A. Stelson. Real Time Identification of Workpiece Material Characteristics from Measurements during Breakforming. Journal of Engineering for Industry, Transactions ASME, 2004, 105(1): 45-53
    24 A. Chandra. Realtime Identification and Control of Springback in Sheet Metal Forming. ASME Journal of Engineering for Industry, 2006, 109(3): 265-273
    25 D.C. Gossard, B.T. Allison. Adaptive Brakeforming. Eight North American Manufacturing Research Conference Proceedings, 1980: 252–256
    26 K. A. Stelson. An Adaptive Pressbrake Control for Strain-Hardening Materials. ASME Journal of Engineering for Industry, 1986, 108: 127-132
    27 W. M. Sing, K. P. Rao. Knowledge-Based Process Layout System for Axisymmetrical Deep Drawing Using Decision Tables. Computer & Industrial Engineering, 1997, 32(2): 299-319
    28 R. Singh, G. S. Sekhon. An Expert System for Optimal Selection of a Press for a Sheet Metal Operation. Journal of Materials Processing Technology, 1999, 86(1-3): 131-138
    29何大钧,王孝培,罗永建.筒形件拉深CAPP中模糊信息优化技术的应用.锻压技术, 2002, 1: 11-14
    30吕冬,丁柯,何丹农,等.基于神经网络的拉深力智能化预测系统.中国有色金属学报, 2000, 10(3): 420-425
    31宋黎,杨坚等.板材弯曲成形的回弹分析与工程控制综述。锻压技术,1996,(1):18-22
    32朱东波,孙琨等.板材成形回弹问题研究新进展。塑性工程学报,2000,7(1):11-17
    33余同希,张亮炽.塑性弯曲理论及其应用.北京:科学出版社,1992, 45-86, 181-187
    34 M. Huang, J. C. Gerdeen. Springback of Doubly Curved Developable Sheet Metal Surface. 22 An Overview, SAE Trans. , Section 5, 940938, 718-731
    35 Hill. R.王仁等译.塑性数学理论.北京:科学出版社,1966, 312-319
    36 D. K. Leu. A Simplified Approach for Evaluating Bend Ability and Springback in Plastic Bending of Anisotropic Sheet Metals. J. Mats. Processing Technology, 2003, 66: 9-17
    37 F. Fenoglietto, etc. Springback analysis in Orthotropic Sheet Metal Forming: with an Elastic Plastic Formulation Using a Kinematic Hardening Model. Proc. NUMIFORM 5,Shen&Dawson(eds), 2001, Balkema, Rotterdan, 699-704
    38 Z. T. Zhang, S. J. Hu. Stress and Residual Stress Distributions in Plane Strain Bending, Tnt. J. Mech. Sci. 2000, 40(6) :533-543
    39 Y. C. Liu. Springback Reduction in U-Channels—“Double-Bend”Technique. J. Applied Metalworking Vol.3, 1985(2):345-349
    40 Y. Umehara. Technologies for the More Precise Press-forming of Automobile Parts. Journal of Materials Processing Technology,2005(22): 239-256
    41 Y. Tozawa. Forming Technology for Raising the Accuracy of Sheet-formed Products. Journal of Materials Processing Technology, 2004(22): 239-256
    42 I-Nan Chou, Chinghua Hung. Finite Element Analysis and Optimization on Springback Reduction. International Journal of Machine Tools&Manufacture,2000(39):517-536
    43 D. Schmockel, M. Beth. Springback Reduction in Draw-bending Process of Sheet Metals. Annls of the CiRP Vol.42,2002(1):234-237
    44 M. Sunseri, J. Cao, A. P. Karafillis, etc. Accommodation of Springback Error in Channel Forming using Active Binder Force Control: Numerical Simulations and Experiments. Journal of Engineering Materials and Technology, Transactions of the ASME,1996(118) :426-435
    45 S. Kim and K. A. Stelson. Finite Element Method for the Analysis of a Material Property Identification Algorithm for Pressbrake Bending. ASME Journal of Engineering for Industry,1988, 110:218-222
    46 D. E. Hardt, M. A. Robert, and K. A. Stelson. Closed-Loop Shape Control of a Roll-Bending Process. ASME Journal of Dynamic System, Measurement, and Control, 2001, 104:317-322
    47 Ming Yang, Susumu Shima, and Tohru Watanabe. Model-based Control for Three-Roll Bending Process of Channel Bar. ASME Journal of Engineering for Industry, 1990, 112:347-351
    48 Ming Yang, Susumu Shima. Development of New Bending Die-Development of an Intelligent Bending System. Journal of the Japan Society for Technology of Plasticity, 2006, 32(370):1377-1382
    49楊明,島進,渡部透.ニエ一ラルユンピユ一タにょるV曲げ加工制禦の精度につぃて.平成4年度塑性加工春季講演會, 1992,5: 739-742
    50楊明,野田駕云,島進.知能化曲げ加工の高精度化.平成3年度塑性加工春季講演會, 1991,5:459-462
    51 Shima Susumu and Yang Ming. Study of Accuracy in an Intelligent V-Bending Process for Sheet Metals-Change in Young , s Modulus Due to Plastic Deformation and Its Effect on Springback. Journal of the Society of Materials Science. Japan, 1995: 578-583
    52楊明,島進,渡部透,等.ニエ一ロユンピユ一タにょるV曲げ加工の制禦.第42回塑性加工聯合演講會,1991,9:453-456
    53早已女康典,伊東明俊,長瀨裕機人等.シミエし一シヨンデ一タベ一スと適應制禦にょるフレキシブルV曲げ加工シスムテ.第43回塑性加工聯合演講會,1992,10:409-412
    54 M. V. Inamdar, P. P. Date, U. B. Desai. Studies on the Prediction of Springback in Air Vee Bending Metallic Sheets Using Artificial Neural Network. Journal of Materials Processing Technology, 2000, 108(1): 45-54
    55 H. B. Sim, M. C. Boyce. Finite Element Analysis of Real-time Stability Control in Sheet Forming Process. ASME Journal of Engineering Materials and Technology, 1992, 114: 181-188
    56陈焕文,阮雪瑜.基于有限元模拟地板材冲压专家系统.锻压技术,1993,3:9-11
    57刘马宝.盒形件拉深数值模拟及人工神经网络的应用.[西北工业大学博士论文].1995:78-83
    58高凯祁.智能技术在汽车覆盖件工艺要领设计中的应用研究.[北京航空航天大学博士论文].1998:78-83
    59韦建明,张麦仓等.应用神经网络表征变形高温合金的本构关系.锻压技术,1998, 1:31-35
    60真鍋健一,楊明.材料特性の同定にニエ一ラルネツトを應用レた異方向材料の適應制禦深絞り法.第43回塑性加工聯合演講會.京都,1992:141-144
    61 Jun-ichi Endo. Incremental Forming with Intellectualized Machine in Technology of Plasticity. Journal of the JSTP, 2005, 35(406): 1304-1310
    62杜颂.板材一次拉弯成形分析与回弹计算.航空制造技术, 2006,11:73-79
    63张东娟,崔振山,等.材料强化模型对板料回弹量的影响.上海交通大学学报,2006.10
    64 Ryutaro Hino, Yoshihiro Goto, Fusahito Yoshida. Springback of sheet metal laminates in draw-bending. Journal of materials processing technology,2003,139(1-3):341-347
    65 Sung Ho Chang, Hang Mo Shin, Young Moo Heo, Dae Gyo Seo. Springback characteristics of the tailor-welded strips in U-bending. Journal of Materials Processing Technology, 2002,130:14-19
    66 R Kergen. Closed loop control of blankholder force based on deep drawing parameters. Society of Automotive Engineers technical paper,No.920433,Warrendale,PA,1992
    67 R Kergen. Closed loop control of blankholder force based on deep drawing parameters: its laboratory and industry applications. IDDRG 1993, International Deep Drawing Research Group Working Group, Linz, Austria,1993
    68 Gang liu, Zhongqin Lin, Weili Xu, Etc. Variable blankholder force in U-shaped part forming for eliminating springback error. Journal of Materials Processing Technology, 2004,130:14-19
    69吕盾,陈炜,姜银方,等.变压边力控制技术的研究现状和发展趋势.模具工业, 2006,32(4):37-40
    70李少平,郑静风,何丹农.利用神经网络及数值模拟获取变压边力控制曲线.金属成形工艺, 2002,20(3):43-45
    71梁炳文,胡世光.板材成形塑性理论.北京:机械工业出版社,1997:327-346
    72肖景容,姜奎华.冲压工艺学.北京:机械工业出版社,1994,5:46-69
    73胡世光,陈鹤峥.板材冷压成形原理.北京:国防工业出版社,1986,6:68-97
    74刘鸿文.材料力学.北京:高等教育出版社,1991:201-224
    75陈勄勋.板材与型材弯曲回弹控制原理与方法.北京:国防工业出版社,1990:5-60
    76 Duraid Lazim. Springback in draw-bending on aerospace alloys. [master degree paper]. Department of Mechanical Engineering McGill university, Canada. 2003:1-36
    77 Nie, Qingquan. Finite strain and springback analysis of forming processes with finite element and experimental verifications. [doctor degree paper]. Rensselaer Polytechnic Institute Troy, New Youk,1993:1-65
    78张冬娟,崔振山.宽板大曲率半径纯弯曲回弹量理论分析.工程力学,2006,23(10):77-80
    79官英平,赵军.摩擦对板料拉弯回弹的影响.塑性工程学报,2003,10(6):43-45
    80 Xiao Zhou. Numerical Prediction of Springback in U-channel forming of Aluminum Tailor welded blanks. [Master degree paper]. Carleton University, Canada. 1999:1-59
    81 Sang-wook Lee, Yoon-Tae Kim. A study on the springback in the sheet metal flange drawing. Journal of Materials Processing Technology. 2007,187-188(12):459-465
    82 M. Firat. U-channel forming analysis with an emphasis on springback deformation. Materials & design. 2007,28(1):147-154
    83 Zhang Dongjuan, Cui Zhenshan, etc. Sheet springback prediction based on non-linear combined hardening rule and Barlet89’s yielding function. Computational Materials Science. 2006,38(2):256-262
    84张立玲,高峰,张庆.差厚拼焊板自由弯曲力的计算.锻压装备与制造技术,2006,6:62-64
    85叶泽刚.板料V形自由弯曲力的工程算法.中国机械工程, 2006,17(增刊):60-62
    86 Wang,Chuantao. Mechanics of bending, flanging and deep drawing and a computer-aided modeling system for predictions of strain, fracture, wrinkling and springback in sheet metal forming. [doctor degree paper]. The Ohio state University, 1993:26-77
    87秦泗吉,贲宏艳,陈建.帽形弯曲变形分析及力能参数的计算.燕山大学学报,1998,22(3):238-240
    88秦泗吉,杨莉.锥形件拉深成形中的弯曲与反弯曲变形分析及拉深力的计算.中国机械工程,2001,12(10):1103-1105
    89秦泗吉,王志松.板材冲压成形中的弯曲与反弯曲变形问题的研究.机械工程学报, 2001,37(8):99-105
    90 Dongjuan Zhang, Zhenshan Cui, etc. An analytical model for predicting springback and side wall curl of sheet after U-bending. Computational Materials Science, 2007, 38(4):707-715
    91 Bernspang Lars, Hammam Tag, Mattiasson Kjell, etc. Verification of an explicit finite-element code for the simulation of the press forming of rectangular boxes of coated sheet steels. Journal ofMaterials Processing Technology, 1993,39(3-4):431-453
    92 Choi T H, Huh H. Sheet metal forming analysis of planar anisotropic materials by a modified membrane finite element method with bending effect. Journal of Materials Processing Technology,1999,89-90:58-64
    93 L. F. Menezes, C. Teodosiu. Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. Journal of Materials Processing Technology,2000,97(1-3):100-106
    94朱东波,孙琨,李涤尘,等.板料成形回弹问题研究新进展.塑性工程学报,2000,7(1):11-17
    95 Zhangqi Yu, Zhongqin Lin. Numerical analysis of dimension precision of U-shaped aluminium profile rotary stretch bending. Transactions of Nonferrous Metals Society of China, 2007,17(3):581-585
    96 Ihab Rogai, Duraid La Zim, James A. Nemes. Anisotropy and springback in draw-bending of stainless steel 410: experimental and numerical study. Journal of Materials Processing Technology.2005,166(1)116-127
    97景三辉,崔令江,肖湘蓉.热轧钢U形弯曲回弹影响因素的分析.锻压技术,2006,5:127-129
    98赵叶锋,陈靖芯,陆国民. U形件弯曲成形中回弹的数值模拟研究.拖拉机与农用运输车,2005,2:42-44
    99 J. R. Cho,S. J. Moon, S. S. Kang. Finite element investigation on springback characteristics in sheet metal U-bending process. Journal of Materials Processing Technology. 2003,141(1):109-116
    100 I-Nan Chou, Chinghua Hung. Finite element analysis and optimization on springback reduction. International Journal of Machine Tools and Manufacture. 1999,39(3):517-536
    101陈炜,王晓路,高霖.板料多步冲压回弹的数值模拟研究.塑性工程学报,2005,12(5):8-11
    102余国庆,鲁世红.板料弯曲回弹的有限元模拟影响因素研究,模具工业,2004,12:7-11
    103 H. Moslemi. Naeini, G. H. Liaghat, etc. Analysis of deformation behavior of the large diameter pipe by U-O bending process. Journal of Materials Processing Technology,2006,177(1-3):179-182
    104 A. Makinouchi, M. kawka. Process simulation in sheet metal forming. Journal of Materials Processing Technology, 1994.46(3-4):291-307
    105 S. W. Lee, D. Y. Yang. An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. Journal of Materials Processing Technology,1998.80-81:60-67
    106金朝海.板料成形动力显示弹塑性有限元仿真技术研究. [哈尔滨工业大学博士学位论文].1997:4-7
    107林忠钦.车身覆盖件冲压成形仿真.北京:机械工业出版社,2004:32-85
    108崔令江.汽车覆盖件冲压成形技术.北京:机械工业出版社, 2003:22-49
    109雷正保.汽车覆盖件冲压成形CAE技术.北京:国防科技大学出版社,2003:30-114
    110鲍益东,胡斯博,张向奎等.弯曲型件冲压回弹的快速模拟.塑性工程学报,2006,13(4):25-29
    111韦东来.汽车覆盖件成形性分析和数值模拟. [吉林大学硕士学位论文]. 2004:12-20
    112赵军.锥形件智能化拉深系统中材料参数和摩擦系数的在线识别,塑性工程学报, 1998, 8(3): 48-52
    113赵军,官英平,郑祖伟,等.基于神经网络的材料性能参数和摩擦系数的实时识别.塑性工程学报, 2001,8(2):36-39
    114赵军,郑祖伟,王凤琴.轴对称件拉深成形智能化控制中参数实时识别的GA-ENN建模.中国机械工程, 2003, 14(1): 72-74
    115 B.R. Pramod, S.C. Bose. System identification using ARMA modelling and neural networks. Journal of Engineering for Industry. 2001, 115:487-491
    116 K Osakada, G B Yang.Application of Neural Networks to an Expert System for Cold Forging.Int.J.March.Tools Manufact, 2003.31(4)
    117 T.Warren Liao, L.J.Chen.Manufacturing process modeling and optimization based on multi-layer perceptron network.Journal of Manufacturing Science and Engineering, 2004,120:109-119
    118 J. Mou.A Method of Using Neural Networks and Inverse Kinematics for Machine Tools Error Estimation and Correction.Journal of Manufacturing Science and Engineering, 2004,119:106-211
    119徐丽娜.神经元网络控制.哈尔滨:哈尔滨工业大学出版社,2004:8-9
    120高凯祁,胡世光.人工神经网络在覆盖拉延件要领设计中的应用.中国机械工程,2004,10(1):52-54
    121王东哲,吴培宁.基于神经网络的模具制造技术.锻压技术,2005(4):56-59
    122 K Osakada, G B Yang.Neural Networks for Process Planning of Cold Forging. Annals of the CIRP,2005.120:105-176
    123张大志,程秉祥,李谋渭,等.基于遗传神经网络的冷连轧机轧制压力模型.北京科技大学学报,2003,22(4):284-288
    124太勇.神经网络多参数诊断法及其应用研究.机械工程学报,2002,34(1): 100-103
    125张昊.应用模糊神经网络进行负荷预测的研究.自动化报,2005,25(1):60-67
    126王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用,控制理论与应用, 1997,14(1):59-66
    127贾财潮.一种用人工神经网络重建自由曲面的方法.中国机械工程,2002,9(9): 42-45
    128胡小平,毛征宇,胡燕平.基于人工神经网络的一种板形反馈控制.制造业自动化,2001,23(3):40-45
    129 David C. Real Time Identification of Workpiece Material Characteristics from Measurements during Break forming. Journal of Engineering for Industry, Transactions ASME, 2001, 105(1): 45-53
    130张立明,人工神经网络的模型及其应用.上海:复旦大学出版社,1993:1-50
    131钟诗胜,朴树学,丁刚.改进BP算法在过程神经网络中的应用.哈尔滨工业大学学报,2006,38(6):840-842
    132李军,丁萃菁.一种改进的BP算法在实际应用中的研究.计算机仿真,2004,21(2):119-121
    133姜立芳,刘泊,施莲辉.一种改进的BP算法及其在模式识别中的应用.哈尔滨理工大学学报,2003,8(3):90-92
    134 M. T. Hagen, M. B. Menhaj. Training Feed forward Network with the Leven berg-Marquardt Algorithm. IEEE Trans on Neural Networks, 1994, 5(6):989-993\
    135司捷,周贵安,李函,等.基于提督监督学习的理论与应用(I)-基本算法.清华大学学报,1997,37(7):71-73
    136袁亚湘,孙文瑜.最有化理论与方法.北京:科学出版社,1997:373-403
    137张莹莹,王劭伯.基于LM的神经网络偏差补偿预测控制及其应用.福州大学学报,2001,29(1):43-46
    138左敦稳,朱纪军,王珉.基于LM算法的无氢类金刚石薄膜喇曼高斯分解.中国机械工程,2000,11(11):1296-1298
    139马瑞.盒形件智能化拉深压边力控制规律的研究和实时预测. [燕山大学工学博士学位论文]. 2006:73-74
    140飞思科技产品研发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005:99-108
    141闻新. MATLAB神经网络应用设计.北京:科学出版社,2000:44-59
    142石博强,赵德永,李畅,等. LabVIEW6.1编程技术实用教程.北京:中国铁道出版社,2002:174-184
    143 Gary W. Johnson著,武嘉澍译. LabVIEW图形编程.北京:北京大学出版社,2002:1-28
    144汪敏生译著. LabVIEW基础教程.北京:电子工业出版社,2002:1-16
    145刘君华,贾惠芹等.虚拟仪器图形化编程语言.西安:西安电子科技大学出版社,2001:1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700