用户名: 密码: 验证码:
含硼金刚石单晶的微观结构与性能表征及其相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以碳化硼为硼源,利用粉末冶金法制备了Fe-Ni-C-B系触媒片,以石墨为碳源,在高温高压条件下合成了几种含硼量不同的金刚石单晶。利用Diashape金刚石形貌分析仪、扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱(Raman)、X射线衍射仪(XRD)和场发射扫描电镜(FESEM)等系统地研究了含硼量对铁基触媒组织形态和金刚石形貌与微观结构的影响,并对相关理论进行了研究。
     用铁粉、镍粉、碳粉和碳化硼粉末轧制而成的铁基触媒片在惰性气氛条件下1150℃烧结处理后,明显改善了片状铁基触媒的机械性能,适合于冲压成合成金刚石用的触媒片。碳元素的扩散性强,在触媒中的分布比较均匀。而铁、镍元素的扩散性较差,在触媒中易于形成白色的富镍团簇和浅黑色的富铁团簇,这些偏聚的团簇较为均匀地混合在一起。触媒中粉末颗粒大部分保持原有的形态,颗粒间还有一些黑色的孔洞,形成网络状疏松结构。
     在高温高压合成金刚石的过程中,熔融触媒与石墨相互反应,转变生成大量的初生渗碳体。触媒中的初生渗碳体多呈板条状,是金刚石形核和长大的主要碳源。较宽的初生渗碳体板条对金刚石形核和长大不利,较细的初生渗碳体对金刚石形核和长大则有利。因此,金刚石的生长与提供碳源的初生渗碳体数量、形状和分布均匀性直接相关。
     硼是影响触媒中初生渗碳体的数量、形状和分布的主要原因之一。在铁基触媒中加入的碳化硼含量不同,触媒中的初生渗碳体组织形态也不相同,从而直接影响金刚石的形核和长大。含硼金刚石的晶体形态影响了其静态抗压强度。1#、2#、3#三种不同含硼量的金刚石粒度主要集中在50/60和40/50之间。1#金刚石具有较好椭圆度和圆度,晶形较有规则,晶体内缺陷较少,结构较完整,具有较高的静态抗压强度。2#、3#两种金刚石相对次之。
     硼对金刚石晶体的生长习性也有影响。当触媒中的碳化硼含量由0.1wt%增加到0.2wt%时,硼可以抑制金刚石(111)面的生长,而促进(220)和(311)面的生长。当触媒中的碳化硼含量由0.2wt%增加到0.3wt%时,硼对晶面生长的作用却相反。XRD和Raman光谱分析的结果与场发射电镜观察的现象是一致的。
     硼含量对金刚石的抗氧化性能有较大的影响。含硼金刚石的抗氧化性能一般高于常规金刚石,随着硼含量的增加,起始氧化温度增高。由于硼原子在金刚石表面与三个碳原子成键后,形成硼皮结构,减缓了金刚石的氧化速率。在氮气保护气氛下,由于金刚石中的碳原子不能与空气中的氧原子接触而产生氧化,因此含硼金刚石与常规金刚石的抗氧化性能差别不大。而金刚石的差热温度曲线略有波动,这是由于金刚石表面吸附的杂质在高温下烧蚀所致。
     金刚石的基本生长单元是四面体,金刚石表面的部分缺陷是碳四面体在晶体各个面族上与相邻晶面相交的轨迹。碳四面体在{100}面显露的是直线,在{111}面上显露的是三角形。{100}和{110}面的相交,在金刚石晶体的{100}面上形成四棱锥形的凹坑,因而使得金刚石与熔融触媒的接触面积增大,金刚石晶核吸收碳原子的速度增加。同时,四棱锥凹坑的相邻侧面的夹角处更容易吸附碳原子,进一步促进了金刚石生长。在金刚石(111)面上的六边形台阶和三角形凹坑是碳四面体在该晶面上显露的形貌特征。
     碳原子在{111}面上二维形核后易于出现台阶,台阶的存在必然伴随扭折。由于台阶扭折处容易吸附碳原子,促进台阶在{111}面上不断运动,导致晶体呈层状生长。金刚石{111}晶面上存在锯齿状台阶,其两侧晶面的夹角为锐角,使得这两个晶面不会因一个晶面生长速度过快而被生长速度较慢的晶面所吞噬。当两个晶面同时存在时,可以保持台阶的扭折状态,从而提高了金刚石的生长速度。金刚石生长界面处于狭窄的成分过冷区,由于生长界面上的凸缘可以沿界面推移方向和凸缘两侧排出溶质,导致凸缘间隙处的溶质富集,使得金刚石内部出现胞状结构。
     计算复杂晶体中某一晶面的价电子密度时应考虑邻近晶面的原子对该晶面的影响,据此提出了有效价电子密度的概念。基于EET理论的计算结果表明,(111)面的有效价电子密度大于(110)面,当金刚石受外力作用时,(111)面间较弱的键相对更容易断裂,因而导致沿(111)面产生解理。这与实验观察结果基本吻合。因此,根据有效价电子密度可以判定金刚石的解理面,进而分析复杂晶体的解理断裂。
In this paper,boron carbide acted as boron source was doped into Fe-Ni-C-B system catalyst made with powder metallurgy method.Boron doped diamond was synthesized with graphite and catalyst under the condition of high temperature and high pressure(HTHP).The effect of boron quantity, morphology of iron based catalyst and growth of crystal were systemically studied by means of diamond shape measurement system(Diashape),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman spectroscopy(Raman),X-ray diffraction(XRD)and field emission scanning electron microscope(FESEM).And correlative theory of diamond synthesis was studied.
     After rolling and heat treatment in 1150℃at inertia atmosphere,the performance of catalyst made of iron,nickel,graphite and boron carbide were improved,and the catalysts were fit to forging to catalyst pieces which suitable for diamond synthesis.The diffusibility of carbon was strong,and it was evenly distributed.The diffusibility of iron and nickel was low,and they were easily formed black group of rich iron and white group of rich nickel.All the groups were mixed evenly.Most powders were maintained their original shape. There were lots of holes among powders,and all of thera formed loose network structure.
     Molten metal reacted with graphite to produce a mass of primary cementite at the process of diamond synthesis under HTHP.Most of the austenite was batten shape,and it was the main carbon source in the nucleation and growth of diamond.The thick primary cementite put the nucleation and growth of diamond at a disadvantage,and the thin primary cementite advantaged the nucleation and growth of diamond.Therefore,the growth of diamond had a direct relation with the quantity,shape and distribution of primary cementite which provide carbon needed by diamond when it grew.
     Boron is one of the main factors in the amount,morphology and distribution of primary cementite in catalyst.With adding different content of boron carbide to iron-based catalyst,the shapes of primary cementite were different,and it was directly influenced the nucleation and growth of boron doped diamond.The morphology of boron doped diamond crystal effect its static compressive strength.The granularity of 1#,2#,and 3# three different diamond mainly concentrated between the 50/60 and 40/50.The degree of ellipse and roundness in sample 1 was higher,and there were little defects in it. Therefore,the static compressive strength was higher.And sample 2 and 3 relatively took second place.
     Boron has effect of the growth of the diamond crystal plane.When the content of boron carbide in catalyst improved from 0.1 wt%to 0.2 wt%,boron could restrain the growth of(111)plane in diamond,and promote the growth of (220)and(311)plane.And when the content of boron carbide in catalyst improved from 0.2 wt%to 0.3 wt%,the effect of boron on crystal plane growth is reverse.The analysis with XRD and Raman spectroscopy was as same as the results observed with field emission electron microscopy.
     The content of boron could influence the antioxidation of the diamond. The antioxidation of boron doped diamond was tgenerally higher than that of conventional diamond.With the increase of boron content,the initial oxidation temperature increased.Because the boron atoms in the surface of diamond was bonded with three carbon atoms,they were formed a boron skin structure,and it slow down the oxidation rate of diamond.In the nitrogen atmosphere,the carbon atoms in the diamond did not contact with oxygen in the air,so the oxidation of the carbon atoms did not take place.There were little difference of antioxidation between the boron doped diamond and conventional diamond. Because the impurities adsorbed in the surface of diamond were ablated in the high temperature,there was slight fluctuation in difference thermal analysis (DTA)curves of the diamond.
     The basic unit of diamond was tetrahedron.The defects in diamond surface were the coupling track of carbon tetrahedron among the crystal planes and its adjacent planes.The figure that carbon tetrahedron intersected with {111} was triangle,and the figure that carbon tetrahedron intersected with {100} was a line.The plane of the pit which shape like the pyramid was formed with the intersection of {100} and {110}.With the formation of the pit, the area of interface between the diamond and melt catalyst was improved,and the rate that diamond nucleus absorbed carbon atoms was increase.While,the carbon atoms were easily bonded to the corner of the bit,so the growth of diamond was improved.The hexagonal steps and triangular pit on diamond (111)plane were the diagrams that carbon tetrahedron intersected with {111}.
     The steps were easily formed in the diamond after the carbon atoms born two-dimensional nucleation in the {111} plane.There were twists in the step, and that the carbon atoms were easily bonded to the twist of the step promote the growth of the step resulting in a layered crystal growth.Because the angle of the both sides of the serrated step in diamond {111} plane was cute,the plane grew fast did not annexed by that grew slow.The concurrence of both plane result in maintaining twist in step,and making diamond grew fast.The growth interface of diamond was located in a zone of component cooling.The solute was discharged from the flange of growth interface along the moving direction of interface and the side of flange.The solute was rich in the clearance of the flange,and the pole structure was formed in the diamond.
     When calculating the valence electron density of a crystal plane in complex crystal,it should be consider of the valence electron of atoms near the crystal plane.The concept of valid valence electron density was put forward.The calculation based on EET theory and analysis result show that,the valid valence electron density of the(111)plane is higher than that of the(110) plane.As the higher outside stress were applied on diamond,the weak bond between the(111)planes is easily broken up and diamond was cleaved along (111)plane.The conclusion based on the valid valence electron density was in good agreement with the result observed in the experiment.Therefore,the cleavage surface of diamond could be determined with the calculation of the valid valence electron density,and analyzing cleavage fracture in complex crystal with it was feasible.
引文
1.王松顺.含硼人造金刚石的结构、性质及其应用.表面技术,1997,26(2):38-41.
    2.臧建兵等.含硼金刚石的合成与性能.金刚石与磨料磨具工程,2003.138(6):19-21.
    3.关长斌等.B对人造金刚石表面结构及性能的影响.人工晶体学报,2001,30(2):216-219.
    4.J.L.Davidsona et al.Diamond as an active sensor material.Diamond and Related Materials,1999,8:1741-1747.
    5.陈光华等.金刚石薄膜的制备与应用.化学工业出版社(M),2004,3:109-113.
    6.戴达煌等.金刚石薄膜沉积制备工艺与应用.冶金工业出版社(M),2001.
    7.W.Adam et al.Review of the development of diamond radiation sensors.Nuclear Instruments and Methods in Physics Research A,1999,434:131-145.
    8.Andrzej Badzian & Teresa Badzian.Recent Developments in Hard Materials.Inl.J.of Refractory Metals & Hard Materials 1997,15:3-12.
    9.Fujio Okino.Preparation of boron-doped semiconducting diamond films using BF3 and the electrochemical behavior of the semiconducting diamond electrodes.Journal of Fluorine Chemistry 2004,125:1715-1722.
    10.宫建红,李木森,许斌,尹龙卫,崔建军.Ⅱb型金刚石单晶的制备和半导体特性研究进展.功能材料,2003,34(6):622-625.
    11.李和胜,宫建红,郑克芳,李木森.高温高压下Fe-Ni-C-B系合成Ⅱb 型金刚石单晶.北京科技大学学报,2007,29(2)112-118,167.
    12.R.M.Chrenko.Boron,the dominant acceptor in semiconducting diamond.Physical review B,7(1973):4560-4567.
    13.Rinat F.Mamin and Takashi Inushima.Conductivity in boron-doped diamond.Physical review B,63(2001):3201-3204.
    14.J.Isberg,J.Hammersberg,Single crystal diamond for electronic applications,Diamond and Related Materials,13(2004):320-324.
    15.Ekimov E A,Sidorovl V A,Bauer E D.Superconductivity in diamond.Nature,2004,428:542-545.
    16.V.A.Sidorova,E.A.Ekimov,et al.Superconductivity in boron-doped diamond.Diamond & Related Materials.2005,14:335-339.
    17.苟清泉.含硼黑金刚石的结构与合成机理及其特殊性能的探讨.人造金刚石,1977,2:26-36.
    18.王光祖.超硬材料[M].河南科学出版社,1996.8.
    19.K.Nassau,J.Nassau.The history and present status of synthetic diamond.Journal of Crystal Growth,1979,46(2):157-172.
    20.王光祖等.不断发展的金刚石合成与应用技术.超硬材料与宝石.2002,14(3):1-4.
    21.Sumiya H,Toda N.Development of high-quality large-size synthetic diamond crystals.SEI Technical Review,2005,60:10-16.
    22.S.Satoh and H.Sumiya.The Review of High Pressure Science and Technology,1993,2:315.
    23.Sumiya,H,Satoh,S.High-pressure synthesis of high-purity diamond crystal.Diamond and Related Materials,1996,5:1359-1365.
    24.Sumiya,H,Toda,N.High-Quality Large Diamond Crystals New Diamond and Frontier Carbon Technology,2000,10(5):233-251.
    25.郝兆印,陈宇飞,邹广田.人工合成金刚石[M].长春:吉林大学出版社,1996:99-139.
    26.苟清泉.高温高压下石墨变金刚石的结构转化机理.吉林大学学报,1974(2).
    27.Hugh O.Pierson.Handbook of carbon,graphite,diamond and fullerenes.Noyes Publications,New Jersey,U.S.A.,1993.
    28.M.H.Nazare and A.J.Neves.Properties,growth and applications of diamond. INSPEC, The Institution of Electrical Engineers, London, United Kingdom, 2001.
    29. X. Yan, H. Kanda, T. Ohsawa, and S. Yamaoka. Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent. Mater. Sci. Eng. 1990, 25: 1585-1589.
    30. M. Iizuka, H. Ikawa, O. Fukunaga. Nucleation and growth of diamond using Ni-Ti, Ni-Nb and Fe-B alloy as solvents. Diamond and Related Materials 1996, 5: 38-42.
    31. H.M. Strong, R.E. Hanneman. Crystallization of diamond and graphite. J. Phys. Chem., 1967, 46: 3668-3676.
    32. Y. A. Kocherzhinskii. Phase equilibrium diagrams and diamond production. Sverkhtverdye Materialy, 1988, 10: 34-38.
    33. G. M. Kimstach, A. A. Urtaev and T. D. Molodtsova. Metallographic study of diamond sinters. Sverkhtverdye Materialy, 1991, 13: 26-28.
    34. R. J. Caveney. Limits to quality and size of diamond and cubic boron nitride synthesized under high pressure, high temperature conditions. Mater. Sci. Eng., 1992, B11: 197-205.
    35. E. Pavel, et al. Some aspects of diamond synthesis. Diamond and Related Materials, 1993,2: 500-504.
    36. S. Naka, A. Tsuzuki and S. I. Hirano. Diamond formation and behavior of carbides in several 3d-transition metal-graphite systems. Journal of Materials Science, 1984, 19: 259-262.
    37. L. W. Yin, M. S. Li, B. Xu, and Y. J. Cui. Interface Instability of diamond at high temperature and high pressure. Chin. Phys. Lett., 2002, 19: 419-421.
    38. J. Sung. Graphite diamond transition under high pressure: A kinetics approach J. Mater. Sci., 2000, 35: 6041-6054.
    39. E. Pavel, G. Baluta, D. Barb and D. P. Lazar. The nature of the metallic inclusions in synthetic diamond crystals synthesized at 5.5Gpa in Fe-C system. Solid State Communication, 1990, 76: 531-533.
    40.H.P.Bovenkerk,F.P.Bundy,H.T.Hall,H.M.Strong,and R.H.Wentorf.Preparation of diamond.Nature,1959,184:1094-1098.
    41.Minoru Akaishi,Hisao Kanda and Shinobu Yamaoka.Synthesis of diamond from graphite-carbonate system under very high temperature and pressure.Journal of Crystal Growth,1990,104(2):578-581.
    42.M.Akaishi,H.Kanda,S.Yamaoka.Jpn.J.Appl.Phys.,1990,(Japan)29:1172.
    43.S.M.Hong,M.Akaishi and S.Yamaoka Nucleation of diamond in the system of carbon and water under very high pressure and temperature.Journal of Crystal Growth,1999,200:326-328.
    44.L.-W.Yin,N.-W.Wang,Z.-D.Zou,M.-S.Li,et al.Formation and crystal structure of metallic inclusions in a HPHT as-grown diamond single crystal.Applied Physics A:Materials Science & Processing,2000,71(4):473-476.
    45.L.W.Yin,M.S.Li,Z.D.Zou,et al.Characterization of a growth-front interface in a HPHT-grown diamond crystal by transmission electron microscopy.Applied Physics A:Materials Science & Processing,2001,72(3):373-375.
    46.Long-Wei Yin,Mu-Sen Li et al.Some aspects of diamond crystal growth at high temperature and high pressure by TEM and SEM.Materials Letters,2002,55:397-402.
    47.许斌,李木森等.Fe基金属包膜的MOssbauer参量及其在金刚石合成中的催化作用.金属学报,2004,40(8):810-814.
    48.Long-Wei Yin,Zeng-Da Zou,Mu-Sen Li,et al.TEM investigation on micro-inclusions and dislocations in a HPHT-grown diamond single crystal from Ni-C system.Crystal Research and Technology,2000:35:1289-1294.
    49.Long-Wei Yin,Mu-Sen Li,et al.Diamond formation using Fe_3C as a carbon source at high temperature and high pressure.Journal of Crystal Growth,2002,234(1):1-4.
    50.Long-Wei Yin,Zeng-Da Zou,Mu-Sen Li,et al.Some inclusions and defects in a synthetic diamond single crystal.Journal of Crystal Growth,2000,218(2-4):455-458.
    51.XU Bin,LI Mu-sen,YIN Long-wei.Interface between metallic film from Fe_2Ni_2C system and HPHT as grown diamond single crystal.Trans.Nonferrous Met.Soc.China.,2003,13(4):902-906.
    52.许斌,李木森,尹龙卫,崔建军,刘玉先,宫建红.金属包膜的结构与铁基触媒合成金刚石的生长。科学通报,2002,47(9):669-674.
    53.许斌,李木森,李士同,项东,牛玉超,景财年.铁基触媒合成金刚石形成的金属包膜成分的研究.硅酸盐学报,2004,32(8):936-941.
    54.许斌,李木森,尹龙卫,等.铁基触媒合成金刚石形成的金属包膜的组织结构.硅酸盐学报,2003,31(5):470-475.
    55.XU Bin,LI Musen,YIN Longwei,et al.AFM study on interface of HTHP as grown diamond single crystal and metallic film.J Mater Sci Tech,2003,19(2):113-116.
    56.Minoru Akaishi,Hisao Kanda and Shinobu Yamaoka.Synthesis of diamond from graphite-carbonate system under very high temperature and pressure.Journal of Crystal Growth,1990,104(2):578-581.
    57.S.M.Hong,M.Akaishi and S.Yamaoka.Nucleation of diamond in the system of carbon and water under very high pressure and temperature.1999,200:326-328.
    58.Z.T.Shen,L.J.Wang,G.X.Sun and W.J.Wang.The Formation Mechanism of Synthetic Diamond at High Pressure.Physica.,1986,139:642-644.
    59.孙江,李君峰,耿大全.人造金刚石触媒材料的研究现状.金属功能材料,1996,2:41-46.
    60.T.D.Varfolomeeva,L.A.Ivanov,A.V.Tsvyashchenko,and E.N.Yakovlev.Role of the electron structure of metals in the process of transfer of graphite into diamond.Sverkhtverdye Materialy,1986,4:6-8.
    61.H.Kanda,M.Akaishi,and S.Yamaoka.New catalysts for diamond growth under high pressure and high temperature.Appl.Phys.Lett.,1994,6:784-786.
    62.谭新才,张沪,彭大暑.人造金刚石用触媒材料回顾与展望.矿冶工程,1995,3:65-70.
    63.郝兆印.石墨、触媒合金的选择.工业金刚石,1996,1:6-9.
    64.易建宏.超薄NiMnCo合金触媒片对合成金刚石的影响.材料科学与工艺,1999,7(3):22-25.
    65.方啸虎,洪涌,马万金,胡立森.当前我国新触媒的研究和应用.超硬材料与宝石(特辑),2003 15(4):1-7,28.
    66.邓小清,唐敬友,孟川民,赵敏光.在石墨-Ni_(70)Mn_(25)Co_5体系中金刚石生长的活化能与表面能的确定.人工晶体学报,2004,33(1):118-122.
    67.唐敬友,刘党库,姚怀,唐翠霞.高温高压下石墨Ni_(70)Mn_(25)Co_5体系中石墨的层状生长现象与合成金刚石的质量.硅酸盐学报,2005,33(12):1544-1550.
    68.郭宏,经海,徐骏,杨必成,马自力,石力开.NiMnCo粉末触媒合成金刚石的特征分析.稀有金属,2004,28(2):387-390.
    69.李尚升,马红安,臧传义,李小雷,田宇,张亚飞,肖宏宇,尹斌华,贾晓鹏.用NiMnCo触媒合成优质Ⅱa型金刚石大单晶.金刚石与磨料磨具工程,2006,152(2):16-18.
    70.李飞跃,彭振斌,李启泉.优质金刚石合成的研究.超硬材料与宝石(特辑),2003,15(49):14-16.
    71.方啸虎.合成金刚石的研究与应用.地质出版社,1996.
    72.易建宏.不同形态触媒材料合成金刚石产量因素比较.材料科学与工艺,1999,7(4):63-66.
    73.张晓莉,黄光宏,闫长海,孙凯.片、粉状触媒合成金刚石比较.金刚石与磨料磨具工程,2001,6(126):24-25.
    74.白文翔,颜恩锋,肖西卫.片状和粉状触媒合成金刚石的试验研究.探矿工程(岩土钻掘工程),2005,(1):54-55.
    75.朱凤福,宁磊,张铁喜,王宗烈,胡本权.用粉状技术合成高品级金刚 石的研究.人工晶体学报,2002,31(2):169-172.
    76.山东大学粉末冶金铁基金刚石催化剂课题组鉴定材料之三.技术报告,济南:山东大学,2000.
    77.郑周.硼元素对人造金刚石单晶氧化速度的影响.高压物理学报.1992,6(1):1-6.
    78.王松顺,王民.含硼T641石墨合成金刚石的耐热性研究.碳素,1995,(1):38-42.
    79.臧建兵,李爱武,王艳辉.含硼金刚石的合成与性能,金刚石与磨料磨具工程,2003,6:22-24.
    80.张健琼,贾晓鹏,马红安.掺硼金刚石的高温高压合成.金刚石与磨料磨具工程,2005,1:15-17.
    81.宫建红,李木森,许斌.含硼触媒对合成的金刚石晶体结构和热稳定性的影响.金刚石与磨料磨具工程,2005,1:18-21.
    82.张健琼,马红安,臧传义.添加剂硼对纯铁粉末触媒合成金刚石的影响.金刚石与磨料磨具工程,2005,5:7-9.
    83.张清福,苟清泉.天然金刚石形成透明硼皮金刚石的研究.高压物理学报.1989,3(1):11-17.
    84.郑克芳,李木森,宫建红,李洪岩.测定含硼金刚石单晶颗粒电阻的方法.理化检验.物理分册,2004,40(12):606-608.
    85.Satoshi Koizumi et al.Formation of diamond p-n junction and its optical emission characteristics.Diamond and Related Materials,2002,11:307-311.
    86.程开甲,程漱玉.论材料科学的理论基础.材料科学与工程,1998,16(1):1-7.
    87.余瑞璜.固体与分子经验电子理论.科学通报,1978,23(4):217-224.5.
    88.张瑞林.固体分子与经验电子理论[M].吉林科学技术出版社,1993.
    89.刘志林.合金价电子结构与成份分析[M].吉林:吉林科学技术出版社.2002.6
    90.Liu Zhilin,Sun Zhenguo,Li Zhilin.Application of Yu's theory and Cheng's theory to alloy research.Progress in Natural Science,1998,8(2):134-146.
    91.Yu Ruihuang,Zhangruilin,Zheng Weitao,Hu Anguang.Valence electron structure cementite Fe_3C and analysis of its relevant properties.Chinese Science Bulletin,1994,39(2):165-169.
    92.Liu Zhilin,Li Zhilin,Sun Zhenguo.Electron density of austenite/martensite biphase interface.Chinese Science Bulletin,1996,4(5):40-42.
    93.范润华,尹衍升,毕见强,龚红宇.Fe-25Al铝化物的电子结构及其本质脆性.人工晶体学报,2002,31(5):468-471.
    94.孙家涛,范润华,刘冰,陈云,尹衍升.碳化物价电子结构及其界面电子密度分析.人工晶体学报,2004,33(3):316-319.
    95.范润华,尹衍升,孙家涛,王昕,陈守刚.铁铝化合物/碳化钛复合材料的界面电子结构.自然科学进展,2004,14(3):307-311.
    96.Liu Zhilin,Li Zhilin,Liu Weidong.Calculation of the valence electron structures of alloying cementite and its biphase interface.Science in China,2001,44(5):542-552.
    97.SUN Kangning,PANG Laixue,YIN Yansheng.Relationship of Valence Electron Structure and Mechanical Properties on Fe_3Al after Order Degree Intercepted.Journal of Synthetic Crystals,2004,33(4):575-580.
    98.刘志林,刘伟东,林成.汽车大梁钢终轧强度预报及炉前成分快速调整.自然科学进展,2004,14(9):1020-1024.
    99.刘志林,刘伟东,林成.连铸连轧非调质钢的强度计算及其预报.金属学报,2004,40(12):1248-1252.
    100.程开甲,程淑玉.TFD模型和余氏理论对材料设计的应用.自然科学进展—国家重点实验室通讯,1993,3(5):417-432.
    101.王秦生.金刚石触媒的电子结构和晶格结构与催化活性的关系.金刚石与磨料磨具工程,1999,111:2-6.
    102.Zhilin Liu,Zhilin Li,and Zhenguo Sun.Catalysis mechanism and catalyst design of diamond.Metallurgical and Materials Transactions A,1999,30A:2757-2766.
    103.宫建红,李木森等.人造金刚石金属包膜内γ-(Fe,Ni)(111)与Fe_3C(004)晶面上原子匹配关系与电子密度分析.自然科学进展,2005,15(5):591-596.
    104.许斌.金属包膜的微观结构及其在高温高压合成金刚石中的作用[博士论文].济南:山东大学,2003年6月.
    105.许斌,宫建红,李丽,李木森,宿庆财,高洪吉.Fe_3C型碳化物与人造金刚石晶面价电子结构分析.硅酸盐学报,2006,34(6):656-661.
    106.许斌,宫建红,李木森,崔建军,许爱民,高洪吉.铁基金属包膜内的行为与高温高压金刚石单晶生长.金属学报,2005,41(10):1101-1105.
    107.Gong Jianhong,Xu Bin,Yin Longwei,Qi Yongxin,Li Li,Su Qingcai,Li Musen.Valance electron structure of carbide-diamond interface and catalytic mechanism for diamond synthesis under high-pressure and high-temperature.Progress in Natural Science,2006,16(8):852-858.
    108.方啸虎.超硬材料科学与技术.北京:中国建材工业出版社,1998.
    109.杨炳飞,王礼胜,王吉中.我国叶蜡石矿物材料研究方向及其进展.超硬材料工程,2007,19(3):35-37.
    110.林克英,潘勇,侯书恩,肖红艳,马保军.人造金刚石的提纯技术.金刚石与磨料磨具工程,2005,149(5):77-78,80.
    111.樊亮,彭同江,陈吉明.人造金刚石微粉提纯工艺技术研究.非金属矿,2004,27(4):32-34.
    112.崔建军,许斌,李木森,尹龙卫,宫建红,李洪岩.铁基触媒中的初生渗碳体与金刚石单晶的合成.金刚石与磨料磨具工程,2005,146(2):1-3.
    113.福克哈德著,粟卓新,朱学军译.不锈钢焊接冶金.北京:化学工业出版社,2004.
    114.崔建军,许斌,宫建红,万桂怡,李木森,李洪岩.铁基触媒中金刚石单晶的生长对初生渗碳体的消耗.人工晶体学报,2006,35(2):363-366,377.
    115.许斌,项东,高尚,邢士波.金刚石合成时形成的镍基金属包膜和溶媒的组织结构.金刚石与磨料磨具工程,2004,139(1):20-23.
    116.仲维卓,华素坤.晶体形态学[M].北京:科学出版社,1999.
    117.张克丛,张乐惠.晶体生长科学与技术(上)[M].北京:科学出版社,1997.
    118.闵乃本.晶体生长的物理基础[M].合肥:中国科技大学出版社,1982.P411-415.
    119.姚连增.晶体生长基础[M].合肥:中国科技大学出版社,1995.
    120.E.J.Brookes,P.Greenwood,G.Xing.Friction and wear of synthetic diamond.International Journal of Refractory Metals & Hard Materials.1999,17:69-77.
    121.谢华,陈文哲,钱匡武.锰、铌对TiAl金属间化合物的电子结构及脆性的影响.稀有金属,2004,28(23):50-353.
    122.李木森等.Fe2B相价电子结构及其本质.金属学报,1995,31(5):201-208.
    123.李文,蔡建岩,张瑞林.锰对TiAl脆性影响的价电子分析.有色金属,1998,50(4):96-99.
    [1] Yasar Gurbuz, Onur Esame, Ibrahim Tekin, Weng P. Kang and Jimmy L. Davidson Solid-State Electronics, Vol.49( 2005), p. 1055
    [2] M. H. Nazwere and AJ. Neves in: Properties, growth and applications of diamond (INSPEC, The Institution of Electrical Engineers, London, United Kingdom 2001).
    [3] Minoru Akaishi, Hisao Kanda and Shinobu Yamaoka: Journal of Crystal Growth, Vol. 104(1990), p.578
    [4] S. M. Hong, M. Akaishi and S. Yamaoka: Journal of Crystal Growth Vol. 200(1999), p.326
    [5] Long-Wei Yin, Mu-Sen Li, Dong-Sheng Sun, Feng-Zhao Li, Zhao-Yin Hao: Materials Letters, vol. 55(2002), p.397
    [1] R.H. Yu. Empirical electron theory of solid and molecules. Chinese Science Bulletin(in Chinese), 1978, 23 (4): 217-224.
    [2] Z.L. Liu, Z.G. Sun, and Z.L. Li. Application of Yu's theory and Cheng's theory to alloy research. Progress in Natural Science, 1998, 8(2): 134-146
    [3] K.J. Cheng and S.Y. Cheng. Prog. Nat. Sci., (in Chinese). 1993, 3(5):417-432
    [4] Z.L. Liu, Z.L. Li, and Z.G. Sun. Catalysis Mechanism and Catalyst Design of Diamond. Metallurgical And Materials Transactions A, 1999, 30A: 2757-2766.
    [5] Z.L. Li, H.B. Xu, and S.G. Gong. Texture formation mechanism of vapor-deposited fcc thin film on polycrystal or amorphous substrate. The journal of physical chemistry B, 2004,108(39): 15165-15171.
    [6] H. Xie, W.Z Chen, and K.W. Qian. Influence of Manganese and Niobium on Electronic Structure and Brittleness of TiAl. Chinese Journal of Rare Metals(in Chinese), 2004, 28(2):350-353.
    [7] M.S. Li, S.L. Fu, W.D. Xu, R.L. Zhang, and R.H Yu, Valence electron structure of Fe_2B phase and its eigen-brittleness. ACTA Metallurgica Sinica(in Chinese), 1995, 31 (5): 201-208.
    [8] E.J. Brookes, P. Greenwood, and G. Xing. Friction and wear of synthetic diamond. International Journal of Refractory Metals & Hard Materials 1999, 17, 69-77
    [9] Z.L. Liu, Z.L. Li, and W.D. Liu. Valence Electron Structure and Property of Interface, Beijing: Science Press, 2002 (in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700