用户名: 密码: 验证码:
碳/氮基薄膜结构、力学性能及水环境中摩擦与腐蚀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别通过过渡族元素Ti、Cr掺杂及C掺杂,缓解非晶碳(a-C)薄膜及TiN、CrN薄膜的内应力;增加膜基间粘附强度;提高薄膜硬度;并系统地研究了过渡族元素Ti、Cr掺杂量对a-C薄膜及C掺杂量对TiN、CrN薄膜成分、结构、力学性能、水环境中摩擦学及模拟人体体液中电化学性能的影响;探讨了薄膜结构变化与摩擦机制之间的内在联系:
     1)采用非平衡磁控溅射制备了不同Ti掺杂量的Ti/a-C薄膜。当Ti靶电流为0.5A时,低含量的Ti以固溶体形式存在于Ti/a-C-0.5薄膜中,晶格畸变效应使薄膜的硬度提高至27.5GPa,缩短a-C薄膜的磨合距离并降低摩擦副的磨损率;而当Ti靶电流提高至1~2A时,类金属Ti和TiC颗粒形成并分布在a-C基材中,打断a-C薄膜中碳网的连续性,导致硬度下降至15~17.5GPa,且TiC颗粒的磨粒作用使Ti/a-C-1、Ti/a-C-1.5、Ti/a-C-2薄膜与SiC及Al2O3球在水中对磨时发生剥落失效。而Si3N4球水合反应生成的润滑膜和SUS440C球氧化反应生成的氧化物粘附在薄膜表面,使得Ti/a-C-1、Ti/a-C-1.5、Ti/a-C-2薄膜保持完好。
     2)采用非平衡磁控溅射制备了不同Cr掺杂量的Cr/a-C薄膜。当Cr靶电流为0.5~2A时,Cr/a-C薄膜中均形成了类金属Cr或碳化铬颗粒,打断了a-C薄膜碳网的连续性,使薄膜的硬度下降至11.6~13.7GPa。具有较好韧性的Cr/a-C-0.5薄膜缩短了a-C薄膜的磨合距离并降低摩擦副的磨损率;而当Cr靶电流为1~2A时,碳化铬颗粒易发生水合反应生成氧化铬,在对磨过程中氧化铬作为磨粒主导了磨损机制,无论对磨件为何种材料,均使Cr/a-C-1、Cr/a-C-1.5、Cr/a-C-2薄膜发生了剥落失效。
     3)采用非平衡磁控溅射制备了不同C含量的TiN(C)薄膜。由于a-CNx相的存在,使TiN(C)薄膜的硬度提高至27~32GPa,然而随着C掺杂量的提高,TiN(C)薄膜中逐渐形成a-C相,使得薄膜硬度呈线性下降趋势;因SiC、Si3N4球水合反应生成的润滑膜,TiN、TiN(C1)、TiN(C2)、TiN(C3)薄膜与之对磨时显示较低的摩擦系数且保持完好,而TiN(C4)薄膜由于硬度过低发生磨穿失效;Al2O3球的高硬度及稳定性,使TiN(C)薄膜与之对磨时都发生磨穿失效;而SUS440C球在水中容易发生粘着磨损,增大了摩擦界面的粗糙度,导致摩擦系数高且不稳定。
     4)采用非平衡磁控溅射制备了不同C含量的CrN(C)薄膜,随着C掺杂量的提高,薄膜中逐渐形成了a-CNx及碳化铬晶相。后者在对磨过程中易发生水合反应,生成具有磨粒作用的Cr2O3,因此当CrN(C)薄膜与高硬度的SiC及Al2O3球对磨时,CrN(C)薄膜均发生磨穿失效;由于Si3N4球在水中易发生水合反应,生成具有润滑效果的氧化硅胶状膜,保护了CrN(C1)薄膜,而CrN(C2)、CrN(C3)、CrN(C4)薄膜中较多的碳化铬生成的Cr2O3磨粒打破了氧化硅胶状膜的保护作用,使薄膜发生磨穿失效;类似的,SUS440C在水中易发生氧化反应,生成的氧化物粘附在薄膜表面,保护了CrN(C1)薄膜,而CrN(C2)、CrN(C3)、CrN(C4)薄膜同样发生磨穿失效。
     5)Ti/a-C及Cr/a-C薄膜在模拟人体体液中均能起到保护316L不锈钢的作用。随着Ti掺杂量的提高,Ti/a-C薄膜中sp2键含量提高,增加了薄膜的导电性,且薄膜致密度下降,导致薄膜呈现逐渐削弱的电化学特性,而随着Cr掺杂量的提高,Cr/a-C薄膜中sp3键含量提高,增加了薄膜的绝缘性,促使薄膜呈现逐渐增强的电化学特性;CNx相的生成,使TiN(C1)、TiN(C2)、TiN(C3)薄膜在模拟人体体液中表现出优于316L不锈钢的抗腐蚀特性,而TiN薄膜稀疏的表面形貌及TiN(C4)薄膜中高含量的a-C,削弱了其在模拟人体体液中的抗腐蚀特性。类似的,CrN、CrN(C1)、CrN(C2)、CrN(C3)薄膜因其致密的表面形貌及氧化铬钝化膜,在模拟人体体液中表现出优于316L的抗腐蚀特性,而CrN(C4)薄膜中高含量的a-C,削弱其在模拟人体体液中的抗腐蚀特性。
This thesis aimed to release the internal stress, enhance the adhesive strength, increase thehardness of amorphous carbon (a-C) and TiN, CrN coatings by doping transition metal Ti, Cr and Celements, respectively. Moreover, the influence of incorporating contents of Ti, Cr and C elements onthe compositon, microstructure, mechanical and tribological properties in water and electrochemicalproperty in simulated body fluid for a-C and TiN, CrN coatings was investigated systematically. Atlast, the relationship between microstructure variation and wear mechanism was discussed:
     1) The Ti/a-C coatings with different Ti doping content were deposited by unbalanced magnetronsputtering. When the current of Ti target was0.5A, the low concentration Ti atoms existed inTi/a-C-0.5coatings as solid solution. The lattice deformation increased the hardness of Ti/a-Ccoatings to27.5GPa, and Ti/a-C coatings shortened the running-in distance and decreased the wearrate of a-C coatings. But when the currents of Ti target varied in the range of1A to2A, the metal-likeTi and TiC nanoparticles were formed and dispersed in a-C matrix. The metal-like Ti and TiCnanoparticles broke the continuity of carbon network, and made the hardness decrease to15~17.5GPa.Besides, under abrasive effect of the TiC nanoparticles, the delamination occurred for Ti/a-C-1、Ti/a-C-1.5、Ti/a-C-2coatings sliding against SiC and Al2O3balls in water. However, the lubricationfilms induced from hydration action of Si3N4balls and oxides induced from oxidation of SUS440Cballs adhered on the coatings’ surface, and made the Ti/a-C-1、Ti/a-C-1.5、Ti/a-C-2coatings maintainintegrity.
     2) The Cr/a-C coatings with different Cr doping content were deposited by unbalancedmagnetron sputtering. When the currents of Cr target varied in the range of0.5A to2A, the metal-likeCr or chromium carbides were formed. The metal-like Cr and chromium carbides broke the continuityof carbon network, and made the hardness of Cr/a-C coatings decrease to11.6~13.7GPa. TheCr/a-C-0.5coatings with better toughness shortened the running-in distance and decreased the wearrate of a-C coatings. However, when the currents of Cr target varied in the range of1A to2A, theformation of chromium oxides originated from hydration reaction of chromium carbides dominatedthe wear mechanism. Thus, whatever the counterparts were, the Cr/a-C-1、Cr/a-C-1.5、Cr/a-C-2coatings occurred delamination.
     3) The TiN(C) coatings with different C doping content were deposited by unbalanced magnetronsputtering. Owing to the formation of a-CNx, the hardness of TiN(C) coatings increased to27~32GPa.But with the increasing carbon content, the more a-C made the hardness decrease continuously. Since the SiC and Si3N4balls could generate lubrication film due to hydration, the unbroken TiN, TiN(C1),TiN(C2), TiN(C3) coatings with low friction coefficient were obtained. But the TiN(C4) coatingsoccurred delamination due to decreasing hardness. All of the TiN(C) coatings confronteddelamination because of no hydration reaction for Al2O3balls with high hardness. For SUS440C balls,the adhesive wear increased the roughness between contact area and made the friction coefficient highand unstable.
     4) The CrN(C) coatings with different C doping content were deposited by unbalancedmagnetron sputtering. With the increasing carbon content, the a-CNxand chromium carbides wereformed gradually. The latter would act with water and generated Cr2O3which acted as wear debrisduring wear process. Thus, when the CrN(C) coatings slid against SiC and Al2O3balls with highhardness, the CrN(C) coatings were all worn out. Owing to the protection effect of the silicon oxidesgel originated from hydration action of Si3N4, the CrN(C1) coatings maintained whole. However, themore Cr2O3resulted from chromium carbides in the CrN(C2), CrN(C3) and CrN(C4) coatingsdestroyed the protection effect of silicon oxides gel, and made the CrN(C2), CrN(C3) and CrN(C4)coatings peel off. Similarly, the oxides resulted from oxidation of SUS440C balls would adhere on thecoatings, protected the CrN(C1) coatings, but the CrN(C2), CrN(C3) and CrN(C4) coatings wereworn out.
     5) Both the Ti/a-C and Cr/a-C coatings could protect the316L stainless steel in simulated bodyfluid. With the increasing Ti content, the increasing conductivity of Ti/a-C coatings due to increasingsp2content and high porosity density weakened the electrochemical properties in simulated body fluid.However, with the increasing Cr target current, the insulativity of Cr/a-C coatings increased becauseof increasing sp3content, and enhanced the electrochemical properties in simulated body fluid. Due tothe formation of CNx, TiN(C1), TiN(C2) and TiN(C3) coatings enhanced the anti-corrosion propertiesof316L, whereas the poor surface quality of TiN coatings and high a-C content of TiN(C4) coatingsmade them exhibit inferior anti-corrosion properties of316L. Similarly, due to favorable surfacequality and chromium oxides passive coatings, the CrN, CrN(C1), CrN(C2) and CrN(C3) coatingsexhibited superior electrochemical properties than316L. But the high a-C content of CrN(C4)coatings weaken the anti-corrosion properties in simulated body fluid.
引文
[1]温诗铸,黄平.摩擦学原理.清华大学出版社,2008.
    [2]王先会.工业润滑油生产与应用.中国石化出版社,2011.
    [3]K. Kato. Water lubrication of ceramics and hard coatings.南京航空航天大学学术报告,2006年3月.
    [4]王强,赵跃.船油污染敲响长江环保警钟,江淮晨报,2004年8月27日.
    [5]戴钧樑,戴立新.废润滑油再生.中国石化总公司情报研究所,2007.
    [6]S.S. Kim, H.G. Lee, D.G. Lee. The tribological behavior of polymer coated carbon compositesunder dry and water lubricating conditions. Composite Structures,2007,77(3):364-372.
    [7]王家序,陈战,秦大同.以水为润滑介质的摩擦副关键问题研究.润滑与密封,2001,2:34-36.
    [8]J. Pellier, J. Geringer, B. Forest. Fretting-corrosion between316L SS and PMMA: Influence ofionic strength, protein and electrochemical conditions on material wear. Application to orthopaedicimplants. Wear,2011,271(9-10):1563-1571.
    [9]K. Nielsen. Corrosion of metallic implants. British Corrosion Journal,1987,22(4):272-278.
    [10]S.A. Brown, K. Merritt. Fretting corrosion in saline and serum. Journal of Biomedical MaterialsResearch,1981,15(4):479-488.
    [11]H. Placko, S. Brown, J. Payer. Release of cobalt and nickel from a new total finger jointprosthesis made of vitallium. Journal of Biomedical Materials Research,1983,17(4):655-668.
    [12]V. Singh, K. Marchev, CV. Cooper, et al. Intensified plasma-assisted nitriding of AISI316Lstainless steel. Surface and Coatings Technology,2002,160(2-3):249-258.
    [13]Z. Bou-Saleh, A. Shahryari, S. Omanovic. Enhancement of corrosion resistance of a biomedicalgrade316LVM stainless steel by potentiodynamic cyclic polarization. Thin Solid Films,2007,515(11):4727-4737.
    [14]V. Muthukumaran, V. Selladurai, S. Nandhakumar, et al. Experimental investigation on corrosionand hardness of ion implanted AISI316L stainless steel. Materials and Design,2010,31(6):2813-2817.
    [15]F. Macionczyk, B. Gerold, R. Thull. Repassivating tantalum/tantalum oxide surface modificationon stainless steel implants. Surface and Coatings Technology,2001,142:1084-1087.
    [16]D. Bociaga, K. Mitura. Biomedical effect of tissue contact with metallic material used for bodypiercing modified by DLC coatings. Diamond and Related Materials,2008,17(7-10):1410-1415.
    [17]M.K. Lei, X.M. Zhu. In vitro corrosion resistance of plasma source ion nitrided austeniticstainless steels. Biomaterials,2001,22(7):641-647.
    [18]S. Nagarajan, N. Rajendran. Surface characterisation and electrochemical behaviour of poroustitanium dioxide coated316L stainless steel for orthopaedic applications. Applied Surface Science,2009,255(7):3927-3932.
    [19] X.J. Liu, H. Nanao, T.S. Li, et al. A study on the friction properties of PAAc hydrogel under lowloads in air and water. Wear,2004,257(7-8):665-670.
    [20]胡元洁,毛立江,孙瑞焕等.亲水性高分子材料表面水润滑特性.生物医学工程学,1999,16:138-139.
    [21]Z.Z. Feng, H.Y. Xu, F.Y. Yan. Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under waterlubrication. Applied Surface Science,2008,255(5):2408-2413.
    [22] J.Z. Wang, F.Y. Yan, Q.J. Xue. Tribological behavior of PTFE sliding against steel in sea water.Wear,2009,267(9-10):1634-1641.
    [23] D.D. Bao, X.H. Cheng. Evaluation of Tribological Performance of PTFE Composite Filled withRare Earths Treated Carbon Fibers under Water-Lubricated Condition. Journal of Rare Earths,2006,24(5):564-568.
    [24] S.R. Chauhan, Anoop Kumar, I. Singh. Sliding friction and wear behaviour of vinylester and itscomposites under dry and water lubricated sliding conditions. Materials and Design,2010,31(6):2745-2751.
    [25] H. Meng, G.X. Sui, G.Y. Xie, et al. Friction and wear behavior of carbon nanotubes reinforcedpolyamide6composites under dry sliding and water lubricated condition. Composites Science andTechnology,2009,69(5):606-611.
    [26] G. Srinath, R. Gnanamoorthy. Sliding wear performance of polyamide6–clay nanocomposites inwater.Composites Science and Technology,2007,67(3-4):399-405.
    [27] M. Sumer, H. Unal, A. Mimaroglu. Evaluation of tribological behaviour of PEEK and glass fibrereinforced PEEK composite under dry sliding and water lubricated conditions. Wear,2008,265(7-8):1061-1065.
    [28] A. Tanaka, K. Umeda, S. Takatsu. Friction and wear of diamond-containing polyimidecomposites in water and air. Wear,2004,257(11):1096-1102.
    [29] H.Y. Xua, Z.Z. Feng, J.M. Chen, et al. Tribological behavior of the carbon fiber reinforcedpolyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication. MaterialsScience and Engineering A,2006,416(1-2):66-73.
    [30] Y. Yamamoto, M. Hashimoto. Friction and wear of water lubricated PEEK and PPS slidingcontacts Part2. Composites with carbon or glass fibre. Wear,2004,257(1-2):181-189.
    [31]贾均红,陈建敏,周惠娣等.炭纤维增强聚醚醚酮复合材料在水润滑下的摩擦学行为.高分子材料科学与工程,2005,21(2):208-212.
    [32]唐群国,陈晶申,金文浩.氧化锆陶瓷/碳纤增强聚醚醚酮在水润滑下的摩擦磨损特性研究.摩擦学学报,2010,30(6):601-606.
    [33]唐群国,姜静,朱玉泉.聚醚醚酮在水润滑下的摩擦磨损特性研究.华中科技大学学报,2005,33(9):53-55.
    [34] S.R Yu, H.X. Hu, J. Yin. Effect of rubber on tribological behaviors of polyamide66under dryand water lubricated sliding. Wear,2008,265(3-4):361-366.
    [35]T. Saito, T. Hosoe, F. Honda. Chemical wear of sintered Si3N4, hBN and Si3N4–hBN compositesby water lubrication. Wear,2001,247(2):223-230.
    [36] V. Ferreira, H. N. Yoshimura, A. Sinatora. Ultra-low friction coefficient in alumina–silicon nitridepair lubricated with water. Wear,2012,296(1-2):656-659.
    [37] F. Zhou, Y.G. Yuan, X.L. Wang, et al. Influence of nitrogen ion implantation fluences on surfacestructure and tribological properties of SiC ceramics in water-lubrication. Applied Surface Science,2009,255(9):5079-5087.
    [38] N. Liu, J.Z. Wang, B.B. Chen, et al. Tribochemical aspects of silicon nitride ceramic slidingagainst stainless steel under the lubrication of seawater. Tribology International,2013,61:205-213.
    [39] Y.X. Wang, L.P. Wang, Q.J. Xue. Improvement in the tribological performances of Si3N4, SiCand WC by graphite-like carbon films under dry and water-lubricated sliding conditions. Surface andCoatings Technology,2011,205(8-9):2770-2777.
    [40] F. Zhou, K. Kato, K. Adachi. Friction and wear properties of CNx/SiC in water lubrication.Tribology Letters,2005,18(2):153-163.
    [41] J.G. Xu, K. Kato. Formation of tribochemical layer of ceramics sliding in water and its role forlow friction. Wear,2000,245(1-2):61-75.
    [42] M. Chen, K. Kato, K. Adachi. Friction and wear of self-mated SiC and Si3N4sliding in water.Wear,2001,250:246-255.
    [43]周芳,周飞.水润滑硅基非氧化陶瓷摩擦学性能及其表面改性研究进展.润滑与密封,2009,34(2):89-93.
    [44]罗飞,高克玮,陶春虎等.干摩擦及水润滑下氧化铬陶瓷薄膜的摩擦学性能.材料研究及应用,2009,3(1):14-18.
    [45] J. Robertson. Diamond-like amorphous carbon. Materials Science and Engineering R:Reports,2002,37(4-6):129-281.
    [46] A. Grill. Diamond-like carbon coatings as biocompatible materials-an overview. Diamond andRelated Materials,2003,12(2):166-170.
    [47] S.M. Chiu, S.C. Lee, C.H. Wang, et al. Electrical and mechanical properties of DLC coatingsmodified by plasma immersion ion implantation. Journal of Alloys Compounds,2008,449(1-2):379-383.
    [48]R.P.C.C. Statuti, P.A. Radi, L.V. Santos, et al. A tribological study of the hybrid lubrication ofDLC films with oil and water. Wear,2009,267(5-8):1208-1213.
    [49] T. Ohana, X. Wu, T. Nakamura, et al. Formation of lubrication film of diamond-like carbon filmsin water and air environments against stainless steel and Cr-plated balls. Diamond and RelatedMaterials,2007,16(4-7):1336-1339.
    [50] M. Masuko, A. Suzuki, Y. Sagae, et al. Friction characteristics of inorganic or organic thincoatings on solid surfaces under water lubrication. Tribology International,2006,39(12):1601-1608.
    [51] M. Tokoro, Y. Aiyama, M. Masuko, et al. Improvement of tribological characteristics underwater lubrication of DLC-coatings by surface polishing. Wear,2009,267(12):2167-2172.
    [52] H. Ronkainen, S. Varjus, K. Holmberg. Tribological performance of different DLC coatings inwater-lubricated conditions. Wear,2001,249(3-4):267-271.
    [53] M. Suzuki, T. Ohana, A. Tanaka. Tribological properties of DLC films with different hydrogencontents in water environment. Diamond and Related Materials,2004,13(11-12):2216-2220.
    [54] M. Uchidate, H. Liu, A. Iwabuchi, et al. Effects of water environment on tribological propertiesof DLC rubbed against stainless steel. Wear,2007,263:1335-1340.
    [55] L.P. Wang, Y.X. Wang, Y.F. Wang, et al. Tribological performances of non-hydrogenatedamorphous carbon coupling with different coating counterparts in ambient air and water. Wear,2013,300(1-2):20-28.
    [56] Y.X. Wang, L.P. Wang, J.L. Li, et al. Tribological properties of graphite-like carbon coatingscoupling with different metals in ambient air and water. Tribology International,2013,60:147-155.
    [57] X.Y. Wu, T. Ohana, T. Nakamura, et al. Hardness effect of stainless steel substrates ontribological properties of water-lubricated DLC films against AISI440C ball. Wear,2010,268(1-2):329-334.
    [58]沈彬,孙方宏,张志明. CVD金刚石薄膜在水润滑条件下的摩擦磨损性能研究.摩擦学学报,2008,28(1):112-117.
    [59] C. W. M. Silva, J. R.T. Branco, A. Cavaleiro. How can H content influence the tribologicalbehaviour of W-containing DLC coatings. Solid State Sciences,2009,11(10):1778-1782.
    [60] P. V. Bharathy, Q. Yang, M.S.R.N. Kiran, et al. Reactive biased target ion beam depositedW-DLC nanocomposite thin films-Microstructure and its mechanical properties. Diamond andRelated Materials,2012,23:34-43.
    [61] A.A. Gharam, M.J. Lukitsch, M.P. Balogh, et al. High temperature tribological behavior ofW-DLC against aluminum. Surface and Coatings Technology,2011,206(7):1905-1912.
    [62] R.D. Mansano, R. Ruas, A.P. Mousinho, et al. Use of diamond-like carbon with tungsten(W-DLC) films as biocompatible material. Surface and Coatings Technology,2008,202(12):2813-2816.
    [63] S. Zhang, X.L. Bui, X.T. Zeng, et al. Towards high adherent and tough a-C coatings. Thin SolidFilms,2005,482(1-2):138-144.
    [64]Y.H. Lin, H.D. Lin, C. K. Liu, et al. Structure and characterization of the multilayered Ti-DLCfilms by FCVA. Diamond and Related Materials,2010,19(7-9):1034-1039.
    [65] T. Sonoda, S. Nakao, M. Ikeyama. Deposition of Ti/C nano-composite DLC films by magnetronDC sputtering with dual targets. Vacuum,2009,84(5):666-668.
    [66] Y.X. Wang, L.P. Wang, G.A. Zhang, et al. Effect of bias voltage on microstructure and propertiesof Ti-doped graphite-like carbon films synthesized by magnetron sputtering. Surface and CoatingsTechnology,2010,205(3):793-800.
    [67]X.L. Bui, Y.T. Pei, J.Th.M. De Hosson. Magnetron reactively sputtered Ti-DLC coatings onHNBR rubber: The influence of substrate bias. Surface and Coatings Technology,2008,202(20):4939-4944.
    [68] P.C. Tsai, Y.F. Hwang, J.Y. Chiang, et al. The effects of deposition parameters on the structureand properties of titanium-containing DLC films synthesized by cathodic arc plasma evaporation.Surface and Coatings Technology,2008,202(22-23):5350-5355.
    [69] R. Gilmore, R. Hauert. Control of the tribological moisture sensitivity of diamond-like carbonfilms by alloying with F, Ti or Si. Thin Solid Films,2001,398:199-204.
    [70] J.H. Ouyang, S. Sasaki. Friction and wear characteristics of a Ti-containing diamond-like carboncoating with an SRV tester at high contact load and elevated temperature. Surface and CoatingsTechnology,2005,195(2-3):234-244.
    [71] Y.T. Pei, D. Galvan, J.Th.M. De Hosson, et al. Advanced TiC/a-C:H nanocomposite coatingsdeposited by magnetron sputtering. Journal of the European Ceramic Society,2006,26(4-5):565-570.
    [72] K. Polychronopoulou, C. Rebholz, M.A. Baker, et al. Nanostructure, mechanical and tribologicalproperties of reactive magnetron sputtered TiCxcoatings. Diamond and Related Materials,2008,17(12):2054-2061.
    [73] J.H. Ouyanga, S. Sasaki, T. Murakami, et al. Mechanical and unlubricated tribological propertiesof titanium-containing diamond-like carbon coatings. Wear,2009,266(1-2):96-102.
    [74] F. Zhao, H.X. Li, L. Ji, et al. Ti-DLC films with superior friction performance. Diamond andRelated Materials,2010,19(4):342-349.
    [75]V. Singh, V. Palshin, R.C. Tittsworth, et al. Local structure of composite Cr-containingdiamond-like carbon thin films. Carbon,2006,44(7):1280-1286.
    [76] V. Singh, J.C. Jiang, E.I. Meletis. Cr-diamondlike carbon nanocomposite films:Synthesis,characterization and properties. Thin Solid Films,2005,489(1-2):150-158.
    [77] N. Ali, Y. Kousar, T.I. Okpalugo, et al. Human micro-vascular endothelial cell seeding onCr-DLC thin films for mechanical heart valve applications. Thin Solid Films,2006,515(1):59-65.
    [78] W. Dai, H. Zheng, G.S. Wu, et al. Effect of bias voltage on growth property of Cr-DLC filmprepared by linear ion beam deposition technique. Vacuum,2010,85(2):231-235.
    [79]G. Gassner, P.H. Mayrhofer, C. Mitterer, et al. Structure-property relations in Cr-C/a-C:Hcoatings deposited by reactive magnetron sputtering. Surface and Coatings Technology,2005,200(1-4):1147-1150.
    [80] W. Dai, P.L. Ke, A.Y. Wang. Microstructure and property evolution of Cr-DLC films withdifferent Cr content deposited by a hybrid beam technique. Vacuum,2011,85(8):792-797.
    [81] W. Dai, A.Y. Wang. Synthesis, characterization and properties of the DLC films with low Crconcentration doping by a hybrid linear ion beam system. Surface and Coatings Technology,2011,205(8-9):2882-2886.
    [82] X. Yu, C.B. Wang, H. Meng, et al. Influence of Cr Contents and Nanograin Sizes onMicrostructure, Mechanical and Sliding Tribological Behaviors of Hard Cr-Diamond-Like CarbonFilms. Journal of Nanoscience and Nanotechnology,2010,10(8):5379-5382.
    [83] S.K. Pal, J.C. Jiang, E. I. Meletis. Effects of N-doping on the microstructure, mechanical andtribological behavior of Cr-DLC films. Surface and Coatings Technology,2007,201(18):7917-7923.
    [84] W. Dai, G.S. Wu, A.Y. Wang. Preparation, characterization and properties of Cr-incorporatedDLC films on magnesium alloy. Diamond and Related Materials,2010,19(10):1307-1315.
    [85] W.H. Kao, Y.L. Su, S.H. Yao. Tribological property and drilling application of Ti–C:H andCr-C:H coatings on high-speed steel substrates. Vacuum,2006,80(6):604-614.
    [86] C.P. Lungu. Nanostructure influence on DLC-Ag tribological coatings. Surface and CoatingsTechnology,2005,200(1-4):198-202.
    [87] H.W. Choi, J-H. Choi, K-R. Lee, et al. Structure and mechanical properties of Ag-incorporatedDLC films prepared by a hybrid ion beam deposition system. Thin Solid Films,2007,516(2-4):248-251.
    [88] X.Y. Wu, M. Suzuki, T. Ohana, et al. Characteristics and tribological properties in water ofSi-DLC coatings. Diamond and Related Materials,2008,17(1):7-12.
    [89] F. Zhao, H.X. Li, L. Ji, et al. Superlow friction behavior of Si-doped hydrogenated amorphouscarbon film in water environment.Surface and Coatings Technology,2009,203(8):981-985.
    [90] X.Y. Wu, T. Ohan, A. Tanaka, et al. Tribochemical reaction of Si-DLC coating in water studiedby stable isotopic tracer. Diamond and Related Materials,2008,17(2):147-153.
    [91]P. Papakonstantinou, J.F. Zhao, P. Lemoine, et al. The effect of Si incorporation on theelectrochemical and nanomechanical properties of DLC thin films. Diamond and Related Materials,2002,11(3-6):1074-1080.
    [92]J. Choi, S. Nakao, J. Kim, et al. Corrosion protection of DLC coatings on magnesium alloy.Diamond and Related Materials,2007,16(4-7):1361-1364.
    [93]M. Ikeyama, S. Nakao, T. Sonoda, et al. Improvement of corrosion protection property ofMg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetronsputtering. Nuclear Instrument and Methods B,2009,267(8-9):1675-1679.
    [94]J.H. Sui, Z.G. Zhang, W. Cai. Surface characteristics and electrochemical corrosion behaviour offluorinated diamond-like carbon(F-DLC) films on the NiTi alloys. Nuclear Instrument and Methods B,2009,267(15):2475-2479.
    [95]R.C.C. Rangel, M.E.P. Souza, W.H. Schreiner, et al. Effect of the fluorination of DLC film on thecorrosion protection of aluminum alloy(AA5052). Surface and Coatings Technology,2010,204(18-19):3022-3028.
    [96]F.R. Marciano, E.C. Almeida, D.A. Lima-Oliveira, et al. Improvement of DLC electrochemicalcorrosion resistance by addiction of fluorine. Diamond and Related Materials,2010,19(5-6):537-540.
    [97]N.W. Khun, E. Liu. Enhancement of adhesion strength and corrosion resistance of nitrogen orplatinum/ruthenium/nitrogen doped diamond-like carbon thin films by platinum/ruthenium underlayer.Diamond and Related Materials,2010,19(7-9):1065-1072.
    [98]N.W. Khun, E. Liu. Investigation of corrosion behaviour of nitrogen doped andplatinum/ruthenium doped diamond-like carbon thin films in Hank’s solution. Materials Science andEngineering C,2011,31(7):1539-1544.
    [99]J. Wang, G.A. Zhang, L.P. Wang. The Influence of Metal Alloyed on the Structure and WearProperties of CrN Coatings. Lubrication Engineering,2008,33(5):30-32.
    [100]O. Knotek, F. Loefer, G. Dreme. Multicomponent and multilayer physically vapour depositedcoatings for cutting tools. Surface and Coatings Technology,1992,54-55:241-248.
    [101] F. Zhou, K.M. Chen, M.L. Wang, et al. Friction and wear properties of CrN coatings slidingagainst Si3N4balls in water and air. Wear,2008,265(7-8):1029-1037.
    [102] L. George, D.K Wayne, B. Menachem. Structure refinement of titanium carbonitride (TiCN).Materials Letters,1998,35(5-6):344-350.
    [103] L.F. Senn, C.A. Achetea, T. Hirsch, et al. Structural, chemical, mechanical and corrosionresistance characterization of TiCN coatings prepared by magnetron sputtering. Surface and CoatingsTechnology,1997,94-95:390-397.
    [104] S.J. Bull, D.G. Bhat, M.H. Staia. Properties and performance of commercial TiCN coatings.Part1: coating architecture and hardness modelling. Surface and Coatings Technology,2003,163-164:499-506.
    [105] L. Karlsson, L. Hultman, M.P. Johansson, et al. Growth, microstructure, and mechanicalproperties of arc evaporated TiCxN1x(0≤x≤1) films. Surface and Coatings Technology,2000,126(1):1-14.
    [106] Y.H. Cheng, T. Browne, B. Heckerman. Influence of CH4fraction on the composition, structure,and internal stress of the TiCN coatings deposited by LAFAD technique. Vacuum,2010,85(1):89-94.
    [107] L. Escobar-Alarcona, V. Medinaa, Enrique Campsa, et al. Microstructural characterization ofTi-C-N thin films prepared by reactive crossed beam pulsed laser deposition. Applied Surface Science,2011,257(21):9033-9037.
    [108] S.W. Huang, M.W. Ng, M. Samandi, et al. Tribological behaviour and microstructure ofTiCxN(1x)coatings deposited by filtered arc. Wear,2002,252(7-8):566-579.
    [109] M.L. McConnell, D.P. Dowling, N. Donnelly, et al. The effect of thermal treatments on thetribological properties of PVD hard coatings. Surface and Coatings Technology,1999,116:1133-1137.
    [110] T. Polcar, T. Kubart, R. Novak, et al. Comparison of tribological behaviour of TiN, TiCN andCrN at elevated temperatures. Surface and Coatings Technology,2005,193(1-3):192-199.
    [111]T. Polcar, R. Novak, P. Sirok. The tribological characteristics of TiCN coating at elevatedtemperatures. Wear,2006,260(1-2):40-49.
    [112] S. Guruvenket, D. Li, J.E. Klemberg-Sapieha, et al. Mechanical and tribological properties ofduplex treated TiN, nc-TiN/a-SiNxand nc-TiCN/a-SiCN coatings deposited on410low alloy stainlesssteel. Surface and Coatings Technology,2009,203(19):2905-2911.
    [113] Y.H. Cheng, T. Browne, B. Heckerman, et al. Influence of the C content on the mechanical andtribological properties of the TiCN coatings deposited by LAFAD technique. Surface and CoatingsTechnology,2011,205(16):4024-4029.
    [114] G.J. Zhang, B. Li, B.L. Jiang, et al. Microstructure and tribological properties of TiN, TiC andTi(C, N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating. AppliedSurface Science,2009,255(21):8788-8793.
    [115] R. Chen, J.P. Tu, D.G. Liu, et al. Microstructure, mechanical and tribological properties ofTiCN nanocomposite films deposited by DC magnetron sputtering. Surface and Coatings Technology,2011,205(21-22):5228-5234.
    [116] B. Warcholinski, A. Gilewicz, J. Ratajski, et al. An analysis of macroparticle-related defects onCrCN and CrN coatings in dependence of the substrate bias voltage. Vacuum,2012,86(9):1235-1239.
    [117] Y.Y. Chang, D.Y. Wang, W.T. Wu. Tribological enhancement of CrN coatings by niobium andcarbon ion implantation. Surface and Coatings Technology,2004,177-178:441-446.
    [118]E.Y. Choi, M.C. Kang, D.H. Kwon, et al. Comparative studies on microstructure and mechanicalproperties of CrN, Cr–C–N and Cr–Mo–N coatings. Journal of Materials Process Technology,2007,187-188:566-570.
    [119] B. Warcholinski, A. Gilewicz, Z. Kuklinski, et al. Hard CrCN/CrN multilayer coatings fortribological applications. Surface and Coatings Technology,2010,204(14):2289-2293.
    [120] P.F. Hu,B.L. Jiang. Study on tribological property of CrCN coating based on magnetronsputtering plating technique. Vacuum,2011,85(11):994-998.
    [121] C.Y. Tong, J.W. Lee, C.C. Kuo, et al. Effects of carbon content on the microstructure andmechanical property of cathodic arc evaporation deposited CrCN thin films. Surface and CoatingsTechnology,2013,231:482-486.
    [122] H.C. Barshilia, M.S. Prakash, A. Poojari, et al. Corrosion behaviour of TiN/a-C superhardnanocomposite coatings prepared by a reactive DC magnetron sputtering process. Transaction of theInstitute of Metal Finishing,2004,82:123-128.
    [123] L.F. Sienna, C.A. Achete, T.Hirsch, et al. Characterisation of PVD TiCN layers by physical andelectrochemical methods. Surface Engineering,2005,21(2):144-150.
    [124] R.A. Antunes, A.C.D. Rodas, N.B. Lima, et al. Study of the corrosion resistance and in vitrobiocompatibility of PVD TiCN-coated AISI316L austenitic stainless steel for orthopedicapplications. Surface and Coatings Technology,2010,205(7):2074-2081.
    [125] D.G. Liu, J.P. Tu, R. Chen, et al. Microstructure, corrosion resistance and biocompatibility oftitanium incorporated amorphous carbon nitride films. Surface and Coatings Technology,2011,206(1):165-171.
    [126] D.K. Merl, P. Panjan, M. Cekada, et al. The corrosion behavior of Cr-(C,N) PVD hard coatingsdeposited on various substrates. Electrochimica Acta,2004,49(9-10):1527-1533.
    [127]B.A. Boukamp. A. linear Kronig-Kramers transform test for immittance data validation. Journalof the Electrochemical Socciety,1995,142(6):1885-1894.
    [128]C. Anandan, V.K. William Grips, V. Ezhil Selvi, et al. Electrochemical studies of stainless steelimplanted with nitrogen and oxygen by plasma immersion ion implantation, Surface and CoatingsTechnology,2007,201(18):7873-7879.
    [129] K. Yamamoto, K. Matsukado. Effect of hydrogenated DLC coating hardness on the tribologicalproperties under water lubrication. Tribology International,2006,39(12):1609-1614.
    [130] Q.Z. Wang, F. Zhou, X.N. Wang, et al. Comparison of tribological properties of CrN, TiCN andTiAlN coatings sliding against SiC balls in water. Applied Surface Science,2011,257(17):7813-7820.
    [131] K. Yamamoto, T. Sato, M. Takeda. Structural analysis of (Cr1-xSix)N coatings and tribologicalproperty in water environment. Surface and Coatings Technology,2005,193(1-3):167-172.
    [132] Q.Z. Wang, F. Zhou, K.M. Chen, et al. Friction and wear properties of TiCN coatings slidingagainst SiC and steel balls in air and water. Thin Solid Films,2011,519(15):4830-4841.
    [133] C. Casiraghi, A.C. Ferrari, J. Robertson. Raman spectroscopy of hydrogenated amorphouscarbon. Physical Review B,2005,72(085401):1-14.
    [134] S. Zhang, X.T. Zeng, H. Xie, et al. A phenomenological approach for the Id/Igratio and sp3fraction of magnetron sputtered a-C films. Surface and Coatings Technology,2000,123(2-3):256-260.
    [135] I. Dreiling, D. Stiens, T. Chasse. Raman spectroscopy investigations of TiBxCyNzcoatingsdeposited by low pressure chemical vapor deposition. Surface and Coatings Technology,2010,205(5):1339-1344.
    [136] T. Zehnder, J. Patscheider. Nanocomposite TiC/a–C:H hard coatings deposited by reactive PVD.Surface and Coatings Technology,2000,133-134:138-144.
    [137] A. Schroeder, G. Francz, A. Bruinink, et al. Titanium containing amorphous hydrogenatedcarbon films (a-C: H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cellcultures in vitro. Biomaterials,2000,21(5):449-456.
    [138] O.A. Fouad, A.K. Rumaiz, S. Ismat Shah. Reactive sputtering of titanium in Ar/CH4gasmixture: Target poisoning and film characteristics. Thin Solid Films,2009,517(19):5689-5694.
    [139] P. Merel, M. Tabbal, M. Chaker, et al. Direct evaluation of the sp3content indiamond-like-carbon films by XPS. Applied Surface Science,1998,136(1-2):105-110.
    [140] W.C. Oliver, G.M. Pharr. An improved technique for determining hardness and elastic modulususing load and displacement sensing indentation experiments. Journal of Materials Research,1992,7(6):1564-1583.
    [141] N.A. Sakharova, J.V. Fernandes, M.C. Oliveira, et al. Influence of ductile interlayers onmechanical behaviour of hard coatings under depth-sensing indentation: a numerical study on TiAlN.Journal of Materials Science,2010,45(14):3812-3823.
    [142] T. Ohana,T. Nakamura, M. Suzuki, et al. Tribological properties and characterization of DLCfilms deposited by pulsed bias CVD. Diamond and Related Materials,2004,13(4-8):1500-1504.
    [143] T. Ohana, M. Suzuki, T. Nakamura, et al. Friction behaviour of Si-DLC/DLC multi layer filmson steel substrate in water environment. Diamond and Related Materials,2005,14(3-7):1089-1093.
    [144] F. Zhou, X. Wang, K. Kato, et al. Friction and wear property of a-CNxcoatings sliding againstSi3N4balls in water. Wear,2007,263(7-12):1253-1258.
    [145] F. Zhou, K. Adachi, K. Kato. Sliding friction and wear property of a-C and a-CNxcoatingsagainst SiC balls in water. Thin Solid Films,2006,514(1-2):231-239.
    [146] H. Ronkainen, S. Varjus, K. Holmberg. Friction and wear properties in dry, water-andoil-lubricated DLC against alumina and DLC against steel contacts. Wear,1998,222(2):120-128.
    [147] Y.T. Pei, X.L. Bui, X.B. Zhou, J.Th.M. De Hosson, Tribological behavior of W-DLC coatedrubber seals. Surface and Coatings Technology,2008,202(9):1869-1875.
    [148] Y.L. Su, W.H. Kao. Optimum Me-DLC coatings and hard coatings for tribological performance.Journal of Materials Engineering and Performance,2000,9(1):38-50.
    [149] http://srdata.nist.gov/xps/Default.aspx.
    [150] R. Lamni, E. Martinez, S.G. Springer, et al. Optical and electronic properties of magnetronsputtered ZrNxthin films Thin Solid Films,2004,447-448:316-321.
    [151] Z.B. Zhao, Z.U. Rek, S.M. Yalisove, et al. Phase formation and structure of magnetronsputtered chromium nitride films: in-situ and ex-situ studies. Surface and Coatings Technology,2004,185(2-3):329-339.
    [152] Z.B. Zhao, Z.U. Rek, S.M. Yalisove, et al. Nanostructured chromium nitride films with a valleyof residual stress. Thin Solid Films,2005,472(1-2):96-104.
    [153] C.P. Liu, H.G. Yang. Deposition temperature and thickness effects on the characteristics ofdc-sputtered ZrNxfilms. Materials Chemistry and Physics,2004,86(2-3):370-374.
    [154] Y.H. Cheng, T. Browne, B. Heckerman. TiCN coatings deposited by large area filtered arcdeposition technique. Journal of Vacuum Science and Technology A,2010,28(3):431-437.
    [155] I. Dreiling, A. Haug, H. Holzschuh, et al. Raman spectroscopy as a tool to study cubic Ti-C-NCVD coatings. Surface and Coatings Technology,2009,204(6-7):1008-1012.
    [156] H. Liu, Y.H. Jiang, Z.L. Zhan, et al. XPS characterization of TiN layer on bearing steel surfacetreated by plasma immersion ion implantation and deposition technique. Spectroscopy and SpectralAnalysis,2009,29(9)2585-2589.
    [157] L.C. Agudelo, R. Ospina, H.A. Castillo, et al. Synthesis of Ti/TiN/TiCN coatings grown ingraded form by sputtering dc. Physica Scripta,2008, T131:014006.
    [158] M. Guemmaz, G. Moraitis, A. Mosser, et al. Band structure of substoichiometric titaniumnitrides and carbonitrides: spectroscopical and theoretical investigations. Journal ofPhysics-Condensed Matter,1997,9(40):8453-8463.
    [159]J. Stallard, S. Yang, D.G. Teer, et al. The Friction and Wear Properties of CrN, Graphit-iC andDymon-iC Coatings in Air and under Oil-lubrication. Transactions of Materials and Heat Treatment,2004,10(05B):858-860.
    [160]N. Schell, J.H. Petersen, J. Bottiger, et al. On the development of texture during growth ofmagnetron-sputtered CrN. Thin Solid Films,2003,426(1-2):100-110.
    [161]S.H. Yao, Y.L. Su. The tribological potential of CrN and Cr(C,N) deposited by multi-arc PVDprocess. Wear,1997,212(1):85-94.
    [162]B. Navinsek, P. Panjan. Oxidation resistance of PVD Cr, Cr-N and Cr-N-O hard coatings.Surface and Coatings Technology,1993,59(1-3):244-248.
    [163]H. Ichimura, A. Kawana. High temperature oxidation of ion-plated CrN films. Journal ofMaterials Research,1994,9(1):151-155.
    [164]C. Liu, Q. Bi, A. Matthews. EIS comparison on corrosion performance of PVD TiN and CrNcoated mild steel in0.5N NaCl aqueous solution. Corrosion Science,2001,43(10):1953-1961.
    [165]G. Bertrand, H. Mahdjoub, C. Meunier. A study of the corrosion behaviour and protectivequality of sputtered chromium nitride coatings. Surface and Coatings Technology,2000,126(2-3):199-209.
    [166]S.J. Park, K-R. Lee, S-H. Ahn, et al. Instability of diamond-like carbon (DLC) films duringsliding in aqueous environment. Diamond and Related Materials,2008,17(3):247-251.
    [167] Y. Suda, H. Kawasaki, R. Terajima, et al. Chromium Carbide Thin Films Synthesized by PulsedNd:YAG Laser Deposition. Japanese Journal of Applied Physics,1999,38:3619-3621.
    [168] A. Paul, J. Lim, K. Choi, et al. Effects of deposition parameters on the properties of chromiumcarbide coatings deposited onto steel by sputtering. Materials Science and Engineering A,2002,332(1-2):123-128.
    [169] B. Warcholinski, A. Gilewicz, Z. Kuklinski, et al. Arc-evaporated CrN, CrN and CrCN coatings.Vacuum,2009,83(4):715-718.
    [170]T. Polcar, L. Cvrcek, P. Siroky, et al. Tribological characteristics of CrCN coatings at elevatedtemperature. Vacuum,2005,80(1-3):113-116.
    [171] J.C. Walker, I.M. Ross, C. Reinhard, et al. High temperature tribological performance ofCrAlYN/CrN nanoscale multilayer coatings deposited on γ-TiAl. Wear,2009,267(5-8):965-975.
    [172] H.C. Barshilia, K.S. Rajam. Raman spectroscopy studies on the thermal stability of TiN, CrN,TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. Journal of MaterialsResearch,2004,19(11):3196-3205.
    [173] F. Guinneton, O. Monnereau, L. Argeme, et al. PLD thin films obtained from CrO3and Cr8O21targets. Applied Surface Science,2005,247(1-4):139-144.
    [174] D. Stanoi, G. Socol, C. Grigorescu, et al. Chromium oxides thin films prepared and coated insitu with gold by pulsed laser deposition. Materials Science and Engineering B,2005,118(1-3):74-78.
    [175] V. Ezirmik, E. Senel, K. Kazmanli, et al. Effect of copper addition on the temperaturedependent reciprocating wear behaviour of CrN coatings. Surface and Coatings Technology,2007,202(4-7):866-870.
    [176]M. Sivakumar, S. Rajeswari, V. Thulasiraman, Metallographic investigation of a failed stainlesssteel orthopaedic implant device. J. Mater. Sci. Lett,1996,15(24):2192-2194.
    [177]K. Meinert, G. Wolf, Corrosion studies of stainless steel316L, modified by ion beam techniques,under simulated physiological conditions. Surf. Coat. Technol,1998,98(1-3):1148-1156.
    [178]G. Rondelli, B. Vincentini, A. Cigada, Localised corrosion tests on austenitic stainless steels forbiomedical applications. Br. Corros. J,1997,32(3):193-196.
    [179]Y. Khelfaoui, M. Kerkar, A. Bali, F. Dalar, Electrochemical characterisation of a PVD film oftitanium on AISI316L stainless steel. Surf. Coat. Technol,2006,200(14-15):4523-4529.
    [180]J.H. Sui, W. Cai, Effect of bias voltage on the structure and electrochemical corrosion behaviourof hydrogenated amorphous carbon(a-C:H) films on NiTi alloys. Surf. Coat. Technol,2007,201(15):6906-6909.
    [181]S.S. Hadinata, M.T. Lee, S.J. Pan, W.T. Tsai, C.Y. Tai, C.F. Shih, Electrochemicalperformances of diamond-like carbon coatings on carbon steel, stainless steel, and brass. Thin SolidFilms,2013,529:412-416.
    [182]L. Mohan, C. Anandan, V.K. William Grips, Corrosion behaviour of titanium alloy Beta-21Scoated with diamond like carbon in Hank’s solution. Appl. Surf. Sci,2012,258(17):6331-6340.
    [183]L. Joska, J. Fojt, O. Mestek, L. Cvrcek, V. Brezina, The effect of a DLC coating adhesion layeron the corrosion behaviour of titanium and the Ti6Al4V alloy for dental implants. Surf. Coat. Technol,2012,206(23):4899-4906.
    [184]R.Q. Hang, S.L. Ma, P.K. Chu. Corrosion behaviour of DLC-coated NiTi alloy in the presenceof serum proteins. Diamond and Related Materials,2010,19(10):1230-1234.
    [185]Z. Moser, K. Rzyman. Thermodynamic studies on liquid AgCl KCl LiCl solutions.Electrochimica Acta,1995,25(2):183-187.
    [186]A. Zeng, E. Liu, S. Zhang, et al. Impedance study on electrochemical characteristics of sputteredDLC films. Thin Solid Films,2003,426(1-2):258-264.
    [187]N. Figueira, T.M. Silva, M.J. Carmezim, et al. Corrosion behaviour of NiTi alloy.Electrochimica Acta,2009,54(3):921-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700