用户名: 密码: 验证码:
半干旱区苜蓿沟垄覆盖种植对集水保墒和土壤环境影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对西北地区种植结构单一,生产力低下,水资源不足导致紫花苜蓿出苗率、成苗率低,生长发育不良、产量低的特点,研究不同起垄覆盖集水保墒技术对紫花苜蓿产量和品质的影响,观测不同覆盖材料和不同沟垄比对干草产量、出苗率、土壤贮水量及土壤质量的影响。试验以紫花苜蓿为材料,采用田间沟垄覆盖集水种植设计,垄为集雨区,沟为种植区,小区随机排列,共设9个处理(4个沟垄比处理×2种垄覆盖方式×1种沟覆盖方式+1平作(CK)),重复3次。4种沟垄比为60:30、60:45、60:60、60:75(单位cm),垄覆盖方式为覆膜垄和土垄,覆膜垄上塑料薄膜宽1.2 m,厚度0.08 mm,边缘用土压牢,以防被风损害,土垄为人工原土夯实。沟覆盖方式为播种后沟内用秸秆(小麦)覆盖,秸秆覆盖量6600~6750 kg.hm-2,当牧草出苗率达70 %时,去除秸秆覆盖(膜垄沟覆麦秆简称为膜垄沟秸,土垄沟覆麦秆简称为土垄沟秸)。集雨垄高20 cm,顶部成弧形,垄面与地面成45°角,垄长6 m,每个小区有四条垄三条沟。对照为平地不覆盖秸秆,所有处理播种量、播种方式、播种深度、田间管理措施相同。研究结果表明:
     1.膜垄沟秸处理提高了苜蓿的出苗率和成苗率,缩短了出苗天数和成苗天数。膜垄沟秸的平均出苗率为82.7%,成苗率为70.81%;土垄集雨面平均出苗率为74.2%,成苗率为59.03%。平作(CK)的出苗率和成苗率分别为77.9%和67.16%。出苗率的排序为MR60 > MR75> MR45 > SR60 > SR75 > CK >MR30 > SR45 > SR30,成苗率的排序为MR60 > MR75> MR45 > CK > SR75 > MR30> SR60 >SR45 > SR30,MR60的出苗率和成苗率最高,分别为90.37%a和78.33%a。
     2.膜垄沟秸处理提高了单位面积的干草产量,促进了苜蓿对矿物质全磷全钙的吸收和粗蛋白粗脂肪的合成代谢,同时抑制了酸性纤维的合成。宽垄覆膜沟秸处理(沟宽:垄宽= 75 : 60 cm和沟宽:垄宽= 60 : 60 cm)的增产效果好于窄垄覆膜沟秸处理(沟宽:垄宽= 45 : 60 cm和沟宽:垄宽=30 : 60 cm),各处理干草产量次序为MR60 > MR75 > MR45 > MR30 > SR60 > SR75 > SR45 > SR30。MR60的综合表现最佳,苜蓿植株全钙含量为1.521%,全磷含量为0.571%,酸性纤维为11.294%,粗脂肪为2.973%,粗蛋白为27.413%。
     3.垄膜沟秸处理对汇集雨水、降低土壤水分蒸发面、改善0-120cm土壤水分供应状况具有明显的作用和效果;土垄集雨作用并不明显。第一茬苜蓿生长阶段MR75处理土壤贮水量比CK高25.08mm,第二茬苜蓿生长阶段MR75处理土壤贮水量比CK高24.84mm。
     4.沟垄覆盖集水栽培,一定程度上能够增加表层0-20cm土壤中有效养分,与CK相比,膜垄沟秸0-20cm表层土壤全氮含量显著提高,抑制了土壤有机碳含量的下降,降低了速效磷的下降程度,全磷全氮和有机质含量上升,速效成分下降。提高了水分效率,MR60的水分利用效率最高。
     总之,膜垄沟秸处理与常规平作相比,特别是MR60和MR75处理,增加了土壤中养分含量,尤其是增加了土壤全氮含量,抑制有机质含量的下降速度,改善降水空间分配和土壤供水能力,增加局部水分供给,改善紫花苜蓿田间生态环境和水分利用率,提高雨水利用效率,提高苜蓿产量。
To aim to improve the hypogenesis of alfalfa resulted from single farming structure, low productivity and water resource deficiency, based on the generation of experiences and lessons of production practice in the past years, further research was conducted to investigate the effect of differences mulch and ridge integrated skills on the development and products of alfalfa, the effects of differences mulch and ridge on the rate of emergence, soil water storage and hay product.
     The research adopted mulch and ridge integrated skills to grow alfalfa, furrows as planting areas, ridges as water-harvesting areas, experimental area was arranged at random, nine treatments(4 furrows and ridges ratio×2 mulched ridges pattern + 1 control), three replicate, where 4 furrows and ridges ratio(1:0.5、1: 0.75、1: 1和1: 1.25, that meant furrows and ridges ratios were 60:30、60:45、60:60 and 60:75 respectively, unit mm), mulched ridges pattern were plastic mulched and soil bared ridges, the width and thickness of the plastic film of plastic mulched ridge were 1.2 m and 0.08 mm respectively, the plastic mulch edges were compressed with soil in case of wind damage, which the soil bared ridges were original soil rammed. The seeds were sowed in the furrows, and then were mulched with straw of 6600~6750 kg.hm-2, when the rate of seedling emergence was 70%, the straw was removed. The height of water-harvesting ridges was 20cm, the top of which was arc; ridge surface and ground were angled. 45 degree, the width of ridges were 6m, every plots had four ridges and three furrows.The results as shown follows:
     1. The average rate of seedling emergence and rate of seedling establishment were increased and at the same time the days of seedling emergence and seedling storage were decreased by the mulched ridge treatment. The average rate of seedling emergence and rate of seedling establishment in the mulched ridge treatment were 82.7% and 70.81 respectively; the average rate of seedling emergence and rate of seedling establishment in the bared ridge treatment were 82.7% and 70.81% respectively. The rates of seedling emergence were ordered as MR60 > MR75> MR45 > CK > SR75 > MR30> SR60 >SR45 > SR30,while the highest of them was MR60, which were 90.37%a and 78.33%a respectively.
     2. The mulched ridge treatment increased the hay product per area as well as the synthesis of crude protein and absorption of total P. The wider mulched ridge treatment (furrow width: ridge width=75:60 and furrow width: ridge width=60:60) increased product more than the narrower mulched ridge treatment (furrow width: ridge width=45:60 and furrow width: ridge width=30:60), the sequence of hay product is MR60 > MR75 > MR45 > MR30 > SR60 > SR75 > SR45 > SR30. The highest of them was MR60, and its total calcium content、total P content、acid fiber、crude fat and crude protein were 1.521%、0.571%、11.294%、2.973% and 27.413% respectively.
     3. The cultivation of mulch and ridge integrated cultivation had an especial effect on the water-harvesting of 0-120cm soil layer. The mulched ridge treatment has a significant effect on the water-harvesting、the reduction of soil water transpiration area and the improvement of water supply. On the contrary, the bared ridge treatment had not showed significant effect. The average soil water storage of MR75 during the first-cut alfalfa growing period was higher than CK by 25.08mm, while during the second-cut alfalfa growing period was higher than CK by 24. 84mm.
     4. Among the cultivation of mulch and ridge integrated cultivation, the mulched ridge treatment had a significant effect on the increase of soil effective nutrition, especially the available N in the 0~20cm soil layer; inhibited the reduction of soil organic carbon, reduced the decreasing rate of available soil P, increased surface water as well as water use efficiency, while MR60 showed the highest water use efficiency. The total P and N and soil organic matter was increased and the available ingredients were reduced in the MR60 treatment.
     In conclusion, compared mulched ridge treatment with conventional cultivation in a flat land, compared mulched ridge treatment with and bared ridge treatment, specially the MR60 and MR 75, increased the soil surface temperature, water use efficiency, soil nutrition content, especially the soil N and SOC content, improve the field ecology environment of alfalfa, to realize the purpose of increase the alfalfa product and farmers income, in addition, to provide technologic support to the conversion cultivated land to grass and ecologic construction strategy.
引文
1. Boers TM, Ben Asher J. A review of rainwater harvesting. Agricultural Water Management.5. 145-158.
    2. Carter D C, Miller S. 1991. Three years experience with on-farm water catchment water harvesting systems in Botswana. Agricultural water management, 19:191–203.
    3. Cook S, Li F R, Wei H L. 2000. Rainwater harvesting agriculture in Gansu province, People’s of Republic of China. Soil and water conservation, 55(2):112–114.
    4. Li X Y, Gong J D, Wei X W. 2000. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semiarid region of China. Journal of arid environments, 46: 371– 382.
    5. Li X Y, Gong J D. 2002. Effect of different ridge: furrow ratios and supplement irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agricultural water management, 54: 243–254.
    6. Li X Y, Gong J D, Gao Q Z, et al. 2001. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions. Agricultural water management, 50:173–183.
    7. PassiouraJ.B.Rootsanddroughtresistanee.Agrieultural Water Management, 1983, 7, 265-280.
    8. Ruppel S , Merbach W, Makswitat E , et al. N dynamics when growing pickling cucumbers under plastic film mulch on a loamy sandy soil in NE Germany [J] . Mitteilungen der Deutschen Bo2 denkundli chen Gesellschaft,996 ,79 :263–266.
    9. Wang Q, Zhang E H, Li F M, et al, 2008. Runoff efficiency and the technique of micro-water harvesting with ridges and furrows for potato production in semi-arid areas. Water resources management, 22: 1431–1443.
    10. Wang Q, Zhao WZ , LI FR, et al. Effects of different irrigation and N supply levels on yield of spring wheat. water use efficiency and Nitrate nitrogen accumulation on a recently reclaimed sandy farmland. (SCI) (Submitted)
    11. Wang X L, Li F M, Jia Y, et al. 2005. Increasing potato yields with additional water and increased soil temperature. Agricultural water management, 78: 181–194.
    44.李锋瑞.干旱农业生态系统研究.西安:陕西科学技术出版社.1998. 163– 165.
    45.李洪文,高焕文,周兴祥等.旱地玉米保护性耕作经济效益分析.干早地区农业研究.
    46.李军,王龙昌,孙小文等.宁南半干旱偏旱区旱作农田沟垄径流集水蓄墒效果与增产效应研究[J].干旱地区农业研究. 1997. 15(1):8-13.
    47.李建奇.覆膜对春玉米土壤温度、水分的影响机理研究.耕作与栽培. 2006.5:47-49.
    48.李克煌.论降雨径流的集存水土保持学报告. 1994. 8(1): 73-77.
    49.李世清,李凤民,宋秋华.半干旱地区地膜覆盖对土壤氮素有效性的影响.生态学报. 200la. 21(9): 1519-1526.
    50.李小雁.干旱半干旱过渡带雨水集流实验与微型生态集雨模式[D].甘肃:中国科学院寒区旱区环境与工程研究所. 2000.
    51.李小雁,龚家栋,高前兆.人工集水面临界产流降雨量确定实验研究.水科学进展. 2001b. 12(4): 516– 522.
    52.李小雁,龚家栋.人工集水面降雨径流观测实验研究.水土保持学报. 2001a. 15(1): 1– 4.
    53.李小雁,张瑞玲.旱作农田沟垄微型集雨结合覆盖玉米种植试验研究.水土保持学报. 2005. 19(2) : 45– 52.
    54.李小雁.半干旱干旱过渡带雨水集流试验与微型生态集雨模式.中国科学院寒区早区环境与工程研究所博士学位论文. 2000.
    55.李志军,赵爱萍,丁晖兵等.旱地玉米垄沟周年覆膜栽培增产效应研究.干旱地区农业研究.2006(3):12-17.
    56.梁永超,胡蜂,杨茂成等.水稻覆膜旱作高产节水机理研究.中国农业科学. 1999. 32(1):26-32.
    57.刘昌明,何希吾.中国21世纪水问题方略.北京.科学出版社. 1996.
    58.刘昌明,牟海省.论雨资源及雨水利用的内涵.见:中国水问题研究.北京:气象出版社. 1996. 16160-164.
    59.刘昌明,牟海省.我国水资源可持续开发中的雨水利用.中国雨水利用研究文集. 1998: 1-7.
    60.刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控.北京.科学出版社. 1999.
    61.刘昌明,张喜英,由汉正.大型蒸渗仪与小型棵间蒸发器结合测定小麦蒸散的研究.水力学报. 1998(10): 36-39.
    62.刘昌明.农业水资源配置效果的计算分析.自然资源学报. 1987. 2(l): 100-106.
    63.刘连友.风蚀地貌动力过程的实验研究.中国科学院寒区旱区环境与工程研究所博士学位论文. 1999.
    64.刘庆华,朱伟峰,马永胜.旱作物垄间覆膜苗带地温与气温的关系.东北农业大学学报. 2005(10):632-634
    65.刘贤赵,康绍忠.降雨入渗和产流问题研究的若干进展和评述阴.水土保持通报. 1999.
    66.刘效瑞.旱农田地膜蚕豆高产栽培综合配套技术研究.干旱地区农业研究. 2000. 18(2):40-46.
    67.刘正辉.半干旱区农田微集水种植带型优化设计研究.甘肃农业大学硕士论文. 2001.
    68.马其东,许鹏,李卫军等.沟垄作种植牧草改良重盐渍草地的效果及其水盐动态.草地学报. 1995,5(2): 85 - 92.
    69.牛伊宁,沈禹颖,高崇岳等.覆盖和耕作对黄土高原冬小麦土壤入渗特性的影响.山地学报. 2006. 24(1): 13-18.
    70.卿太明,江小华,陈泽渊等.不同夹角沟垄种植水土保持效益试验.四川水利. 1996. 17 (1): 25– 28.
    71.任小龙,贾志宽,陈小莉等.半干旱区沟垄集雨对玉米光合特性及产量的影响.作物学报. 2008. 34(5): 838 ? 845.
    72.施森宝.农田覆盖免耕法.农业工程学报. 1990(3): 31-35.
    73.唐克丽.中国水土保持.北京:科学出版社. 2004. 471-48. 504.
    74.王俊鹏,韩清芳,王龙昌等.宁南半干旱地区农田微集水种植技术效果研究[J].西北农业大学学报. 2000. 28(4):16-20.
    75.王正兴.黄土高原有水干早和基本农田建设.水土保持学报. 1990. 4(1):80-87.
    90.王晓凌,陈明灿,李凤民等.垄沟覆膜集雨系统膜垄保墒增温对马铃薯产量的影响.干旱地区农业研究. 2007, 25 (3):11–16.
    91.王晓凌.干旱农田生态系统马铃薯田间微域集水的理论与实践.北农林科大硕士论文. 2002.
    92.王友贞,袁先江,许浒等.水稻旱作覆膜的增温保墒效果及其对生育性状影响研究.农业工程学报. 2002(3):29-31.
    93.吴文革,陈周前,张效忠等.水稻覆草保墒旱作技术研究.中国农学通报.2000(4):18-20.
    94.杨封科.旱作春小麦垄膜沟种微集水种植技术研究.灌溉排水学报. 2004. 23 (4): 47–52.
    95.杨开宝,刘国彬,李景林,等.双料沟垄组合覆盖对土壤水分时空分布的影响.干旱地区农业研究. 2004. 22(4): 92– 96.
    96.杨启红,陈丽华,张富,等.土壤水分变异对降雨和植被的响应.北京林业大学学报.2008.11:88-94.
    97.杨文治,邵明安.黄土高原环境的旱化与黄土中水分关系[J].中国科学D辑. 1998. 28(4):357-365.
    98.赵聚宝,李克煌.干早与农业.北京:中国农业出版社. 1995.15-17.
    99.赵聚宝.早地春玉米田微集水保墒技术研究.农业工程学报. 1996(2)29-31.
    100.赵姚阳,刘文兆,濮励杰.黄土丘陵沟壑区苜蓿地土壤水分环境效应[J].自然资源学报. 2005. 20(1):85-91.
    101.赵松岭,王静,李凤民等.黄土高原半干旱地区水土保持行农业的局限性.西北植物学报. 1995.15(8):13-18.
    102.张正斌,黄占斌,张富.汇集雨水补灌农技措施研究初报.水土保持通报. 1998. 18: 27-30.
    103.朱国庆,史学贵,李巧珍.定西半干旱地区春小麦农田微集水种植技术研究.中国农业气象. 2001. 22(8) . 7-9.
    104.朱国庆,史学贵,李巧珍.定西半干早地区春小麦抑蒸集水抗旱技术研究.中国农业气象. 2002. 23(2) . 19-20.
    105.朱湘宁,郭继勋,梁存柱等.华北平原地区灌溉对苜蓿产量及土壤水分的影响[J].中国草地. 2002. 24(06):32-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700