用户名: 密码: 验证码:
数字矿床及其实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文“数字矿床及其实现”是结合国家十五科技攻关项目“大型锡矿山接替资源探查技术与示范”(项目编号:2004BA615A-03)和云南省省院省校科技合作项目“个旧锡矿深部与外围成矿预测及矿山增储研究”(项目编号:2000YK-05)的科研需要而选题的。
     地球是一个有限体,地球上人类赖以生存的自然资源是有限的。矿产资源的合理开发利用是关系到人类生存和可持续发展的大问题。对矿产资源的需求大幅度增长,使得地质学以发现矿产资源为目的的任务越来越明显。在矿产资源勘探中,人们逐渐将注意力放在矿床资源信息的定量化表达上来。将信息技术与地质学科相接合,解决矿床研究中存在的不足,是地质科学发展的必然趋势。在昆明理工大学矿产地质研究所多年矿床数学经济模型研究的基础上,论文提出“数字矿床”的概念。
     数字矿床是对真实矿床及其相关现象的数字化重现及认识。数字矿床的核心思想是用数字化的手段整体地解决矿床及其与空间位置相关信息的表达与知识管理。具体地说,数字矿床充分利用已有资料,将已知的矿床自然资源信息和社会资源信息等存入计算机中,再根据地质学的理论基础,得到其它派生的矿床信息,从而形成一个完整的数字化的矿床数据库;然后将这些数字信息转化为可视的、容易理解的图形图像信息,构成矿床信息图谱,以构造一个三维化的虚拟矿床,能给出整个矿床范围内任意空间位置或范围的资源信息,能进行模拟勘查、能模拟矿床的开采,结合自动化技术,对矿床开采过程进行规划,并实时监控矿山生产。数字矿床还能对矿床信息进行抽象分析与知识提取,形成能为矿床预测勘查、设计与生产提供决策与服务的整体方案。数字矿床是地质科学与计算机科学高度结合、矿床信息的处理与表征高度统一的新的处理矿床信息的思想,具有较强的理论与实践意义。
     数字矿床与数字矿山既有联系,又有区别。数字矿床是以地质科学为基础的,它主要强调的是矿床的资源信息,即处于地面及其以下的矿产资源情况。数字矿床是要解决矿床的资源评价问题,首先要建立资源的数字化模型,在此基础上再根据矿山的具体情况,考虑矿山设计、矿山生产动态管理等问题。数字矿山(矿区)则是近年来提出的以数字地球为依托的矿山数字化整体解决方案,其核心是在统一时间坐标与空间框架下,科学、合理地组织各类矿山信息,将海量异质的矿山信息资源进行全面、高效和有序的管理和整合。
     数字矿床系统的实现,可以考虑完全自行开发全套软件系统,也可以考虑借助一套或几套相应的成熟软件系统的支持来实现。实现数字矿床的过程没有固定的模式,应根据矿床的具体情况,开展有针对性的应用。论文借助Micromine软件,对广西大厂锡矿、云南个旧锡矿、甘肃金川镍矿等大型矿山的部分矿体进行了数字矿床实现。并在数字矿床实现过程中,开发了一些用于数字矿床系统的接口软件。
     在广西大厂92号矿体数字矿床实例中,以锡品位为主,并参考铅、锌品位,在32个剖面上逐一圈定矿体。选用距离反比法对锡、铅、锌进行品位估值,还选用克立格方法对锡进行了品位估值。克立格估值时,用两个球状模型组合而成变异函数模型。在得到品位模型后,给出了储量报告。并以品位模型为基础,结合矿山已有开采系统,进行了矿山设计,设计了采场和工作面。在矿山设计的基础上,根据采矿成本、运输成本、选矿成本、冶炼成本和金属的市场价格等经济指标,评价矿床的经济特性,建立了基于单元块的盈亏模型,并以此重新以盈利为条件圈定了矿体。
     在个旧高松矿田10号矿群数字矿床实例中,在13个剖面上依次对矿体、断裂、地表、地层、花岗岩界限等进行了地质解释,得到10号矿群中五大矿体的地质模型。选用了距离反比法对锡和铅进行品位估值,还采用克立格方法对锡进行了品位估值。得到五大矿体的品位模型和储量报告。克立格估值时,用洞穴模型、高斯模型和球状模型三个模型组合而成变异函数曲线。在应用部分,尝试了使用克立格方差来进行储量分类。
     在个旧马拉格矿33-1号矿体数字矿床实例中,以锡品位为主,参考岩性,对6个剖面进行了矿体的解释,得到33-1号矿体的地质模型。由于样品数较少,本矿体仅采用距离反比法计算锡和铜品位模型,得到储量报告,并探讨了因品位变化导致矿体形态变化的问题。
     在个旧老厂锡矿5号矿体数字矿床实例中,将矿体分为氧化矿和硫化矿进行数字化。以岩性为主,参考锡和铜品位,在13个剖面上圈定矿体,得到了氧化矿和硫化矿两个矿体模型。根据统计分析结果,用距离反比法对锡和铜两种元素进行了品位估值,得到氧化矿和硫化矿中锡和铜的品位模型和储量报告,并对品位模型作了垂向变异分析。
     金川Ⅱ矿区数字矿床实例中,在32个剖面上,以镍品位为主,按照低品位、高品位、特高品位对矿体进行了圈定,得到3个独立的矿体实体模型。选用了距离反比法和克立格两种方法分别对三个模型的镍进行品位估值,用距离反比法对铜进行品位估值,得到镍和铜的品位模型和储量报告。在此基础上上,提取和绘制了Ⅱ矿区900m、1000m、1100m、1200m和1300m等五个水平标高上的Ni、Cu品位以及Ni/Cu比值的平面分布图,进行了成矿预测。
     数字矿床的应用,要根据具体情况,采取合适的估值方法,并结合实际进行有针对性的应用。论文以克立格方差来划分矿体储量级别、以数字矿床成果为基础进行成矿预测、以单元块为基础建立矿体盈亏模型、根据单元块品位对矿体储量进行动态管理等都是对具体应用的创新。随着数字矿床研究的深入和实践的不断进行,我们对数字矿床的认识也会越来越深,它的应用也会越来越广。
The doctorate dissertation title of Digital Mineral Deposit and its implementation is selected based on the National Key Technologies R&D Program in 10th Five-Year Plan of China "Technologies for exploring successive resources for large scale tin mines and their application cases" (No. 2004BA615A-03) and the Province and University Science and Technology Cooperation Projects of Yunnan Province "Research on the reserves increase and the prediction of deposits in the periphery and deep of Gejiu tin deposit" (No. 2000YK-05) .
     The natural resources available on the earth that the humankinds depend on are limited. Rational exploitation and high efficient usage to mineral resources become essential to the future existence and sustainable development of humankind. The sharp increasing demand to the mineral resources because of the rapid social and economic progress in recent years has imposed greater importance to the geological mineral exploration. In the process of mineral exploitation, researchers transfer their attention to the quantitative expression of the mineral deposit information. It becomes the general trends of the geological development to solve the existing deficiencies in the mineral deposit research by combining the information technology with geological theory. Rooted on the research on the mathematical economic model of mineral deposit conducted by Institute of Geological Mineral, KUST for multiple years, this thesis proposed the concept of "Digital Mineral Deposit".
     DMD is the visualization and reorganization of the real mineral deposits information and related phenomena by digital instruments. Its core concept consists of the information expression and knowledge management related to the mineral deposit as well as the spatial distribution revealment as a whole. To be more specific, DMD firstly stores the existing useful natural mineral deposit and social resource information into the computer, deduces other helpful deposit information from the geological theory, then built up an integrated digital database of mineral deposit. By transforming the digital information into visible and easy-to-understand images and graphs, finally we can construct mineral deposit atlas. The atlas can simulate the natural mineral deposit distribution and reproduce a three-dimensional virtual deposit, reveal the resource information in any location and range of the real mineral deposit. With the aid of automatic control technology, the virtual deposit system can also simulate the deposit exploration and mining planning procedure and furthermore inspect the mineral production in a real-time way. In addition, DMD technology can perform the abstract analysis and knowledge extraction from the mineral deposit information, provide an overall solution for mineral deposit exploration, design, mining and production. DMD is a combination of geology science with computer science, mineral information processing technology and graphic expressing.
     There exists linkage between DMD and Digital Mine (DM) even they still have the difference. Based on geological science, the DMD emphasizes more on mineral deposit resource information both above and below the surface of earth and aims the problem of deposit resource assessment. It establishes a mathematic model for the mineral resource and consequently considers the design, plan and dynamic production management, etc, on the basis of mine's real situation. Meanwhile, the DM, put forwarded in recent years, is a digit overall solution to the mine on the theoretical basis of digit earth. The core concept of DM is to integrate the time axis and spatial framework, organize and manage the tremendous heterogeneous mineral resource information in all-round, efficient and orderly manner.
     The implementation of DMD technology could either be fulfilled by totally independent software development, or with the assistance of exist software tool kits. There are no fixed patterns for the of DMD system development, but the real characters or conditions of each mineral deposit must be fully considered according to DMD development purpose. By virtue of Micromine, DMD technology are implemented to the mineral deposits in DaChang Tin (GuangXi Province), GeJiu Tin (YunNan Province) and JinChuan Nickel Mineral (GanSu Province). Moreover, some software interfaces are also developed for the digital mineral hardware.
     In the application of No.92 ore-body in Guangxi Dachang which mainly consist of Sn, 32 cross sections have been circled with reference of Pb and Zn grade. The inverse distance weighting and Kriging method are selected as the grade estimation to the sin, Pb and Zn respectively, and the semi-variogram functions which are composed of two Spherical model are applied for the estimation of Sn grade. The reserves report is drawn from the grade model. On the base of grade model and the existing mining system, the exploration workflow that contain the stope and working surface is designed. Moreover, the cell cost-profit model based on the economy indexes criterions such as mine cost, transportation margin, mill operation cost, smelt cost and price of metal market are established for the evaluation of the mine economic property. And finally, the ore deposits are located judged from the cost-profit assessment.
     In the application of No. 10 Gaosong Gejiu ore cluster digital deposit, the geological explanation are drawn from point view of ore body, faults, topography, strata and granite boundary on the 13 cross sections and 5 mineral geology models out of the 10 clusters are derived herewith. The inverse distance weighting and Kriging method are selected as the Sn and Pb grade estimation, and 5 ore deposits grade models and reserves report are acquired. The semi-variogram models which is composed of Cave model, Gauss model and Spherical model are chosen when Kriging grade estimation method are established and Kriging variance is attempted in the reserves scale classification.
     As for the example of the tin deposit of Gejiu Malage No.33-1 digitalization, the geological mineral model for the No.33-1 deposit has been established within the interpretation on 6 sections for the tin grade in respect of rock petrology. Due to the shortage of sample, the means of the inverse-distance method has only been selected for the modeling of tin and copper grade appraisals. The reserve reported for tin and copper is derived herewith and issue on the grade changing causing by ore-body shape changing.
     As for the example of the tin deposit of Gejiu Laochang No.5 digitalization, ore-bodies are digitized for the oxidized ore and sulfide ore. Two ore models for the oxidized ore and sulfide ore individually are established based on the mineral samples outlining on 13 cross sections in view of the rock petrology with reference to the tin and copper grade. The tin and copper grade are estimated by the inverse-distance method according to the statistics results, the grade models and reserve reports of the tin and copper metals are set up for the oxidized ore and sulfide ore respectively, and vertical variation analysis is carried out for grade models.
     As for the DMD of the Jinchuan Nickel deposit No.Ⅱore district, the ore-body is outlined on the 32 cross sections with reference to three grade categories: the low, high and super high grade respectively, and three individual ore-body model are established. Two methods, the inverse-distance weighting and krigging, are applied in the three grades estimation models, and inverse-distance weighting are selected in the copper grade estimation models respectively. The reserve report of nickel and copper are drawn. On the basis of the models mentioned above, the Ni, Cu grade and Ni/Cu ratios plane maps on the 5 different altitudes, 900m, 1000m, 1100m, 1200m and 1300m are selected and portrayed, and the mineralization targets are put forward the follow-up exploration.
     The application of DMD should be strictly complied with the mineral real condition and adopt properly evaluation methods. This dissertation makes some innovative efforts on the following aspect: classifying the mineral reverses scale by the Clige variance, estimating the mineral reserves on the ground of DMD results, establishing the mineral profit and loss model on the cell volume basis and lodging the concept of dynamic mineral quality management according to the cell samples. With the deepening of the DMD research and its expanding application, the knowledge base on DMD will be enhanced and its application prospect will become more brilliant.
引文
[1] 陈毓川,朱裕生.中国矿床成矿模式.北京:地质出版社,1993
    [2] 裴荣富.中国矿床模式.北京:地质出版社,1995
    [3] Edward H. Isaaks and R. Mohan Srivastava. An Introduction to Applied Geostatistics. Oxford University Press, New York, 1989
    [4] 郭华东,王长林主编.地学新技术方法.北京:地质出版社,1998
    [5] 王章俊,柳霖等著.走向21世纪的地学与矿产资源.北京:地质出版杜,1996
    [6] 赵鹏大,李紫金,胡旺亮.矿床统计预测.北京:地质出版社,1994
    [7] 侯景儒.中国地质统计学(空间信息统计学)发展的回顾及前景.地质与勘探,1996,32(1)
    [8] 王仁铎.地质统计学的发展趋势.地质科技情报,1996,15(2)
    [9] 蒋志.矿床效益估计的理论和方法.北京:地质出版社,1995
    [10] 王仁铎,胡光道.线性地质统计学.北京:地质出版社,1988
    [11] 孙洪泉.地质统计学及其应用.北京:中国矿业大学出版社,1990
    [12] 秦德先,燕永锋等.矿床数学经济模型.昆明:云南科技出版社,2001
    [13] 侯景儒,尹镇南,李维明等.实用地质统计学.北京:地质出版社,1998
    [14] 候景儒,郭光裕等著.矿床统计预测及地质统计学的理论与应用.北京:冶金工业出版社,1993
    [15] 贝志诚.数字化与数字化之后.计算机世界,1999,2,5
    [16] 李华.知识经济与数字化时代.计算机世界,1999,1,4
    [17] 承继成,林挥等编著.数字地球导论.北京:科学出版社,2000
    [18] 承继成,李场等著.国家空间信息基础设施与数字地球.北京:清华大学出版杜,1999
    [19] 侯景儒,潘汉军等.协同区域化与协同克立格法.北京科技大学学报.1992,13(2)
    [20] 侯景儒.指示克立格的理论与方法.地质与勘探.1990,25(3)
    [21] 侯景儒,黄竟先,吴雨沛.非参数及多元地质统计学的理论分析及其应用.北京:冶金工业出版社,1992
    [22] 侯景儒,潘汉军,张树泉.多元地质统计学的基本理论与方法.北京科技大学学报,1992,14(2)
    [23] 韩燕.一种协克立格法的矩阵分析.长春科技大学学报.2000,30(4)
    [24] 杨晓雷,胡海生.克立格法在采场品位估计中的应用.地质与勘探,1996,32(6)
    [25] 燕永锋,秦德先.矿床数学经济模型及其在元江金矿的应用.矿物学报,2001,21(4)
    [26] 侯景儒,王志民,潘汉军.时间一空间域中多元信息的地质统计学.北京科技大学学报.1995,17(2)
    [27] 肖斌,赵鹏大,侯景儒.纯时间域多元信息地质统计学.物探化探计算技术.1998,20(3)
    [28] 肖斌,赵鹏大,侯景儒.时空多元协同克立格的理论研究.物探化探计算技术.1993,20(1)
    [29] 侯景儒,黄竞先.地质统计学在固体矿产资源/储量分类中的应用.地质与勘探,2001,37(6)
    [30] 黄竟先,李春霞.矿业地质统计学在我国的应用现状及对影响克立格估计的若干因素的研究.有色金属矿产与勘察,1997增刊
    [31] 侯景儒,潘汉军.协同区域化和协同克立格法.北京科技大学学报,1991;13(2)
    [32] 秦德先,燕永锋,洪托,等.矿产资源的充分合理利用与矿床数学-经济模型研究.矿产与地质,2000,14(3)
    [33] 秦德先,洪托,燕永锋,等.广西大厂锡矿92号矿体矿床地质与经济.北京:地质出版社,2000
    [34] 秦德先,刘春学.云南元江金矿矿床模型及矿产经济.矿物学报,2001,21(4)
    [35] 林幼斌,田毓龙.我国矿产资源开发利用形势分析与对策.昆明理工大学学报,1999.2,24(1)
    [36] 秦德先,陈健文,田毓龙.广西大厂长坡锡矿地质与成因.有色金属矿产与勘探,1998,(7)
    [37] 高志武.数字矿床初探:[硕士学位论文].昆明:昆明理工大学,2000
    [38] 吴立新,数字地球、数字中国与数字矿区,矿山测量,2000(1)
    [39] 吴立新,刘纯波,牛本宣,等.试论发展我国矿业地理信息系统的若干问题.矿山测量,1998(4)
    [40] 吴立新,殷作如,邓智毅,等.论21世纪的矿山———数字矿山.煤炭学报,2000,25(4)
    [41] 齐安文,吴立新,侯恩科,等.三维地学模拟述评及其矿山应用关键问题.中国矿业,2001,10(5)
    [42] 吴立新,殷作如,钟亚平.再论数字矿山:特征、框架与关键技术.煤炭学报,2003(28)
    [43] 吴立新,殷作如.数字矿区核心———数字矿山基本特征与总体架构.中国科协第67次青年科学家论坛文集.北京,2001.
    [44] 吴立新.论数字矿山及其基本特征与关键技术.第六届全国矿山测量学术会议论文集.2002
    [45] 袁见齐,朱上庆等著.矿床学.北京:地质出版社,1985
    [46] 王昌贤主编.地质学基础.重庆:重庆大学出版社,1998
    [47] 侯德义等著.找矿勘查地质学.北京:地质出版社,1984
    [48] 侯德义,刘鹏鄂等编.矿产勘探学.北京:地质出版社,1997
    [49] 史忠植.认知科学.http://www.intsci.ac.cn/research/cognitive.html
    [50] 郑南宁.认知与计算机视觉.http://www.biotech.org.cn/news/news/show.php?id=18163
    [51] 武吉华等编著.自然资源评价基础.北京:北京师范大学出版社,1999
    [52] 朱裕生,肖克炎等著.矿床预测方法.北京:地质出版社,1997
    [53] 龚健雅.空间数据基础设施建设中的GIS.计算机世界,1999,9,6
    [54] 黄其明,廖鸿志,数值计算方法及其程序设计.昆明:云南大学出版社,1995
    [55] 潘志庚等著.分布式并行图形处理技术及其应用.北京:人民邮电出版社,1997
    [56] 石教英,蔡文立等著.科学计算可视化算法与系统.北京:科学出版社,1996
    [57] 唐泽圣.三维复杂模型的实时动态显示.计算机世界,1997,2,3
    [58] 石教英.面向21世纪的可视化技术展望.计算机世界,1998,6,29
    [59] 徐青.地形三维可视化技术.测绘出版社,2000
    [60] 唐泽圣.科学计算可视化及其应用.计算机世界,1998,6,29
    [61] 梁训东,刘慎权.向量场可视化技术.计算机世界,1998,6,29
    [62] 管伟光,马颂德等著.体视化技术及其应用.北京:电子工业出版社,1998
    [63] 刘超,张莉编著.可视化面向对象建模技术:标准建模语言UML教程.北京:北京航空航天大学出版杜,1999
    [64] 曾芬芳等著.虚拟现实技术.上海:上海交通大学出版社,1997
    [65] 张秀山等著.虚拟现实技术及编程技巧.北京:国防料技大学出版杜,1999
    [66] 黄心渊等著.虚拟现实技术与应用.北京:科学出版社,1999
    [67] 张华军,廖朵朵.PC平台虚拟现实系统的建立.计算机世界,1998,5,18
    [68] 黄铁军,柳健.虚拟现实导引.计算机世界,1997
    [69] 唐泽圣.可视化及虚拟现实技术的新发展.计算机世界,1999,7,5
    [70] 高志武,周海和.基于数据仓库的元数据体系结构的研究.计算机科学,2004,31
    [71] 朱训.世纪之交的中国矿业.第六届全国采矿学术会议论文集.中国矿业(专集),1999
    [72] 肖克炎 王勇毅 薛群威等.中国铜矿数字矿床模型评价系统的开发.矿床地质,2003,22(4)
    [73] M.戴维.孙慧文,刘承柞译.矿产储量的地质统计学评价.北京:地质出版社,1998
    [74] 王勇毅,肖克炎,朱裕生等.初论中国铜矿数字矿床模型.地质与勘探,2003,39(3)
    [75] 高洪深.决策支持系统(DSS):理论·方法·案例.北京:清华大学出版社,1996
    [76] 徐向荣,仲伟俊.科学决策理论与方法.东南大学出版社,1995
    [77] 陈挺.决策分析.北京:科学出版杜,1987
    [78] 曹文君.知识库系统原理及其应用.北京:复旦大学出版社,1995
    [79] 秦德先,陈爱兵,燕永锋等.矿山数字化信息系统及其应用研究.中 国工程科学,2005,7(4)
    [80] 蒋志.不同储量计算方法之间的关系.地质与勘探,1989,7
    [81] D.G. Krige. A statistical approach to some mine valuations and allied problems at the Witwatersrand, Master's thesis. University of Witwatersrand, South Africa, 1951
    [82] 徐振邦,娄元仁等.数学地质基础.北京:北京大学出版社,1994
    [83] 田世丰.数学地质浅析.北京:地质出版社,1988
    [84] 张瑞新,于汝绶.距离加权法的完善及其在层状矿床储量中应用前景,中国矿业大学学报,1991.20(4):45-51
    [85] 王铁等.距离幂次反比法的改进及参数优化.中国矿业,1994,3(4)
    [86] 杨晓雷.利用变异函数改进距离K方反比法.地质与勘探,1993,29(2)
    [87] 蒋志.广义克立格方法.中国数学地质进展,5,北京:地质出版社,1994
    [88] Pan G C, Gaard D, Moss K, et al. A comparison between Co-kriging and ordinary kriging-case study with a poly-metallic depo
    [89] Myers D E. Matrix formulation of Co-kriging [J]. Math Geol, 1982; 14(2)
    [90] Journel A G. Nonparameteric estimation of spatial distributions. Math Geol, 1983, (3)
    [91] Henley S. Non parameteric Geostatistics. England: Applied Science Publishers LTD, 1981
    [92] Franke R. Scattered data intorpolation: test of some methods. Mathematical Computation, 1982, 38
    [93] Pan Guocheng.李钟山译.地质统计学中的区域化变量理论.第30届国际地质大会数学地质组会议交流材料.北京,1996
    [94] Carr JR and Bailey RE. Use of indicator variograms for an enhanced spatial analysis. Mathematical Geology, 17 (8)
    [95] Gudmund R.Iversen and Mary Gergen著.吴喜之,程博等译.统计学基本概念和方法.高等教育出版社,施普林格出版社,2000
    [96] 蔡常丰编著.数学建模分析.北京:科学出版杜,1995
    [97] 陈理荣等著.数学建模导论.北京:北京邮电大学出版社,1999
    [98] Pan Guocheng.李钟山译.地质统计学中结构分析的理论与方法.第30届国际地质大会数学地质组会议交流材料.北京,1996
    [99] Jacques R. Disjunctive Kriging and Non Linear Geostatistics. Oxford: Clarendon Press, 1994
    [100] Jacques Rivoirard. Two Key Parameters when choosing the kriging neighboundhood. Mathematical Geology, 1987
    [101] Matheron G. The theory of Regionalized Variables and its Application. France: Centre of Geostatistics Fontainebleau, 1970
    [103] D.G. Krige. Lognormal-de Wijsian Geostatistics for Ore Evaluation, South African Institute of Mining and Metallurgy. Johannesburg, 1978
    [102] David, M., 1982, Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing Company, Amsterdam
    [104] 秦德先、刘春学.矿床资源经济学.北京:科学出版社,2002
    [105] A.G.儒尔奈耳等.矿业地质统计学.北京:冶金工业出版社,1982
    [106] Keith Hirsche等.高林译.地质统计学的应用与滥用.石油物探译丛,1997.6
    [107] Mark Malmsey著.冯博琴,朱丹军等译.C++ for Windows98图形动画程序设计.北京:高等教育出版社,1999
    [108] 陈建春等著.Visual C++高级编程——开发实例剖析.北京:电子工业出版社,1999
    [109] 程卫国,冯峰,姚东等.MATLAB5.3应用指南.北京:人民邮电出版社,1999
    [110] 余承飞,方勇等著.AutoCAD 2000二次开发技术(ObjectARx).北京:人民邮电出版社,1999
    [111] 白燕斌,史惠康等著.OpenGL三维图形库编程指南.北京:机械工业出版杜,1998
    [112] 贾志刚等著.精通OpenGL.北京:电子工业出版社,1998
    [113] 孙洪泉.实用地质学程序集.北京:地质出版社,1997
    [114] 王家华,高海余,周叶.克里金地质绘图技术计算机的模型和算法.北京:石油工业出版社,1999.
    [115] Nicolas Remy. GSTL: The Geostatistical Template Library In C++, Master's thesis. Stanford University, Stanford, CA, 2001
    [116] Clayton V. Oeutsh and Andre G. Journel. Geostatistical Software Library and User's Guide. Oxford University Press, New York, 1992
    [117] 燕永锋.“矿床数学-经济模型”软件包的开发及其在元江金矿的应用.博士论文,昆明理工大学,2000
    [118] Micromine software. Micormine user's Guide. 2003. http//:www.micromine.com.au
    [119] 赵鹏大,陈永清.地质异常矿体定位的基本途径.地球科学,1998,23(2)
    [120] 肖斌,赵鹏大,侯景儒.山东归来庄金矿床金异常分布及其时空演化的地质统计学研究.现代地质,1999,13(4)
    [121] Pan Guocheng.地质统计学中的估值技术和条件模拟.世界地质,1997,16(3)
    [122] A. G. Journal. Nonparametric Estimation of Spatial Distributions. Mathematical Geology, 1983, 15(3)
    [123] A. G. Journal and Ch. J. Hui jbregts. Mining Geostatistics. Academic Press, 1989
    [124] Oliver M A. Kriging: A Method of Estiamtion for Environmental and Rare Disease Data. London: Geological Society Special Publications, 1997
    [125] Ricardo A O. Geostatistical Glossary and Multilingual Dictionary. New York: Oxford University Press, 1991
    [126] 张尧庭,方开泰.多元分析引论.北京:科学出版社,1982
    [127] 陈衍景等著.China’s Postdoctors’ Contribution to the 30th International Geological Congress.北京:石油工业出版社,1996
    [128] Hou Jingru and Wan Zhimin. Geostatistical study of Multivariate Information in space and Space-Time Domain, Geology and Mineral Resources proceedings of Ministry of Matallurgical Industry. International Academic Publishers, 1996
    [129] Qin Dexian, Zhao Rusong, Chen Jianwen. Geology and Chemistry of the Super-large Modified Emanated-sedimentary Tin Deposit in Dachang Guangxi Province. Papers to 30th IGC, Progress in Geology of China, 1996
    [130] K.R.Castleman著.朱志刚等译.数字图像处理.北京:电子工业出版社,1998
    [131] Isaaks, E. H. & Srivsatava, R. H. 1989, An Introduction to Applied Statistics, Oxford University Press, New York
    [132] Clark I, 1979, Pratical Geostatistics, Elsevier Applied Science, London
    [133] 张剑平等编著.地理信息系统与Mapinfo应用.北京:科学出版社,1999
    [134] WalterGander等著.刘来福等译.计算机辅助几何图形设计.北京:高等教育出版社,施普林格出版社,1999
    [135] 庄永秋、王任重等,1996,云南个旧锡铜多金属矿床,北京:地震出版社
    [136] 林幼斌.大厂锡矿92号矿体矿化富集规律与矿产经济研究:[博士学位论文].昆明:昆明理工大学,2000
    [137] 高志武、秦德先.Micromine软件的汉化和矿山数字化过程.金属矿山,2004,增刊:69~71
    [138] 高志武、秦德先.虚拟技术在矿床中的应用.金属矿山,2004,增刊:287~289
    [139] 高志武、秦德先.数字矿床概述.金属矿山,2005,344(2):54~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700