用户名: 密码: 验证码:
新型近红外荧光量子点探针的构建及成像应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子生物成像的应用可使疾病的诊断水平提前至分子异常阶段,对分子水平的病变进行检测,可在体内直接观察疾病的起因、发生、发展等一系列过程,并观察疾病的基因、分子水平异常变化和特征,是一种非侵入性诊断疾病的方法。分子成像探针的合成是分子生物成像的关键。新型近红外荧光量子点不仅具有传统量子点的一些优势,如激发光谱宽、发射光谱窄而对称且可调、光稳定性高、荧光寿命长等优异的光学特性,同时其荧光发射波长位于近红外光区,具有较深的组织穿透性,并且可有效降低生物组织自荧光。此外,新型近红外荧光量子点不含有毒重金属元素,具有良好的的生物相容性,是一种优良的分子生物成像探针。本论文旨在探索新型近红外荧光量子点的合成,成像探针策略的构建,以及在细胞和活体生物成像中的应用。以下是本论文的主要研究内容和创新点。
     (1)本章我们以巯基聚乙烯亚胺(SH-PEI)为配体,一锅法合成了具有NIR荧光发射和化学稳定性良好的银纳米簇(PEI-AgNCs), PEI-AgNCs进一步用FA功能化后用于细胞和活体肿瘤靶标成像。SH-PEI首先用硫辛酸与聚乙烯亚胺通过酰胺缩合反应路线合成,然后PEI-AgNCs在水相中通过一个简单和温和的合成路线合成。我们制备的PEI-AgNCs具有较强的NIR荧光发射、良好的荧光稳定性、超小的尺寸和较低的细胞毒性等性质,这些优越的性质都有利于其应用于生物像。SH-PEI不仅作为优良的稳定剂还有利于进一步用生物靶标分子进行表面后修饰。我们用叶酸功能化PEI-AgNCs后进一步用于MCF-7细胞和种有MCF-7的小鼠的活体肿瘤靶标成像。
     (2)采用基于转铁蛋白稳定的金纳米簇和氧化石墨烯构建的活化近红外荧光探针用于细胞和活体肿瘤的转铁蛋白靶标成像。首先利用转铁蛋白作为模板,直接合成了一种同时具有生物靶标功能和近红外荧光发射的金纳米簇(Au NCs),制备的Au NCs有较小的尺寸和生物相容性。在我们设计合成转铁蛋白稳定的Au NCs (Tf-Au NCs)过程中,Tf不仅可以作为稳定剂还和还原剂,还保持了它的活性以便对TfR仍然有高度特异性识别能力。同时,为了构建活化荧光信号的成像探针,我们用氧化石墨烯(graphene oxide, GO)作为Tf-Au NCs的荧光猝灭剂,构建的Tf-Au NCs/GO复合成像探针有良好的生物相容性并且有效地降低生物体的背景荧光,当遇到高度表达转铁蛋白受体的肿瘤细胞表面时,Tf-Au NCs的荧光得以恢复,Tf-Au NCs/GO荧光活化成像探针成功的应用于肿瘤细胞和荷瘤小鼠的成像。
     (3)以牛血清白蛋白(bovine serum albumin, BSA)为模板,一锅法合成了具有超小尺寸和NIR荧光发射的BSA稳定的Ag2S QDs (BSA-Ag2S QDs), BSA-Ag2S QDs进一步用血管内皮生长因子抗体功能化后用于活体肿瘤靶标成像。BS A-Ag2S QDs首先在水相中通过一个简单和温和的合成路线合成,合成过程中不需要高温和气体保护。我们制备的BSA-Ag2S QDs具有较强的NIR荧光发射、超小的尺寸和较低的活体毒性等性质,这些优越的性质都有利于其应用于生物像。BSA不仅作为稳定剂还有利于进一步用生物靶标分子进行表面后修饰。因此,我们用血管内皮生长因子功能化BSA-Ag2S QDs后进一步用于种有人脑神经胶质瘤U-87MG小鼠的活体肿瘤靶标成像。
     (4)本章我们通过无溶剂浪费的方法制备了一种高产率和高发光效率的NIR CuInS2/ZnS QDs,利用两亲性聚合物包覆后将其转移至水相。首先以十二硫醇同时作为配体和溶剂,通过热分解法合成了CuInS2QDs。然后,向合成的CuInS2QDs中加入硬脂酸锌,以生成核壳型CuInS2/ZnS QDs,其产率达92%。我们所合成的核壳型量子点具有正四面体结构,尺寸较小,量子产率较高。通过低分子量的两亲性聚合物包覆后,核壳型CuInS2/ZnS QDs成功的转移至水相中,该CuInS2/ZnS QDs在较宽的pH范围内有较好的稳定性,为进一步构建生物成像探针打下了基础。
Molecular imaging is a new frontier of biomedical research for visualizing, characterizing andmonitoring biological processes at the molecular and cellular levels in humans and other living systems using sensitive instrumentation and contrast mechanisms. Consequently, cancer molecular imaging has created unique opportunities to study and noninvasively monitor tumor genesis, development and metastasis in vivo. Design of the molecular probe is the key for molecular imaging. Near-infrared (NIR) fluorescence imaging (650-900nm) displays properties of low absorption and relatively low autofluorescence, it offers several advantages over other modalities for imaging living organisms. Moreover, it is cost-efficient intermsof preparation of molecular probes and the detection hardware is relatively simple to operate. Compared with organic dyes, quantum dots (QDs) possess several distinct advantageous optic properties, such as greater brightness, better stability with respect to photobleaching, and narrow spectral line-width. The available NIR QDs offer a wide range of emission wavelengths spanning the optical window for deep tissue imaging, compositions presenting limited toxicity. Recently, the progress in controlled synthesis of high-quality NIR QDs without toxic elements and the effective surface modifications for NIR QDs has explored as promising molecular probes for bioimaging. This dissertation aims at developing available NIR QDs-based molecular probes for selective and sensitive bioimaging. The following is the main content and innovation point.
     (1) We report a one-pot fabrication of mercapto polyethyleneimine (SH-PEI) stabilized ultrasmall NIR fluorescent silver nanoclusters (PEI-AgNCs), and the bioconjugation of the PEI-AgNCs with folate (FA) for targeted cancer imaging in vitro and in vivo. Firstly, mercapto polyethyleneimine was prepared through an amide condensation reaction. PEI-AgNCs are synthesized in aqueous solution via a simple synthetic route. The resulting PEI-AgNCs exhibit intense NIR fluorescence, ultrasmall size and low in vitro toxicity, which is favorable for bioimaging. SH-PEI not only acts as a stabilizer, but also facilitates post-surface modifications with functional biomolecules. Compared with the existing methods, the PEI-AgNCs have an excellent stability. Further bioconjugation of PEI-AgNCs with FA allows targeted imaging of the folate receptor positive tumor MCF-7-bearing mice.
     (2) We report the fabrication of transferrin functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) as a turn-on NIR fluorescent probe for bioimaging cancer cells and small animals. Tf was used not only as stabilizer and reducer, but also as a functional ligand for targeting TfR to prepare Tf-AuNCs via a one-step approach. The resulting Tf-AuNCs exhibited intense NIR fluorescence that could avoid interference from biological media such as tissue auto-fluorescence and scattering light. To achieve a fluorescent signal activation process, GO, an efficient fluorescence quencher, was employed to fabricate a turn-on NIR fluorescent probe of Tf-AuNCs/GO composite with negligible fluorescence background. The prepared probe was successfully applied for turn-on NIR fluorescent imaging TfR over-expressed cancer cells and Hela tumor sites in mice. To our knowledge, no AuNCs based fluorescent turn-on probes have been reported for bioimaging small animals so far.
     (3) We report a one-pot fabrication of bovine serum albumin (BSA) stabilized ultrasmall NIR fluorescent Ag2S QDs, and the bioconjugation of the BSA-stabilized Ag2S QDs with vascular endothelial growth factor (VEGF) antibody (antiVEGF) for targeted cancer imaging in vivo. BSA stabilized Ag2S QDs are firstly synthesized in aqueous solution via a simple and mild synthetic route without the need for high temperature and inert gas protection. The resulting Ag2S QDs exhibit intense NIR fluorescence, ultrasmall size and low in vivo toxicity, which is favorable for bioimaging. BSA not only acts as a stabilizer, but also facilitates post-surface modifications with functional biomolecules. Further bioconjugation of BSA-stabilized Ag2S QDs with antiVEGF allows targeted imaging of the VEGF positive U-87MG human glioblastoma tumor-bearing mice. To our knowledge, no functionalized Ag2S QDs fluorescent probes have been reported for targeted cancer imaging in vivo so far.
     (4) We report an efficient synthesis of CuInS2QDs with strong photoluminescence in the near-infrared. This method can produce gram quantities of material with a chemical yield in excess of90%with minimal solvent waste. The overgrowth of as-prepared nanocrystals with a few monolayers of ZnS increases the photoluminescence quantum efficiency to>60%. Furthermore, the obtained NIR CuInS2/ZnS QDs are transferred into aqueous phase by a simple method. The CuInS2/ZnS QDs phase transfer technique utilized a low molecular weight amphiphilic polymer that is formed via maleic anhydride coupling of poly(styreneco-maleic anhydride) with6-aminocaproic acid. The polymer encapsulated water-soluble CuInS2/ZnS QDs exhibit the same optical spectra and colloidally stable over a wide pH range.
引文
[1]Weissleder, R., Molecular Imaging in Cancer. Science 2006,312,1168-1171.
    [2]Vickers, M. M.; Heng, D. Y. C., Prognostic and predictive biomarkers in renal cell carcinoma. Target. Oncol.2010,5,85-94.
    [3]Weissleder, R.; Pittet, M. J., Imaging in the era of molecular oncology. Nature 2008,452, 580-589.
    [4]Josephs, D.; Spicer, J.; O'Doherty, M., Molecular imaging in clinical trials. Target. Oncol. 2009,4,151-168.
    [5]Brindle, K., New approaches for imaging tumour responses to treatment. Nat. Rev. Cancer 2008,8,94-107.
    [6]Higgins, L. J.; Pomper, M. G, The Evolution of Imaging in Cancer:Current State and Future Challenges. Semin. Oncol.2011,38,3-15.
    [7]Pysz, M. A.; Gambhir, S. S.; Willmann, J. K., Molecular imaging:current status and emerging strategies. Clin. Radiol.2010,65,500-516.
    [8]Terai, T.; Nagano, T., Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol. 2008,12,515-521.
    [9]Kobayashi, H.; Longmire, M. R.; Ogawa, M.; Choyke, P. L., Rational chemical design of the next generation of molecular imaging probes based on physics and biology:mixing modalities, colors and signals. Chem. Soc. Rev.2011,40,4626-4648.
    [10]Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev.2009,110,2620-2640.
    [11]Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging:second window for in vivo imaging. Nat. Nanotechnol.2009,4,710-1.
    [12]Badr, C. E.; Tannous, B. A., Bioluminescence imaging:progress and applications. Trends Biotechnol.2011,29,624-633.
    [13]Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C., A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011,32,7127-38.
    [14]Vivero-Escoto, J. L.; Huxford-Phillips, R. C.; Lin, W., Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev.2012,41,2673-2685.
    [15]Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D., Cell-Penetrating Metal Complex Optical Probes:Targeted and Responsive Systems Based on Lanthanide Luminescence. Acc. Chem. Res.2009,42,925-937.
    [16]Yao, C.; Tong, Y, Lanthanide ion-based luminescent nanomaterials for bioimaging. Trac-Trends Anal. Chem.2012,39,60-71.
    [17]Wu, C.; Chiu, D. T., Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angew. Chem., Int. Ed.2013,52,3086-3109.
    [18]Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliver. Rev 2008,60,1226-1240.
    [19]Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly Fluorescent Noble-Metal Quantum Dots. Annu. Rev. Phys. Chem.2007,58,409-431.
    [20]Baker, S. N.; Baker, G. A., Luminescent Carbon Nanodots:Emergent Nanolights. Angew. Chem., Int. Ed.2010,49,6726-6744.
    [21]He, Y.; Fan, C. H.; Lee, S. T., Silicon nanostructures for bioapplications. Nano Today 2010,5, 282-295.
    [22]Rogach, A. L.; Katsikas, L.; Kornowski, A.; Su, D. S.; Eychmuller, A.; Weller, H., Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber. Bunsen-Ges. Phys. Chem. 1996,100,1772-1778.
    [23]Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H., Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002,106,7177-7185.
    [24]李众,祝欣,董朝青,黄香宜,陈虹锦,任吉存.荧光量子点的水相合成及其在化学和生物分析中的应用.高等学校化学学报2010,31,1905-1915.
    [25]Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.; Donegan, J. F., Aqueous synthesis of thiol-capped CdTe nanocrystals:State-of-the-art.J. Phys. Chem. C2007,111,14628-14637.
    [26]徐海娥,闫翠娥.水溶性量子点及应用.化学进展2005,17,800-808.
    [27]Mastronardi, M. L.; Henderson, E. J.; Puzzo, D. P.; Ozin, G. A., Small Silicon, Big Opportunities:The Development and Future of Colloidally-Stablc Monodisperse Silicon Nanocrystals. Adv. Mater.2012,24,5890-5898.
    [28]Mangolini, L.; Thimsen, E.; Kortshagen, U., High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Lett.2005,5,655-659.
    [29]Erogbogbo, F.; Yong, K.-T.; Roy, I.; Hu, R.; Law, W.-C.; Zhao, W.; Ding, H.; Wu, F.; Kumar, R.; Swihart, M. T.; Prasad, P. N., In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals. ACS Nano 2011,5,413-423.
    [30]He, Y.; Zhong, Y.; Peng, F.; Wei, X.; Su, Y.; Lu, Y.; Su, S.; Gu, W.; Liao, L.; Lee, S.-T. One-Pot Microwave Synthesis of Water-Dispersible, Ultraphoto- and pH-Stable, and Highly Fluorescent Silicon Quantum Dots.J. Am. Chem. Soc.2011,133,14192-14195.
    [31]Park, J.-H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009,8,331-336.
    [32]Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; IClimov, V. I., Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals.J. Am. Chem. Soc.2009,131, 3436-3437.
    [33]Ruddy, D. A.; Johnson, J. C.; Smith, E. R.; Neale, N. R., Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals. ACS Nano 2010,4,7459-7466.
    [34]Henderson, E. J.; Seino, M.; Puzzo, D. P.; Ozin, G A., Colloidally Stable Germanium Nanocrystals for Photonic Applications. ACS Nano 2010,4,7683-7691.
    [35]Welsher, K.; Zhuang, L.; Sherlock, S. P.; Robinson, J. T.; Zhuo, C.; Daranciang, D.; Hongjie, D., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol.2009,4,773-780.
    [36]Fu, C. C.; Lee, H. Y.; Chen, K.; Lim, T. S.; Wu, H. Y.; Lin, P. K.; Wei, P. K.; Tsao, P. H.; Chang, H. C.; Fann, W., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007,104,727-732.
    [37]Sun, Y.-P.; Zhou, B.; Lin, Y; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc.2006,128,7756-7757.
    [38]Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H., Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc.2009,4,1372-1381.
    [39]Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y, The properties and applications of nanodiamonds. Nat. Nanotechnol.2012,7,11-23.
    [40]Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y P.; Donegan, J. F., Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:□ State-of-the-Art. J. Phys. Chem. C 2007,111,14628-14637.
    [41]Keuleyan, S.; Lhuillier, E.; Guyot-Sionnest, P., Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection. J. Am. Chem. Soc.2011,133,16422-16424.
    [42]Goswami, N.; Giri, A.; Kar, S.; Bootharaju, M. S.; John, R.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Protein-Directed Synthesis of NIR-Emitting, Tunable HgS Quantum Dots and their Applications in Metal-Ion Sensing. Small 2012,8,3175-3184.
    [43]Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V., Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol.2010,5,42-47.
    [44]Chen, L. N.; Wang, J.; Li, W. T.; Han, H. Y, Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem. Commun.2012,48,4971-3.
    [45]Yong, K.-T.; Roy, I.; Law, W.-C.; Hu, R., Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging. Chem. Commun.2010,46,7136-7138.
    [46]Singh, N.; Charan, S.; Sanjiv, K.; Huang, S.-H.; Hsiao, Y.-C.; Kuo, C.-W.; Chien, F.-C.; Lee, T.-C.; Chen, P., Synthesis of Tunable and Multifunctional Ni-Doped Near-Infrared QDs for Cancer Cell Targeting and Cellular Sorting. Bioconjugate Chem.2012,23,421-430.
    [47]Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z., Size-Tunable, Bright, and Stable PbS Quantum Dots:A Surface Chemistry Study. ACS Nano 2011,5, 2004-2012.
    [48]Choi, J. H.; Chen, K. H.; Strano, M. S., Aptamer-Capped Nanocrystal Quantum Dots:A New Method for Label-Free Protein Detection.J. Am. Chem. Soc.2006,128,15584-15585.
    [49]Hennequin, B.; Turyanska, L.; Ben, T.; Beltran, A. M.; Molina, S. I.; Li, M.; Mann, S.; Patane, A.; Thomas, N. R., Aqueous Near-Infrared Fluorescent Composites Based on Apoferritin-Encapsulated PbS Quantum Dots. Adv. Mater.2008,20,3592-3596.
    [50]Cao, J.; Zhu, H.; Deng, D.; Xue, B.; Tang, L.; Mahounga, D.; Qian, Z.; Gu, Y., In vivo NIR imaging with PbS quantum dots entrapped in biodegradable micelles. J. Biomed. Mater. Res. A 2012,100A,958-968.
    [51]Ma, N.; Marshall, A. F.; Rao, J. H., Near-Infrared Light Emitting Luciferase via Biomineralization. J. Am. Chem. Soc.2010,132,6884-6885.
    [52]Turyanska, L.; Bradshaw, T. D.; Sharpe, J.; Li, M.; Mann, S.; Thomas, N. R.; Patane, A., The Biocompatibility of Apoferritin-Encapsulated PbS Quantum Dots. Small 2009,5,1738-1741.
    [53]Pietryga, J. M.; Werder, D. J.; Williams, D. J.; Casson, J. L.; Schaller, R. D.; Klimov, V. I.; Hollingsworth, J. A., Utilizing the Lability of Lead Selenide to Produce Heterostruetured Nanocrystals with Bright, Stable Infrared Emission.J. Am. Chem. Soc.2008,130, 4879-4885.
    [54]Zhao, H.; Wang, D.; Zhang, T.; Chaker, M.; Ma, D., Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers. Chem. Commun.2010,46,5301-5303.
    [55]Aharoni, A.; Mokari, T.; Popov, I.; Banin, U., Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable Near-Infrared Fluorescence. J. Am. Chem. Soc.2005,128,257-264.
    [56]Zimmer, J. P.; Kim, S.-W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G., Size Series of Small Indium Arsenide-Zinc Selenide Core-Shell Nanocrystals and Their Application to In Vivo Imaging.J. Am. Chem. Soc.2006,128,2526-2527.
    [57J Xie, R.; Chen, K.; Chen, X.; Peng, X., InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters:Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res.2008,1,457-464.
    [58]Xie, R. G.; Peng, X. G., Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc.2009,131, 10645-10651.
    [59]Chen, B.; Zhong, H.; Zou, B., Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals. Prog. Chem.2011,23, 2276-2286.
    [60]Allen, P. M.; Bawendi, M. G., Ternary Ⅰ-Ⅲ-Ⅵ Quantum Dots Luminescent in the Red to Near-Infrared. J. Am. Chem. Soc.2008,130,9240-9241.
    [61]Li, L. A.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I., Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. J. Am. Chem. Soc.2011,133,1176-1179.
    [62]Liu, S.; Zhang, H.; Qiao, Y.; Su, X., One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSCAdv.2012,2,819-825.
    [63]Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q., Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor. J. Am. Chem. Soc.2010,132, 1470-1471.
    [64]Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O.; Loi, M. A.; Paris, O.; Hesser, G. n.; Heiss, W., Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis. ACS Nano 2011, J, 3758-3765.
    [65]Jiang, P.; Tian, Z.-Q.; Zhu, C.-N.; Zhang, Z.-L.; Pang, D.-W., Emission-Tunable Near-Infrared Ag2S Quantum Dots. Chem. Mater.2011,24,3-5.
    [66]Gu, Y.-P.; Cui, R.; Zhang, Z.-L.; Xie, Z.-X.; Pang, D.-W., Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging. J. Am. Chem. Soc.2011,134, 79-82.
    [67]Jiang, P.; Zhu, C.-N.; Zhang, Z.-L.; Tian, Z.-Q.; Pang, D.-W., Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012,33,5130-5135.
    [68]Hocaoglu, I.; Cizmeciyan, M. N.; Erdem, R.; Ozen, C.; Kurt, A.; Sennaroglu, A.; Acar, H. Y, Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem.2012,22,14674-14681.
    [69]Wang, C.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M.; Li, X.; Sun, H.; Lin, Q.; Yang, B., Facile Aqueous-Phase Synthesis of Biocompatible and Fluorescent Ag2S Nanoclusters for Bioimaging:Tunable Photoluminescence from Red to Near Infrared. Small 2012,8, 3137-3142.
    [70]Lin, C. A. J.; Lee, C. H.; Hsieh, J. T.; Wang, H. H.; Li, J. K.; Shen, J. L.; Chan, W. H.; Yeh, H. I.; Chang, W. H., Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application:Recent Progress and Present Challenges. J. Med.Biolog. Eng.2009,29, 276-283.
    [71]Shang, L.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications. Nano Today 2011,6,401-418.
    [72]Shang, L.; Dong, S., Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.2008,1088-1090.
    [73]Xu, H.; Suslick, K. S., Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters. ACS Nano 2010,4,3209-3214.
    [74]Huang, X.; Luo, Y.; Li, Z.; Li, B.; Zhang, H.; Li, L.; Majeed, I.; Zou, P.; Tan, B., Biolabeling Hematopoietic System Cells Using Near-Infrared Fluorescent Gold Nanoclusters. J. Phys. Chem. C 2011,115,16753-16763.
    [75]Cui, Y.; Wang, Y.; Liu, R.; Sun, Z.; Wei, Y.; Zhao, Y.; Gao, X., Serial Silver Clusters Biomineralized by One Peptide. ACS Nano 2011,5,8684-8689.
    [76]Han, B.; Wang, E., DNA-templated fluorescent silver nanoclusters. Anal. Bioanal. Chem. 2012,402,129-38.
    [77]Xu, H.; Suslick, K. S., Water-Soluble Fluorescent Silver Nanoclusters. Adv. Mater.2010,22, 1078-1082.
    [78]Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L. Dickson, R. M., Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008,130,5038-5039.
    [79]Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T., Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem.2012, 22,12972-12982.
    [80]Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T., Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience. Nano Rev.2012,3, 14767.
    [81]Adhikari, B.; Banerjee, A., Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and Hg" Sensing. Chem. Mater.2010,22,4364-4371.
    [82]Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009,3,395-401.
    [83]Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging. Small 2011,7,2614-2620.
    [84]Zhou, C.; Hao, G.; Thomas, P.; Liu, J.; Yu, M.; Sun, S.; Oz, O. K.; Sun, X.; Zheng, J., Near-Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angew. Chem., Int. Ed.2012,51,10118-10122.
    [85]Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T., Bright, NIR-Emitting Au23 from Au25:Characterization and Applications Including Biolabeling. Chem. Eur. J.2009,15,10110-10120.
    [86]Mattoussi, H.; Palui, G.; Na, H. B., Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv. Drug Deliver. Rev 2012,64,138-166.
    [87]Zrazhevskiy, P.; Sena, M.; Gao, X., Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev.2010,39,4326-4354.
    [88]Kobayashi, H.; Longmire, M. R.; Ogawa, M.; Choyke, P. L.; Kawamoto, S., Multiplexed imaging in cancer diagnosis:applications and future advances. Lancet. Oncol.2010,11, 589-595.
    [89]Park, J.-H.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery. Angew. Chem., Int. Ed.2008,47,7284-7288.
    [90]Jin, T.; Yoshioka, Y.; Fujii, F.; Komai, Y.; Seki, J.; Seiyama, A., Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem. Commun.2008,0,5764-5766.
    [91]Erogbogbo, F.; Yong, K.-T.; Hu, R.; Law, W.-C.; Ding, H.; Chang, C.-W.; Prasad, P. N.; Swihart, M. T., Biocompatible Magnetofluorescent Probes:Luminescent Silicon Quantum Dots Coupled with Superparamagnetic Iron(III) Oxide. ACS Nano 2010,4,5131-5138.
    [92]Cai, W.; Chen, K.; Li, Z.-B.; Gambhir, S. S.; Chen, X., Dual-Function Probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature. J. Nucl. Med.2007,48, 1862-1870.
    [93]Chen, K.; Li, Z.-B.; Wang, H.; Cai, W.; Chen, X., Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur. J. Nucl. Med. Mol. Imaging 2008,35,2235-2244.
    [94]Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; White, H.; Gillette, J.; Olenych, S.; Davidson, M. W.; Betzig, E., Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. USA 2007,104,20308-20313.
    [95]Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B.-S.; Le, N.; Paik, C. H.; Choyke, P. L.; Urano, Y., Multimodal Nanoprobes for Radionuclide and Five-Color Near-Infrared Optical Lymphatic Imaging. ACS Nano 2007,1,258-264.
    [96]Hama, Y.; Koyama, Y.; Urano, Y.; Choyke, P. L.; Kobayashi, H., Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J. Invest. Dermatol.2007,127, 2351-2356.
    [97]Erogbogbo, F.; Yong, K.-T.; Roy, I.; Hu, R.; Law, W.-C.; Zhao, W.; Ding, H.; Wu, F.; Kumar, R.; Swihart, M. T.; Prasad, P. N., In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals. ACS Nano 2010,5,413-423.
    [98]Egawa, T.; Hanaoka, K.; Koide, Y.; Ujita, S.; Takahashi, N.; Ikegaya, Y.; Matsuki, N.; Terai, T.; Ueno, T.; Komatsu, T.; Nagano, T., Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging. J. Am. Chem. Soc.2011,133,14157-14159.
    [99]Yamauchi, K.; Yang, M.; Jiang, P.; Xu, M. X.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Moossa, A. R.; Bouvet, M.; Hoffman, R. M., Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res.2006,66,4208-4214.
    [100]Ogawa, M.; Kosaka, N.; Choyke, P. L.; Kobayashi, H., In vivo Molecular Imaging of Cancer with a Quenching Near-Infrared Fluorescent Probe Using Conjugates of Monoclonal Antibodies and Indocyanine Green. Cancer Res.2009,69,1268-1272.
    [101]Guo, J.; Wang, S. L.; Dai, N.; Teo, Y. N.; Kool, E. T., Multispectral labeling of antibodies with polyfiuorophores on a DNA backbone and application in cellular imaging. Proc. Natl. Acad. Sci. USA 2011,108,3493-3498.
    [102]Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R., In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008,320,664-667.
    [103]Liu, J.; Lau, S. K.; Varma, V. A.; Moffitt, R. A.; Caldwell, M.; Liu, T.; Young, A. N.; Petros, J. A.; Osunkoya, A. O.; Krogstad, T.; Leyland-Jones, B.; Wang, M. D.; Nie, S., Molecular Mapping of Tumor Heterogeneity on Clinical Tissue Specimens with Multiplexed Quantum Dots. ACS Nano 2010,4,2755-2765.
    [104]Yezhelyev, M. V.; Al-Hajj, A.; Morris, C.; Marcus, A. I.; Liu, T.; Lewis, M.; Cohen, C.; Zrazhevskiy, P.; Simons, J. W.; Rogatko, A.; Nie, S.; Gao, X.; O'Regan, R. M., In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv. Mater. 2007,19,3146-3151.
    [105]Liu, J.; Lau, S. K.; Varma, V. A.; Kairdolf, B. A.; Nie, S., Multiplexed Detection and Characterization of Rare Tumor Cells in Hodgkin's Lymphoma with Multicolor Quantum Dots. Anal. Chem.2010,82,6237-6243.
    [106]Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C. A. S.; Urano, Y.; Choyke, P. L., Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots. Nano Lett.2007,7,1711-1716.
    [107]Sapsford, K. E.; Berti, L.; Medintz, I. L., Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations. Angew. Chem., Int. Ed.2006,45,4562-4589.
    [108]Razgulin, A.; Ma, N.; Rao, J. H., Strategies for in vivo imaging of enzyme activity:an overview and recent advances. Chem. Soc. Rev.2011,40,4186-4216.
    [109]Shim, M. S.; Kwon, Y J., Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliver. Rev 2012,64,1046-1059.
    [110]Tanaka, E.; Choi, H. S.; Fujii, H.; Bawendi, M. G.; Frangioni, J. V., Image-guided oncologic surgery using invisible light:Completed pre-clinical development for sentinel lymph node mapping. Ann. Surg. Oncol.2006,13,1671-1681.
    [111]Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol.2004,22,93-97.
    [112]Kim, S.-W.; Zimmer, J. P.; Ohnishi, S.; Tracy, J. B.; Frangioni, J. V.; Bawendi, M. G., Engineering InAsxP1-x/InP/ZnSe Ⅲ-Ⅴ Alloyed Core/Shell Quantum Dots for the Near-Infrared. J. Am. Chem. Soc.2005,127,10526-10532.
    [113]Ballou, B.; Ernst, L. A.; Andreko, S.; Harper, T.; Fitzpatrick, J. A. J.; Waggoner, A. S.; Bruchez, M. P., Sentinel Lymph Node Imaging Using Quantum Dots in Mouse Tumor Models. Bioconjugate Chem.2007,18,389-396.
    [114]Pic, E.; Pons, T.; Bezdetnaya, L.; Leroux, A.; Guillemin, F.; Dubertret, B.; Marchal, F., Fluorescence Imaging and Whole-Body Biodistribution of Near-Infrared-Emitting Quantum Dots after Subcutaneous Injection for Regional Lymph Node Mapping in Mice. Mol. Imaging. Biol.2010,12,394-405.
    [115]Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B., Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010,4,2531-2538.
    [116]Cassette, E.; Pons, T.; Bouet, C.; Helle, M.; Bezdetnaya, L.; Marchal, F.; Dubertret, B., Synthesis and Characterization of Near-Infrared Cu-In-Se/ZnS Core/Shell Quantum Dots for In vivo Imaging. Chem. Mater.2010,22,6117-6124.
    [117]Helle, M.; Cassette, E.; Bezdetnaya, L.; Pons, T.; Leroux, A.; Plenat, F.; Guillemin, F.; Dubertret, B.; Marchal, R, Visualisation of Sentinel Lymph Node with Indium-Based near Infrared Emitting Quantum Dots in a Murine Metastatic Breast Cancer Model. Plos One 2012,7, e44433.
    [118]Taik Lim, Y.; Kim, S.; Nakayama, A.; Stott, N. E.; Bawendi, M. G.; Frangioni, J. V., Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging. Mol. Imaging 2003,2,50-64.
    [119]Smith, J. D.; Fisher, G. W.; Waggoner, A. S.; Campbell, P. G, The use of quantum dots for analysis of chick CAM vasculature. Microvasc. Res.2007,73,75-83.
    [120]Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V., Renal clearance of quantum dots. Nat. Biotechnol.2007,25,1165-1170.
    [121]Han, H.-S.; Martin, J. D.; Lee, J.; Harris, D. K.; Fukumura, D.; Jain, R. K.; Bawendi, M., Spatial Charge Configuration Regulates Nanoparticle Transport and Binding Behavior In Vivo. Angew. Chem., Int. Ed.2013,52,1414-1419.
    [122]Popovic, Z.; Liu, W.; Chauhan, V. P.; Lee, J.; Wong, C.; Greytak, A. B.; Insin, N.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G, A Nanoparticle Size Series for In Vivo Fluorescence Imaging. Angew. Chem., Int. Ed.2010,49,8649-8652.
    [123]Schipper, M. L.; Cheng, Z.; Lee, S.-W; Bentolila, L. A.; Iyer, G.; Rao, J.; Chen, X.; Wu, A. M.; Weiss, S.; Gambhir, S. S., MicroPET-based biodistribution of quantum dots in living mice. J. Nucl. Med.2007,48,1511-1518.
    [124]Choi, H. S.; Ipe, B. I.; Misra, P.; Lee, J. H.; Bawendi, M. G.; Frangioni, J. V., Tissue- and Organ-Selective Biodistribution of NIR Fluorescent Quantum Dots. Nano Lett.2009,9, 2354-2359.
    [125]Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J.; Rao, J.; Chen, X.; Banin, U.; Wu, A. M.; Sinclair, R.; Weiss, S.; Gambhir, S. S., Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice. Small 2009,5,126-134.
    [126]Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G; Liu, Z.; Dai, H.; Wang, Q., Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013,34,3639-3646.
    [127]Jayagopal, A.; Russ, P. K.; Haselton, R R., Surface Engineering of Quantum Dots for In Vivo Vascular Imaging. Bioconjugate Chem.2007,18,1424-1433.
    [128]Cai, W. B.; Chen, X. Y., Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc.2008,3,89-96.
    [129]Hu, R.; Yong, K. T.; Roy, I.; Ding, H.; Law, W. C.; Cai, H. X.; Zhang, X. H.; Vathy, L. A.; Bergey, E. J.; Prasad, P. N., Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. Nanotechnology 2010,21,145105.
    [130]Smith, B. R.; Cheng, Z.; De, A.; Koh, A. L.; Sinclair, R.; Gambhir, S. S., Real-Time Intravital Imaging of RGD-Quantum Dot Binding to Luminal Endothelium in Mouse Tumor Neovasculature. Nano Lett.2008,8,2599-2606.
    [131]Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.2004,22,969-976.
    [132]So, M. K.; Xu, C.; Loening, A. M.; Gambhir, S. S.; Rao, J., Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol.2006,24,339-343.
    [133]Diagaradjane, P.; Orenstein-Cardona, J. M.; Colon-Casasnovas, N. E.; Deorukhkar, A.; Shentu, S.; Kuno, N.; Schwartz, D. L.; Gelovani, J. G.; Krishnan, S., Imaging epidermal growth factor receptor expression in vivo:pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin. Cancer Res.2008,14, 731-741.
    [134]Gao, J. H.; Chen, K.; Xie, R. G.; Xie, J.; Yan, Y. J.; Cheng, Z.; Peng, X. G.; Chen, X. Y, In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots. Bioconjugate Chem.2010,21,604-609.
    [135]Gao, J.; Chen, K.; Miao, Z.; Ren, G.; Chen, X.; Gambhir, S. S.; Cheng, Z., Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 2011,32,2141-2148.
    [136]Deng, D.; Chen, Y.; Cao, J.; Tian, J.; Qian, Z.; Achilefu, S.; Gu, Y, High-Quality CuInS2/ZnS Quantum Dots for In vitro and In vivo Bioimaging. Chem. Mater.2012,24, 3029-3037.
    [137]Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Cai, H. X.; Zhu, J.; Zhang, X. H.; Bergey, E. J.; Prasad, P. N., Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr. Biol.2010,2, 121-129.
    [138]Chen, H.; Li, B.; Ren, X.; Li, S.; Ma, Y.; Cui, S.; Gu, Y, Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy. Biomaterials 2012,33,8461-8476.
    [139]Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H., In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew. Chem., Int. Ed.2012,51,9818-9821.
    [140]Gao, J.; Chen, K.; Luong, R.; Bouley, D. M.; Mao, H.; Qiao, T.; Gambhir, S. S.; Cheng, Z., A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett.2012,12,281-6.
    [141]Xia, Z. Y.; Rao, J. H., Biosensing and imaging based on bioluminescence resonance energy transfer. Curr. Opin. Biotech.2009,20, 37-44.
    [142]Liu, Y.; Welch, M. J., Nanoparticles Labeled with Positron Emitting Nuclides:Advantages, Methods, and Applications. Bioconjugate Chem.2012,23,671-682.
    [143]Lucignani, G., Cerenkov radioactive optical imaging:a promising new strategy. Eur. J. Nucl. Med. Mol. Imaging 2011,38,592-595.
    [144]Thorek, D. L.; Robertson, R.; Bacchus, W. A.; Hahn, J.; Rothberg, J.; Beattie, B. J.; Grimm, J., Cerenkov imaging-a new modality for molecular imaging. Am. J. Nucl. Med. Mol. Imaging 2012,2,163-173.
    [145]Qin, C.; Zhong, J.; Hu, Z.; Yang, X.; Tian, J., Recent Advances in Cerenkov Luminescence and Tomography Imaging. Ieee. J. Sel. Top. Quant 2012,18,1084-1093.
    [146]马晓伟,杨卫东,汪静.切伦科夫光学成像研究进展.中华核医学与分子影像杂志2012,32,72-74.
    [147]Liu, H.; Zhang, X.; Xing, B.; Han, P.; Gambhir, S. S.; Cheng, Z., Radiation-Luminescence-Excited Quantum Dots for in vivo Multiplexed Optical Imaging. Small 2010,6,1087-1091.
    [148]Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science 2002,298, 1759-1762.
    [149]Voura, E. B.; Jaiswal, J. K.; Mattoussi, H.; Simon, S. M., Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med.2004,10,993-998.
    [150]Stroh, M.; Zimmer, J. P.; Duda, D. G.; Levchenko, T. S.; Cohen, K. S.; Brown, E. B.; Scadden, D. T.; Torchilin, V. P.; Bawendi, M. G.; Fukumura, D.; Jain, R. K., Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med.2005,11, 678-682.
    [151]Garon, E. B.; Marcu, L.; Luong, Q.; Tcherniantchouk, O.; Crooks, G M.; Koeffler, H. P., Quantum dot labeling and tracking of human leukemic, bone marrow and cord blood cells. Leukemia Res.2007,31,643-651.
    [152]Shi, C.; Zhu, Y.; Xie, Z.; Qian, W.; Hsieh, C.-L.; Nie, S.; Su, Y.; Zhau, H. E.; Chung, L. W. K., Visualizing Human Prostate Cancer Cells in Mouse Skeleton Using Bioconjugated Near-infrared Fluorescent Quantum Dots. Urology 2009,74,446-451.
    [153]Wang, H.-H.; Lin, C.-A. J.; Lee, C.-H.; Lin, Y.-C.; Tseng, Y.-M.; Hsieh, C.-L.; Chen, C.-H.; Tsai, C.-H.; Hsieh, C.-T.; Shen, J.-L.; Chan, W.-H.; Chang, W. H.; Yeh, H.-I., Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells. ACS Nano 2011,5,4337-4344.
    [154]Wang, Z.; Ruan, J.; Cui, D., Advances and Prospect of Nanotechnology in Stem Cells. Nanoscale Res. Lett.2009,4,593-605.
    [155]Seleverstov, O.; Zabirnyk, O.; Zscharnack, M.; Bulavina, L.; Nowicki, M.; Heinrich, J.-M.; Yezhelyev, M.; Emmrich, F.; O'Regan, R.; Bader, A., Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett.2006,6,2826-2832.
    [156]Shah, B. S.; Clark, P. A.; Moioli, E. K.; Stroscio, M. A.; Mao, J. J., Labeling of Mesenchymal Stem Cells by Bioconjugated Quantum Dots. Nano Lett.2007,7,3071-3079.
    [157]Lei, Y.; Tang, H.; Yao, L.; Yu, R.; Feng, M.; Zou, B., Applications of Mesenchymal Stem Cells Labeled with Tat Peptide Conjugated Quantum Dots to Cell Tracking in Mouse Body. Bioconjugate Chem.2007,19,421-427.
    [158]Higuchi, Y.; Wu, C.; Chang, K.-L.; Irie, K.; Kawakami, S.; Yamashita, F.; Hashida, M., Polyamidoamine dendrimer-conjugated quantum dots for efficient labeling of primary cultured mesenchymal stem cells. Biomaterials 2011,32,6676-6682.
    [159]Ranjbarvaziri, S.; Kiani, S.; Akhlaghi, A.; Vosough, A.; Baharvand, H.; Aghdami, N., Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials 2011,32,5195-5205.
    [160]Yukawa, H.; Kagami, Y.; Watanabe, M.; Oishi, K.; Miyamoto, Y.; Okamoto, Y.; Tokeshi, M.; Kaji, N.; Noguchi, H.; Ono, K.; Sawada, M.; Baba, Y; Hamajima, N.; Hayashi, S., Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 2010,31,4094-4103.
    [161]Yukawa, H.; Watanabe, M.; Kaji, N.; Okamoto, Y; Tokeshi, M.; Miyamoto, Y.; Noguchi, H.; Baba, Y.; Hayashi, S., Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials 2012,33, 2177-2186.
    [162]Yang, Q. F.; Liu, J. Y; Chen, H. P.; Wang, X. X.; Huang, Q. M.; Shan, Z., Preparation of Noble Metallic Nanoclusters and Its Application in Biological Detection. Prog. Chem.2011, 23,880-892.
    [163]Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly Fluorescent Noble-Metal Quantum Dots. Annu. Rev. Phys. Chem.2007,58,409-431.
    [164]Lin, C. A. J.; Lee, C. H.; Hsieh, J. T.; Wang, H. H.; Li, J. K.; Shen, J. L.; Chan, W. H.; Yeh, H. I.; Chang, W. H., Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application:Recent Progress and Present Challenges. JMed. Biol. Eng.2009,29,276-283.
    [165]Shang, L.; Dong, S.; Nienhaus, G U., Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications. Nano Today 2011,6,401-418.
    [166]Latorre, A.; Somoza, A., DNA-Mediated Silver Nanoclusters:Synthesis, Properties and Applications. Chembiochem 2012,13,951-958.
    [167]Choi, S.; Dickson, R. M.; Yu, J., Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev.2012,41,1867-1891.
    [168]Diez, I.; Ras, R. H. A., Fluorescent silver nanoclusters. Nanoscale 2011,3,1963-1970.
    [169]Jin, R., Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010,2,343-362.
    [170]Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev.2009,110,2620-2640.
    [171]Low, P. S.; Henne, W. A.; Doorneweerd, D. D., Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Acc. Chem. Res.2007,41,120-129.
    [172]Vlahov, I. R.; Leamon, C. P., Engineering Folate-Drug Conjugates to Target Cancer:From Chemistry to Clinic. Bioconjugate Chem.2012,23,1357-1369.
    [173]Low, P. S.; Kularatne, S. A., Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol.2009,13,256-62.
    [174]Xia, W.; Low, P. S., Folate-Targeted Therapies for Cancer. J. Med. Chem.2010,53, 6811-6824.
    [175]Adhikari, B.; Banerjee, A., Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgⅡ Sensing. Chem. Mater.2010,22,4364-4371.
    [176]Shang, L.; Dong, S., Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.2008,1088-1090.
    [177]Sapsford, K. E.; Tyner, K. M.; Dair, B. J.; Deschamps, J. R.; Medintz, I. L., Analyzing Nanomaterial Bioconjugates:A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem.2011,83,4453-4488.
    [178]Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L., Functionalizing Nanoparticles with Biological Molecules:Developing Chemistries that Facilitate Nanotechnology. Chem. Rev.2013,113,1904-2074.
    [179]Thanh, N. T. K.; Green, L. A. W., Functionalisation of nanoparticles for biomedical applications. Nano Today 2010, 5,213-230.
    [180]Gu, Y.-P.; Cui, R.; Zhang, Z.-L.; Xie, Z.-X.; Pang, D.-W., Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging.J. Am. Chem. Soc.2011,134, 79-82.
    [181]Erathodiyil, N.; Ying, J. Y., Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Acc. Chem. Res.2011,44,925-935.
    [182]Zheng, C.; Zheng, M.; Gong, P.; Jia, D.; Zhang, P.; Shi, B.; Sheng, Z.; Ma, Y.; Cai, L., Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 2012,33,5603-5609.
    [183]Negishi, Y.; Nobusada, K.; Tsukuda, T., Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(Ⅰ)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc.2005,127,5261-5270.
    [184]Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters.J. Am. Chem. Soc.2009,131,888-889.
    [185]Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T., Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience. Nano Rev.2012,3, 14767.
    [186]Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., pH-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater.2011,21,3508-3515.
    [187]Chan, P.-H.; Chen, Y.-C., Human Serum Albumin Stabilized Gold Nanoclusters as Selective Luminescent Probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. Anal. Chem.2012,84,8952-8956.
    [188]Lin, Y. H.; Tseng, W. L., Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type Ⅵ-Stabilized Gold Nanoclusters. Anal. Chem. 2010,82,9194-9200.
    [189]Kawasaki, H.; Yoshimura, K.; Hamaguchi, K.; Arakawa, R., Trypsin-Stabilized Fluorescent Gold Nanocluster for Sensitive and Selective Hg2+ Detection. Anal. Sci.2011,27,591.
    [190]Liu, C.-L.; Wu, H.-T.; Hsiao, Y.-H.; Lai, C.-W.; Shih, C.-W.; Peng, Y.-K.; Tang, K.-C.; Chang, H.-W.; Chien, Y.-C.; Hsiao, J.-K.; Cheng, J.-T.; Chou, P.-T., Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters:Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angew. Chem., Int. Ed.2011,50,7056-7060.
    [191]Sun, C.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L.; Guo, Y.; Xu, L.; Lei, J.; Gao, N.; Anderson, G. J.; Liang, X.-J.; Chen, C.; Zhao, Y.; Nie, G., Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. J. Am. Chem. Soc.2011,133,8617-8624.
    [192]Wen, F.; Dong, Y. H.; Feng, L.; Wang, S.; Zhang, S. C.; Zhang, X. R., Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem.2011,83,1193-1196.
    [193]Guevel, X. L.; Daum, N.; Schneider, M., Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 2011,22,275103.
    [194]Hu, D. H.; Sheng, Z. H.; Gong, P.; Zhang, P. F.; Cai, L. T., Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 2010, 135,1411-1416.
    [195]Xie, J. P.; Zheng, Y. G.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun.2010,46,961-963.
    [196]Wei, H.; Wang, Z. D.; Yang, L. M.; Tian, S. L.; Hou, C. J.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster:Synthesis and application as Hg2+ sensor. Analyst 2010,135, 1406-1410.
    [197]Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K., Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 2011,136,933-940.
    [198]Liu, Y. L.; Ai, K. L.; Cheng, X. L.; Huo, L. H.; Lu, L. H., Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater.2010,20,951-956.
    [199]Archana, R.; et al., CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia. Nanotechnology 2011,22, 285102.
    [200]Retnakumari, A.; Setua, S.; Menon, D.; Ravindran, P.; Muhammed, H.; Pradeep, T.; Nair, S.; Koyakutty, M., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 2010,21, 055103.
    [201]Chen, Z.; Qian, S.; Chen, J.; Cai, J.; Wu, S.; Cai, Z., Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity. Talanta 2012,94, 240-245.
    [202]Tian, D.; Qian, Z.; Xia, Y.; Zhu, C., Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells. Langmuir 2012,28, 3945-3951.
    [203]Chen, H.; Li, B.; Ren, X.; Li, S.; Ma, Y.; Cui, S.; Gu, Y., Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy. Biomaterials 2012,33,8461-76.
    [204]Chen, H.; Li, S.; Li, B.; Ren, X.; Mahounga, D. M.; Cui, S.; Gu, Y.; Achilefu, S., Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale 2012,4,6050-6064.
    [205]Hu, D.-H.; Sheng, Z.-H.; Zhang, P.-F.; Yang, D.-Z.; Liu, S.-H.; Gong, P.; Gao, D.-Y.; Fang, S.-T.; Ma, Y.-F.; Cai, L.-T., Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale 2013,5,1624-1628.
    [206]Kong, Y.; Chen, J.; Gao, F.; Brydson, R.; Johnson, B.; Heath, G.; Zhang, Y.; Wu, L.; Zhou, D., Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters:preparation, characterization, cancer targeting and imaging. Nanoscale 2013,5,1009-1017.
    [207]Wu, X.; He, X. X.; Wang, K. M.; Xie, C.; Zhou, B.; Qing, Z. H., Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010,2, 2244-2249.
    [208]Kobayashi, H.; Choyke, P. L., Target-Cancer-Cell-Specific Activatable Fluorescence Imaging Probes:Rational Design and in Vivo Applications. Acc. Chem. Res.2010,44, 83-90.
    [209]Daniels, T. R.; Delgado, T.; Helguera, G.; Penichet, M. L., The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin. Immunol.2006,121,159-176.
    [210]Daniels, T. R.; Delgado, T.; Rodriguez, J. A.; Helguera, G.; Penichet, M. L., The transferrin receptor part Ⅰ:Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol.2006,121,144-158.
    [211]Chan, W. C. W.; Nie, S., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998,281,2016-2018.
    [212]Yong, K. T.; Ding, H.; Roy, I.; Law, W. C.; Bergey, E. J.; Maitra, A.; Prasad, P. N., Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots. ACS Nano 2009,3, 502-510.
    [213]Yong, K.-T.; Roy, I.; Pudavar, H. E.; Bergey, E. J.; Tramposch, K. M.; Swihart, M. T.; Prasad, P. N., Multiplex Imaging of Pancreatic Cancer Cells by Using Functionalized Quantum Rods. Adv. Mater.2008,20,1412-1417.
    [214]Chen, D.; Xu, G.; Ali, B. A.; Yong, K.-T.; Zhou, C.; Wang, X.; Qu, J.; Prasad, P. N.; Niu, H., Uptake of transferrin-conjugated quantum dots in single living cells. Chin. Opt. Lett. 2010,8,940-943.
    [215]Qian, J.; Yong, K. T.; Roy, I.; Ohulchanskyy, T. Y.; Bergey, E. J.; Lee, H. H.; Tramposch, K. M.; He, S. L.; Maitra, A.; Prasad, P. N., Imaging pancreatic cancer using surface-functionalized quantum dots. J. Phys. Chem. B 2007,111,6969-6972.
    [216]Wang, Y.; Li, Z. H.; Hu, D. H.; Lin, C. T.; Li, J. H.; Lin, Y. H., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. J. Am. Chem. Soc.2010,132, 9274-9276.
    [217]Chou, S. S.; De, M.; Luo, J.; Rotello, V. M.; Huang, J.; Dravid, V. P., Nanoscale Graphene Oxide (nGO) as Artificial Receptors:Implications for Biomolecular Interactions and Sensing. J. Am. Chem. Soc.2012,134,16725-16733.
    [218]Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem. Soc.1958, 80,1339-1339.
    [219]Simms, G. A.; Padmos, J. D.; Zhang, P., Structural and electronic properties of protein/thiolate-protected gold nanocluster with "staple" motif:A XAS, L-DOS, and XPS study. J. Chem. Phys.2009,131,214703.
    [220]Morales-Narvaez, E.; Merkoci, A., Graphene Oxide as an Optical Biosensing Platform. Adv. Mater.2012,24,3298-3308.
    [221]Zhang, W.; Wang, C.; Li, Z.; Lu, Z.; Li, Y.; Yin, J. J.; Zhou, Y. T.; Gao, X.; Fang, Y.; Nie, G.; Zhao, Y., Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater.2012,24,5391-7.
    [222]Mu, Q.; Su, G.; Li, L.; Gilbertson, B. O.; Yu, L. H.; Zhang, Q.; Sun, Y.-P.; Yan, B., Size-Dependent Cell Uptake of Protein-Coated Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2012,4,2259-2266.
    [223]Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q., Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. ACS Nano 2011,5, 3693-3700.
    [224]Chan, W. C. W.; Nie, S., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998,281,2016-2018.
    [225]Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998,281,2013-2016.
    [226]Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    [227]Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005,307,538-544.
    [228]Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008,5,763-775.
    [229]Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliver. Rev 2008,60,1226-1240.
    [230]Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev.2009,110,2620-2640.
    [231]Ma, Q. A.; Su, X. G., Near-infrared quantum dots:synthesis, functionalization and analytical applications. Analyst 2010,135,1867-1877.
    [232]Aswathy, R. G.; Yoshida, Y.; Maekawa, T.; Kumar, D. S., Near-infrared quantum dots for deep tissue imaging. Anal. Bioanal. Chem.2010,397,1417-1435.
    [233]Tavares, A. J.; Chong, L. R.; Petryayeva, E.; Algar, W. R.; Krull, U. J., Quantum dots as contrast agents for in vivo tumor imaging:progress and issues. Anal. Bioanal. Chem.2011, 399,2331-2342.
    [234]Smith, A. M.; Nie, S., Next-generation quantum dots. Nat. Biotechnol.2009,27,732-733.
    [235]Sahu, A.; Qi, L.; Kang, M. S.; Deng, D.; Norris, D. J., Facile Synthesis of Silver Chalcogenide (Ag2E; E=Se, S, Te) Semiconductor Nanocrystals. J. Am. Chem. Soc.2011, 133,6509-6512.
    [236]Leon-Velazquez, M. S.; Irizarry, R.; Castro-Rosario, M. E., Nucleation and Growth of Silver Sulfide Nanoparticles. J. Phys. Chem. C2010,114,5839-5849.
    [237]Li, G.; Lei, Z.; Wang, Q.-M., Luminescent Molecular Ag-S Nanocluster [Ag62S13(SBut)32](BF4)4.J. Am. Chem. Soc.2010,132,17678-17679.
    [238]de la Rica, R.; Velders, A. H., Biomimetic Crystallization of Ag2S Nanoclusters in Nanopore Assemblies. J. Am. Chem. Soc.2011,133,2875-2877.
    [239]Xiang, J.; Cao, H.; Wu, Q.; Zhang, S.; Zhang, X.; Watt, A. A. R., L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanospheres. J. Phys. Chem. C 2008,112, 3580-3584.
    [240]Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q., Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor. J. Am. Chem. Soc.2010,132, 1470-1471.
    [241]Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O.; Loi, M. A.; Paris, O.; Hesser, G. n.; Heiss, W., Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis. ACS Nano 2011,5, 3758-3765.
    [242]Jiang, P.; Tian, Z.-Q.; Zhu, C.-N.; Zhang, Z.-L.; Pang, D.-W., Emission-Tunable Near-Infrared Ag2S Quantum Dots. Chem. Mater.2011,24,3-5.
    [243]Hocaoglu, I.; Cizmeciyan, M. N.; Erdem, R.; Ozen, C.; Kurt, A.; Sennaroglu, A.; Acar, H. Y, Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem.2012,22,14674-14681.
    [244]Wang, C.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M.; Li, X.; Sun, H.; Lin, Q.; Yang, B., Facile Aqueous-Phase Synthesis of Biocompatible and Fluorescent Ag2S Nanoclusters for Bioimaging:Tunable Photoluminescence from Red to Near Infrared. Small 2012,8, 3137-3142.
    [245]Jiang, P.; Zhu, C.-N.; Zhang, Z.-L.; Tian, Z.-Q.; Pang, D.-W., Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 2012,33,5130-5135.
    [246]Yang, H.-Y.; Zhao, Y.-W.; Zhang, Z.-Y.; Xiong, H.-M.; Yu, S.-N., One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 2013,24,055706.
    [247]Gu, Y.-P.; Cui, R.; Zhang, Z.-L.; Xie, Z.-X.; Pang, D.-W., Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging. J. Am. Chem. Soc.2011,134, 79-82.
    [248]Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H., In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew. Chem., Int. Ed.2012,51,9818-9821.
    [249]Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q., Ag2S Quantum Dot:A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano 2012,6,3695-3702.
    [250]Elsner, M., New role for VEGF. Nat. Biotechnol. 2011,29,1101-1101.
    [251]Ferrara, N.; Gerber, H. P.; LeCouter, J., The biology of VEGF and its receptors. Nat. Med. 2003,9,669-676.
    [252]Ellis, L. M.; Hicklin, D. J., VEGF-targeted therapy:mechanisms of anti-tumour activity. Nat. Rev. Cancer 2008,8,579-591.
    [253]Schneider, B. P.; Radovich, M.; Miller, K. D., The Role of Vascular Endothelial Growth Factor Genetic Variability in Cancer. Clin. Cancer Res.2009,15,5297-5302.
    [254]Roskoskijr, R., Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit. Rev. Oncol. Hemat.2007,62,179-213.
    [255]Cai, W. B.; Chen, X. Y, Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front. Biosci.2007,12,4267-4279.
    [256]Latham, A. M.; Molina-Paris, C.; Homer-Vanniasinkam, S.; Ponnambalam, S., An integrative model for vascular endothelial growth factor A as a tumour biomarker. Integr. Biol.2010,2,397-407.
    [257]Sapsford, K. E.; Tyner, K. M.; Dair, B. J.; Deschamps, J. R.; Medintz, I. L., Analyzing Nanomaterial Bioconjugates:A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem.2011,83,4453-4488.
    [258]Algar, W. R.; Prasuhn, D. E.; Stewart, M. H.; Jennings, T. L.; Blanco-Canosa, J.-B.; Dawson, P. E.; Medintz, I. L., The Controlled Display of Biomolecules on Nanoparticles:A Challenge Suited to Bioorthogonal Chemistry. Bioconjugate Chem.2011,22,825-858.
    [259]Thanh, N. T. K.; Green, L. A. W., Functionalisation of nanoparticles for biomedical applications. Nano Today 2010,5,213-230.
    [260]Choi, H. S.; Ipe, B. I.; Misra, P.; Lee, J. H.; Bawendi, M. G.; Frangioni, J. V, Tissue-and Organ-Selective Biodistribution of NIR Fluorescent Quantum Dots. Nano Lett.2009,9, 2354-2359.
    [261]Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V., Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol.2010,5,42-47.
    [262]Gao, J.; Chen, K.; Luong, R.; Bouley, D. M.; Mao, H.; Qiao, T.; Gambhir, S. S.; Cheng, Z., A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett.2012,12,281-286.
    [263]Dickerson, M. B.; Sandhage, K. H.; Naik, R. R., Protein-and Peptide-Directed Syntheses of Inorganic Materials. Chem. Rev.2008,108,4935-4978.
    [264]Hennequin, B.; Turyanska, L.; Ben, T.; Beltran, A. M.; Molina, S. I.; Li, M.; Mann, S.; Patane, A.; Thomas, N. R., Aqueous Near-Infrared Fluorescent Composites Based on Apoferritin-Encapsulated PbS Quantum Dots. Adv. Mater.2008,20,3592-3596.
    [265]Ma, N.; Marshall, A. F.; Rao, J. H., Near-Infrared Light Emitting Luciferase via Biomineralization.J. Am. Chem. Soc.2010,132,6884-6885.
    [266]Zhou, W.; Schwartz, D. T.; Baneyx, F. o., Single-Pot Biofabrication of Zinc Sulfide Immuno-Quantum Dots.J. Am. Chem. Soc.2010,132,4731-4738.
    [267]Zhang, H.; Hyun, B.-R.; Wise, F. W.; Robinson, R. D., A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals. Nano Lett.2012,12, 5856-5860.
    [268]Zimmer, J. P.; Kim, S.-W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G., Size Series of Small Indium Arsenide-Zinc Selenide Core-Shell Nanocrystals and Their Application to In Vivo Imaging. J. Am. Chem. Soc.2006,128,2526-2527.
    [269]Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L., Semiconductor Quantum Dots in Bioanalysis:Crossing the Valley of Death. Anal. Chem.2011,83,8826-8837.
    [270]Erathodiyil, N.; Ying, J. Y., Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Acc. Chem. Res.2011,44,925-935.
    [271]Chen, K.; Li, Z.-B.; Wang, H.; Cai, W.; Chen, X., Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur. J. Nucl. Med. Mol. Imaging 2008,35,2235-2244.
    [272]Chen, B.; Zhong, H.; Zou, B., I-III-VI Semiconductor Nanocrystals. Prog. Chem.2011,23, 2276-2286.
    [273]Lei, D.; Shen, Y.; Feng, Y.; Feng, W., Recent progress in the fields of tuning the band gap of quantum dots. Sci. China Tech. Sci.2012,55,903-912.
    [274]Bottrill, M.; Green, M., Some aspects of quantum dot toxicity. Chem. Commun.2011,47, 7039-7050.
    [275]Smith, A. M.; Nie, S., Next-generation quantum dots. Nat. Biotechnol.2009,27,732-3.
    [276]Pons, T.; Pic, E.; Lequeux, N.; Cassette, E.; Bezdetnaya, L.; Guillemin, F.; Marchal, F.; Dubertret, B., Cadmium-Free CuInS2/ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity. ACS Nano 2010,4,2531-2538.
    [277]Subramaniam, P.; Lee, S. J.; Shah, S.; Patel, S.; Starovoytov, V.; Lee, K.-B., Generation of a Library of Non-Toxic Quantum Dots for Cellular Imaging and siRNA Delivery. Adv. Mater. 2012,24,4014-4019.
    [278]Cassette, E.; Pons, T.; Bouet, C.; Helle, M.; Bezdetnaya, L.; Marchal, F.; Dubertret, B., Synthesis and Characterization of Near-Infrared Cu-In-Se/ZnS Core/Shell Quantum Dots for In vivo Imaging. Chem. Mater.2010,22,6117-6124.
    [279]Deng, D.; Chen, Y.; Cao, J.; Tian, J.; Qian, Z.; Achilefu, S.; Gu, Y., High-Quality CuInS2/ZnS Quantum Dots for In vitro and In vivo Bioimaging. Chem. Mater.2012,24, 3029-3037.
    [280]Li, L.; Daou, T. J.; Texier, I.; Kim Chi, T. T.; Liem, N. Q.; Reiss, P., Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals:Cadmium-Free Quantum Dots for In Vivo Imaging. Chem. Mater.2009,21,2422-2429.
    [281]Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Cai, H. X.; Zhu, J.; Zhang, X. H.; Bergey, E. J.; Prasad, P. N., Synthesis of ternary CuInS2/ZnS quantum dot bioconjugates and their applications for targeted cancer bioimaging. Integr. Biol.2010,2,121-129.
    [282]Chang, J.-Y.; Wang, G.-Q.; Cheng, C.-Y.; Lin, W.-X.; Hsu, J.-C., Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes.J. Mater. Chem.2012,22,10609-10618.
    [283]Hsu, J.-C.; Huang, C.-C.; Ou, K.-L.; Lu, N.; Mai, F.-D.; Chen, J.-K.; Chang, J.-Y, Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery. J. Mater. Chem.2011, 21,19257-19266.
    [284]Sheng, Y.; Tang, X.; Xue, J., Synthesis of AIZS@SiO2 core-shell nanoparticles for cellular imaging applications. J. Mater. Chem.2012,22,1290-1296.
    [285]Deng, D.; Cao, J.; Qu, L.; Achilefu, S.; Gu, Y, Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging. Phys. Chem. Chem. Phys.2013, 15,5078-5083.
    [286]Helle, M.; Cassette, E.; Bezdetnaya, L.; Pons, T.; Leroux, A.; Plenat, F.; Guillemin, F.; Dubertret, B.; Marchal, F., Visualisation of Sentinel Lymph Node with Indium-Based near Infrared Emitting Quantum Dots in a Murine Metastatic Breast Cancer Model. Plos One 2012,7, e44433.
    [287]Park, J.; Dvoracek, C.; Lee, K. H.; Galloway, J. F.; Bhang, H. E. C.; Pomper, M. G.; Searson, P. C., CuInSe/ZnS Core/Shell NIR Quantum Dots for Biomedical Imaging. Small 2011,7, 3148-3152.
    [288]Nicolas, J.; Brambilla, D.; Carion, O.; Pons, T.; Maksimovic, I.; Larquet, E.; Le Droumaguet, B.; Andrieux, K.; Dubertret, B.; Couvreur, P., Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. Soft Matter 2011,7, 6187-6193.
    [289]Guo, W.; Chen, N.; Tu, Y.; Dong, C.; Zhang, B.; Hu, C.; Chang, J., Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging. Theranostics 2013,3,99-108.
    [290]Liu, L.; Hu, R.; Roy, I.; Lin, G.; Ye, L.; Reynolds, J. L.; Liu, J.; Schwartz, S. A.; Zhang, X.; Yong, K. T., Synthesis of Luminescent Near-Infrared AgInS2 Nanocrystals as Optical Probes for In Vivo Applications. Theranostics 2013,3,109-115.
    [291]Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F., Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors. Chem. Mater.2003,15,3142-3147.
    [292]Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y, Elemental Solvothermal Reaction To Produce Ternary Semiconductor CuInE2 (E=S, Se) Nanorods. Inorg. Chem.2000,39, 2964-2965.
    [293]Yang, Y.-H.; Chen, Y.-T., Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods. J. Phys. Chem. B 2006,110,17370-17374.
    [294]Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics.J. Am. Chem. Soc.2008,130,16770-16777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700