用户名: 密码: 验证码:
含镍电镀污泥中镍的回收和综合应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电镀工业的迅猛发展,将会有越来越多的电镀废水产生。而电镀污泥是电镀废水处理后产生的固体废弃物,含有多种重金属元素。固体废弃物直接填埋,不仅破坏环境、危害人类健康,也会造成巨大的资源浪费。由于电镀镍具有高均匀性、高耐磨性、高耐蚀性等优点,因此被广泛地应用于工业生产。在我国《国家危险废物名录》(环发[1998]89号)的47类危险废物中,含镍电镀污泥被列为第十七类危险废物,它的无害化处理和资源化利用是目前备受瞩目的焦点。本文以某企业在镁铝合金镀镍过程中产生的含镍电镀污泥为原料,本着回收电镀污泥中的重金属资源及实现污泥无害化处理为原则,对电镀污泥中的重金属镍进行了回收应用的研究,提出了两种处理含镍电镀污泥的有效工艺:一是制备出氯化镍回用为镀镍原料;二是制得含镍、铜Ni/Cu/Al_2O_3/ZrO_2复相陶瓷,通过金属镍和铜实现陶瓷的增韧。
     本文首先研究了含镍电镀污泥的成分和酸碱性,结果表明:①电镀污泥为弱碱性,pH值为8。②电镀污泥中镍的质量百分比为11.77%,铜的含量次之,且大都以氧化物形式存在。
     采用选择性分离法制备氯化镍,用碳酸氢铵选择性浸出污泥中的镍离子和铜离子,形成配离子进入溶液,用盐酸滴定溶液,硫代乙酰胺作选择性沉淀剂,使铜离子沉淀,获得氯化镍溶液,蒸发结晶得到氯化镍晶体,纯度可以达到95.36%,镍的回收率达到92.5%。制得的氯化镍符合国家电镀工业的要求,可用作镀镍时的电解质和镍阳极活化剂。
     鉴于污泥中除Ni的含量高外,Cu和Al的含量也较高,本文采用共沉淀化合物前躯体-水热反应法制得复合粉体Ni/Cu/Al_2O_3/ZrO_2,这样不仅回收了镍,也回收了其中的铜和铝,镍的回收率高达95.5%。烧制成的ZrO_2基复相陶瓷Ni/Cu/Al_2O_3/ZrO_2的断裂韧性KIC为8.52 MPa·m~(1/2),抗压强度σ_c为51 MPa,比纯ZrO_2陶瓷的性能分别提高了2.54倍和1.5倍,利用金属Ni和Cu增韧了ZrO_2陶瓷。
More and more electroplating wastewater is generated with rapid development of electroplating industry. The electroplating sludge is one kind of solid wastes from disposal of electroplating wastewater, including various heavy metallic elements. The direct landfill of electroplating sludge not only endangers environment,brings hazard to human health but also results in huge waste of resources. The nickel-plating is widely utilized in industrial production because its high uniformity, wear-resistance and causticity-resistance et al.. During 47 sorts of hazardous wastes specified in China“National Catalogue of Hazardous Wastes”, the electroplating sludge containing nickel is listed in the seventeenth, whose sound disposal and resource utilization is focused on presently. Based on the principle of recycling heavy metals of electroplating sludge and achieving sludge harmlessness, this paper studied on nickel recovery and application from the electroplating sludge caused in Mg-Al alloy nickel-plating production process in an enterprise, and put forward two valid technologies of treating the electroplating sludge containing nickel. The first one is to prepare NiCl_2 as nickel-plating raw material, and the second one is to obtain Ni/Cu/Al_2O_3/ZrO_2 composite ceramics and use nickel and copper to realize ceramics toughening.
     At first, this paper researched components and acid-base property of the electroplating sludge. It indicates:①pH value of the sludge is 8, alkalescence.②for elements content of the electroplating sludge, Ni is 11.77%, Cu comes second. Also they are mostly in the form of oxides.
     NiCl_2 was prepared by selective separation method. Firstly, NH4HCO3 solution was used to selectively leach Ni~(2+) and Cu~(2+) of the sludge into coordination ions in the solution. Further, HCl and TAA as selective precipitator was added to make Cu~(2+) precipitated so NiCl_2 solution was gotten. Finally, evaporating and crystallizing the solution derived NiCl_2 crystal. The purity reaches 95.36% and the recovery rate of nickel comes to 92.5%. The preparative NiCl_2 meets the requirement of national electroplating industry, which can be served as nickel-plating electrolyte or nickel anode activator.
     In view of Cu and Al content being high in the electroplating sludge except Ni, Ni/Cu/Al_2O_3/ZrO_2 composite powder was attained through co-precipitation compound precursor-hydrothermal processing where not only Ni but Cu and Al were recycled. The recovery rate of nickel is up to 95.5%. The fracture toughness of sintered ZrO_2-based composite ceramics Ni/Cu/Al_2O_3/ZrO_2 is 8.52 MPa·m~(1/2) and the compressive strength is 51 MPa, which increase by 2.54 times and 1.5 times compared with those of pure ZrO_2 ceramics, respectively. The nickel and copper particles toughen ZrO_2 ceramics.
引文
[1]刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:科学出版社,1984:112-124.
    [2] Adriano DC, Adriano. Trace Elements In the Terrestrial Environment [M]. New York: Springer-Verlag, 1986: 50-51.
    [3]陈清,卢国程.微量元素与健康[M].北京:北京大学出版社,1989.
    [4]刘铮.微量元素的农业化学[M].北京:农业出版社,1991:172.
    [5]解振华.中国大百科全书—环境科学[M].北京:中国大百科全书出版社,1983.
    [6]刘牧,孙洪志.镍有害于人类健康[J].稀有金属快报, 1999,(10):24-25.
    [7]电镀行业污染物排放标准编制组.电镀行业主要污染物情况分析[J].涂料涂装与电镀, 2006,4(4):42-46.
    [8]国家自然科学基金委员会.自然科学学科发展战略调研报告:金属材料科学[R].北京:科学出版社,1995.
    [9]周全法,尚通明.电镀废弃物与材料的回收利用[M].北京:化学工业出版社,2004: 9-10.
    [10]管涛.我国电镀工业的现况[J].金属世界,2005,2(1):8-10.
    [11]李健,张惠源,尔丽珠.电镀重金属废水治理技术的发展现状[J].电镀与精饰,2003,25(3):36-39.
    [12]张春爱,曹变英.电镀废水综合治理的研究[J].环境工程,1995,13(2):3-7.
    [13]罗道成,易平贵,刘俊峰.电镀废水综合治理的应用实践[J].工业水理,2003,23 (9):69-71.
    [14]张忠民,石雪松.电镀污泥的形成及处置[J].科技情报开发与经济, 2003, 13(5): 91-92.
    [15]国家环保总局. 2005年中国环境状况公报[EB/OL]. http://www. sepa.gov.cn/plan/ zkgb/0gb, 2006-07-27.
    [16]陈昌铭,吴子俊,傅宏达等.印刷板行业含铁、铜氢氧化物污泥的综合利用[J].电镀与环保,1995,15(5):21-22.
    [17]贾金平,谢少艾,陈虹锦.电镀废水处理技术及工程实例[M].北京:化学工业出版社,2003:20-22.
    [18]冯绍彬.电镀清洁生产工艺[M].北京:化学工业出版社,2005:21-25.
    [19] Lowe P. Developments in sewage sludge incineration: Symp. on Effluent Treatment and Waste Disposal [J]. Instn. Chem. Eng., 1990, 18(1): 31-34.
    [20] Huston JA, Walker JB. Sewage sludge incineration: some planning and operating experiences [J]. Instn. Wat. & Envir. Mangt, 1992, 25(4): 50-52.
    [21] Roy A, Cartledge FK. Long-term behavior of a Portland cement electroplating sludge waste form in presence of copper nitrate [J]. Hazard Mater, 1997, 52(2): 265-286.
    [22]Asavapisit S, Naksrichum S, Harnwajana-wong N. Strength leachability and microstructure characteristics cement-based solidified plating sludge [J]. Cement Concrete Res., 2005, 35(6): 1042-1049.
    [23]赵由才,孙英杰.危险废物处理技术[M].北京:化学工业出版社,2003:220-223.
    [24]贾金平,杨骥.电镀重金属污泥的水泥固化/稳定化处理[J].上海环境学,1999,18(5):229-232.
    [25]廖昌华,孙水裕,张志.焚烧温度对电镀污泥后续处理影响研究[J].再生资源研究,2002,(5):34-36.
    [26] Dannial KC. Treatment technologies [J]. Water Environmental Research, 1997, 69(4): 676.
    [27] Jia JP, Yang J. The status quo of treatment and comprehensive utilization on heavy metal electroplating sludge [J]. Shanghai Environment Science, 1999, 18(3): 139-141.
    [28] Zhao YC, Sun YJ. Technologies for the Treatment of Hazardous Wastes [M]. Beijing: Chemical Industry Press, 2003: 176-184.
    [29]叶锦韶,尹华,彭辉等.掷孢酵母对含铬废水的生物吸附[J].暨南大学学报(自然科学与医学版),2005,26(3):403-405.
    [30]周建红,刘存海,张学忠.含铬污泥的堆肥化处理及其复合肥的应用效果[J].西北轻工业学院报,2002,20(2):8-10.
    [31]赵晓红,张敏,李福德. SRV菌去除电镀废水中铜的研究[J].中国环境科学,1996, 16(4):288-292.
    [32] Dilek FB, Gokcay CF. Microbiology of activated sludge treating waste water containing Ni(II) and Cr [J]. Water Science & Technology, 1996, 34(5): 183-191.
    [33] Jha MK, Kumar V, Singh RJ. Review of hydrometallurgical recovery of zinc from industrial wastes [J]. Resource Conserve Recycle, 2001, 33(1): 1-22.
    [34] Rubisov DH, Krowinkel JM, Papangelakis VG. Sulphuric acid pressure leaching oflaterites-universal kinetics of nicke dissolution for limonites and limonitic/sap rolitic blends. Hydrom etallurgy, 2000, 58(1): 1-11.
    [35]梁俊兰.从电镀污泥中回收镍[J].有色冶炼,1999,28(6):46-48.
    [36]李雪飞,杨家宽.含铬污泥酸浸方法的对比研究[J].江苏技术师范学院学报,2006,12(2):26-28.
    [37]杨振宁,陈志传,高大明等.电镀污泥中铜镍回收方法及工艺的研究[J].环境污染与防治,2008,30(7):58-61.
    [38]吴小令.硫脲法从电镀污泥中提金工艺研究[J].中国资源综合利用,2005,23(8):3-5.
    [39] Silva JE, Soares D, Pa iva AP, et al. Leaching behavour of a galvanic sludge in sulphuric acid and ammoniacal media [J]. Hazard Mater, 2005, 121(1): 195-202.
    [40]祝万鹏,杨志华,李力佟.溶剂萃取法提取电镀污泥浸出液中的铜[J].环境污染与防治,1996, 18(4):13-15.
    [41]张冠东,张登君,李报厚.从氨浸电镀污泥产物中氢还原分离铜、镍、锌的研究[J].化工冶金,1996,17(3):215-219.
    [42]贾金平,谢少艾,陈虹锦.电镀废水处理技术及工程实例[M].北京:化学工业出版社,2003:145-148.
    [43]杨光.页岩—煤研石烧红砖治理铬渣除毒效果研究[J].环境科学,1997,18(5):75-77.
    [44] Magalh?es JM, Silva JE, Castro FP, et al. Role of the mixing conditions and composition of galvanic sludges on the inertization process in clay-based ceramics [J]. Hazard Mater, 2004, 106(2): 169-176.
    [45]严捍东.电镀污泥与海滩淤泥复合烧制陶粒重金属固化效果的试验分析[J].化工进展,2005,24(4):383-386.
    [46]国家科技标准司.电镀污泥及铬渣资源化实用技术指南[M].北京:中国环境科学出版社,1997:57-60.
    [47]奚红霞,黄仲涛.氧化锆膜的制备与表征[J].无机材料学报,1996,11(4):627-632.
    [48]张长瑞,郝元恺.陶瓷基复合材料[M].长沙:国防科技大学出版社,2001:6.
    [49] Betz U, Sturm A, Lof?er JF, et al. Microstructural development during final-stage sintering of nanostructured zirconia based ceramics [J]. Materials Science and Engineering A, 2000, (281): 68-74.
    [50] Wang HZ, Gao L, Guo JK. Fabrication and Microstructure of Al2O3-ZrO2(3Y)-SiC nanocomposites [J]. Journal of the European Ceramic Society, 1999, 19(12): 2125-2131.
    [51] Upadhyaya DD, Dalvi PY, Gey GK. Processing and properties of Y-TZP/Al2O3 composites [J]. J. Mater Sci., 1993, 28: 6103.
    [52] Baejndran S, Swain MV, Dossell HJ. Mechanical properties and microstructure of co-precipitation derived tetragonal Y2O3-ZrO2-Al2O3 composites [J]. J. Mater Sci., 1988, 23: 1805.
    [53] Shi JL, Li BS, Yen TS. Mechanical properties of Al2O3 partially-Y-TZP matrix composite and its toughing mechanism [J]. J. Mater Sci., 1993, 28: 4019.
    [54]余明浩,范仕刚,孙淑真等. Al2O3增强ZrO2陶瓷的制备及性能研究[J].硅酸盐通报,2001(2):7.
    [55]张华山,韩辉,巨国贤等.溶胶-凝胶法制备ZrO2-SiO2功能材料的研究[J].稀有金属,2001,25(5):269.
    [56]王玉春,丘泰,沈春英.添加Y2O3的ZrO2-Al2O3复相陶瓷力学性能的研究[J].中国稀土学报, 2003, 21(2): 174-178.
    [57]杨发展,赵军,艾兴. Al2O3弥散相对WC基复合材料力学性能和微观结构的影响[J].中国机械工程,2008,19(18):2241-2244.
    [58]李荣久.陶瓷—金属复合材料(第2版) [M].北京:冶金工业出版社,2004:206.
    [59]景茂祥,沈湘黔,李东红等. ZrO2和Ni复合掺杂对Al2O3陶瓷结构及性能的影响[J].硅酸盐学报,2007,35(1):36-40.
    [60]李明伟,尹钟大,朱景川. ZrO2/Ni FGM中微观残余热应力分析[J].稀有金属材料与工程,2003,32(4):256-257.
    [61] Garvie RC, Hannink RH, Pascoe RT. Ceramic Steel [J]. Nature, 1975, 258: 703-704.
    [62] Evans AG. Perspective on the development of high- toughness ceramics [J]. American ceramic society, 1990, 73: 187.
    [63]张巨先,高陇桥,李发.无团聚纳米ZrO2增韧Al2O3基陶瓷材料[J].真空场子技术,1998(5):40-43.
    [64]徐利华,方中华,沈志坚等. ZrO2增韧Al2O3-TiC系陶瓷复合材料的力学性能及其耐磨性能[J].硅酸盐通报,1995,(2):12-15.
    [65] Claussen N, Petzow et G. Whisker-reinforced oxide ceramics [J]. J. de Phys., Colloque CI, 1986, 47(suppl.2): 693-702.
    [66] Becher PF, Tiegs TN. Toughening behavior involving multiple mechanisms whisker reinforcement and zirconia toughening [J]. J. Am. Ceram. Soc., 1987, 70: 651-654.
    [67] Hirvonen A, Nowak R, Yamamoto Y, et al. Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites [J]. Journal of the European Ceramic Society, 2006, 26: 1497-1505.
    [68]王美婷,常传平.氧化锆基纳米复相陶瓷研磨介质的研制与应用[J].中国陶瓷工业,2008,15(2):5-7.
    [69] Betz U, Sturm A, Lof?er JF. Microstructural development during final-stage sintering of nanostructured zirconia based ceramics [J]. Materials Science and Engineering, 2000, A281: 68–74.
    [70] Marshall DB, James MR. Reversible stress-induced Martensitic Transformation in ZrO2 [J]. J. Amer. Ceram. Soc., 1986, 69(3): 215-217.
    [71] Kountourous P, Petzow G. Defect Chemistry Phase Stability and Properties of Zirconia Polycrystals [J]. J. Phys. Chem., 1993: 30-48.
    [72]秦海霞.低温液相烧结四方相多晶氧化锆增韧陶瓷的制备研究[D].上海:中国科学院上海硅酸盐研究所博士学位论文,2000.
    [73]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社, 1995:173.
    [74]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001:228,259.
    [75]王东升,毛志远.四方氧化锆多晶瓷的磨料磨损[J].硅酸盐学报,1995,23(5):518.
    [76]张传.氧化铝基金属陶瓷的制备与微观组织研究[D].上海:东南大学,2004.
    [77]国家环境保护局《中国国家危险废物名录》1998年7月1号实施.
    [78] Wang MY, Zhang GQ, Wang XW, et al. Solvents extraction of vanadium from sulfuric acid solution [J]. RARE METALS, 2009, 28(3): 209-211.
    [79]张保平,唐谟堂,杨声海.直接共沉淀法制备锰锌软磁铁氧体共沉粉[J].过程工程学报,2009,9(1):174-176.
    [80]李在元,翟玉春,杨帆.氢还原法制备80:20镍银纳米复合粉的研究[J].稀有金属材料与工程,2007,36(7):1246-1248.
    [81]李小忠,王连军,赵铭等.离子交换-双氧水氧化法制备纳米CeO2晶体[J].无机化学学报,2006,22(1):79-82.
    [82] Ahmed SA, Qadir MA, Zafar MN, et al. Preparation of high purity nickel film from industrial effluent by the distribution of charge over microelectrodes using newlydesigned free electrolytic diffusion approach [J]. Journal of Hazardous Materials, 2008, 157: 564-568.
    [83]《国家危险废物》由《中华人民共和国固体废物污染环境防治法》制定,自2008年8月1日起施行.
    [84]张仪.从氨溶液中萃取镍的试验研究[J].湿法冶金,2009,28(2):56-59.
    [85]石太宏,陈可.电镀重金属污泥的无害化处置和资源化利用[J].污染防治技术,2007,40(2):48-52.
    [86]王浩东,曾佑生.用氨浸从电镀污泥中回收镍的工艺研究[J].化工技术与开发,2004,33(1):36-38.
    [87]张丽霞.硫化物沉淀法及其对金属硫化物分离的影响[J].湿法冶金学,2006,81(3/4):197-204.
    [88] Yan QF, Wang Guillaume YS, Huang ZR, et al. A microstructure study of Ni/Al2O3 composite ceramics [J]. Journal of Alloys and Compounds, 2009, 467: 438-443.
    [89] Yan QF, Huang ZR, Wang Guillaume YS, et al. The effect of microstructure on toughness of Ni/Al2O3 composites prepared by spark plasma sintering [J]. Journal of Alloys and Compounds, 2008, 461: 436-439.
    [90]李彬,邓建新,赵树椿. Al2O3/ZrB2/ZrO2复合陶瓷材料的制备与性能[J].硅酸盐学报,2008,36(11):1596-1600.
    [91]郑化桂,曾京辉,梁家和. Fe, Co, Ni纳米粉体化学还原制备机理的光谱研究[J].金属学报,1999,35(8):837-840.
    [92]尹衍升,卢瑶,陈守刚.水热法制备氧化锆纳米管影响因素及形成机理[J].现代化工,2005,25(5):38-39.
    [93]仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999:156-158.
    [94]张斌,陈吉华,孙连军.烧结温度对牙科氧化锆增韧陶瓷性能的影响[J].中华口腔医学杂志,2003,38(4):304-305.
    [95]佘正国.无机材料综合实验—结构陶瓷材料系列实验指导书[M].江苏:江苏大学材料学院材料科学系无机材料教研室,2006:37-40.
    [96]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000:195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700