用户名: 密码: 验证码:
一株耐镉恶臭假单胞菌的分离鉴定及其重要的镉抗性相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从武汉钢铁厂污泥样本中分离到一株对重金属镉具有高耐受的细菌,通过形态学观察、大量的生理生化实验以及16Sr DNA序列的分析,将该细菌鉴定为恶臭假单胞菌,命名为Pseudomonas putida CD2。金属的最大耐受浓度(MTC)实验显示了菌株CD2对多种二价的重金属离子具有极高的耐受性。
     利用转座子Tn5-B21对菌株CD2进行了随机插入突变,从12000个突变子中筛选获得12个镉离子敏感的突变株。使用inverse PCR方法克隆了突变株中Tn5-B21的侧翼序列。结果发现有六个基因与重金属镉的耐受有关,他们分别是cadA2、czcC1、czcB1、czcA1、colR和colS。其中czcC1、czcB1和czcA1组成了操纵子czcCBA1;colR和colS组成了操纵子colRS。
     czcCBA1的缺失严重的影响了P.putida CD2对各种二价重金属离子的耐受能力,尤其是Cd~(2+)、Zn~(2+)和Co~(2+)。其翻译出的三个蛋白组成一个横跨细胞壁的蛋白复合体,形成一个不需要能量的阳离子-质子对流泵,直接将细胞内多余的重金属离子排出胞外。cadA2的缺失仅仅导致对Cd~(2+)、Zn~(2+)和Pb~(2+)的敏感,cadA2编码一个质膜P型ATPase,在水解ATP供能的情况下,改变蛋白构像形成离子通道,将金属离子送到胞质空间。czcCBA1和cadA2的同系物在其他的重金属抗性细菌中已见报道。
     colRS是一个典型的组氨酸蛋白激酶信号转导系统,这个系统已被报道与细菌的根际定植能力、细菌的互作、以及内生转座子转座频率等生理反应相关。这里我们发现它控制着重金属的耐受,colRS的缺失导致了对二价重金属离子抗性的下降,特别是Mn~(2+),这个新的功能通过互补实验得到了验证。
     利用Tn5-B21上带有的不含启动子的lacZ基因,可以通过测定β-galactosidase活性来研究这些抗性基因的金属诱导表达差异。Zn~(2+)能85倍的诱导czcC1的表达,Cu~(2+)对于czcC1也是一个好的诱导剂。cadA2能明显被Cd~(2+)、Zn~(2+)和pb~(2+)诱导。而colR的金属诱导表达不明显。
     上述研究结果和结论,对研究细菌对重金属的耐受机制有非常重要的理论意义。
A cadmium resistance bacteria was isolated from sewage sludge samples collectedin WuHan Steel Factory. The strain was identified as Pseudomonas putida bymorphological observation, plentiful physiological-biochemical experiments and 16SrDNA sequence analysis, named P. putida CD2. Maximal tolerant concentrations (MTCs)for the strain were determined. Strain CD2 exhibited high MTC values for a largespectrum of divalent metals.
     12000 mutants were obtained by using Tn5-B21 insertion mutagenesis, 12 mutantsshowed substantial decrease in resistance to cadmium by screening the library. The DNAsequences of the contiguous region from the Tn5 insertion sites were determined byinverse PCR. Six genes involved in cadmium resistance were identified: cadA2, czcC1,czcB1, czcA1, colR and colS. The last five genes belonged to two operons, czcCBA1 andcolRS, respectively.
     Disruption of czcCBA1 in Pseudomonas putida CD2 severely impaired theresistance to divalent heavy metal ions, especially to Cd~(2+), Zn~(2+) and Co~(2+). The threeproteins, CzcC1, CzcB1 and CzcA1 made up of a protein-complex spanning the entirecell wall. As a cation-proton antiporter, the protein-complex transfered excessive metalions to outside without energy providing. Disruption of cadA2 in P. putida CD2 onlyresulted in the sensitivities to Cd~(2+), Zn~(2+) and Pb~(2+). cadA2 encoded a P-type ATPase. Byhydrolyzing the ATP, the protein structure was changed and formed cation channel, thencarried the metal ions to Periplasmic space. The homologs of czcCBA1 and cadA2 hadbeen reported in other metal-resistant bacteria.
     coIRS was a typical Histidine kinase two-component signal transduction (TCST)system, and played a functional generalist, which was concerned with root-colonizingability, communication of bacteria and regulation of Tn4652 transposition. In this work,we presented a novel function of colRS, which regulated the metal resistance orhomeostasis. Disruption of colRS resulted in the substantial decrease of divalent metalresistance, especially for Mn~(2+), the novel fuction had been identified by geneticcomplemention.
     Utilizing the promoterless lacZ gene on Tn5-B21, the metal ions inducibleexpressions of the three genes could be assessed by mensurating theβ-Galactosidaseactivities. Zn~(2+) was the most effective inducer for induction of PczcC1, the induction wasabout 85 fold in the wild-type background, and Cuv was also effective for czcC1, cadA2was distinctly induced by Cd~(2+), Pb~(2+) and Zn~(2+) with the following order of effectiveness: Cd~(2+)≥Pb~(2+)≥Zn~(2+). The induction of PcolR was unobvious.
     The aforementioned results and conclusions might be scientific significance in theresearch of the metal resistant mechanisms in bacteria.
引文
1. Alex L A and Simon M I. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet, 1994, 10:133-138
    2. Alonso A, Sanchez P, et al. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother, 2000, 44(7): 1778-1782
    3. Anton A, Grosse C, et al. CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol, 1999, 181 (22): 6876-6881
    4. Armitage I M, Dalgarno D C, et al. NMR analysis of the structure and metal sequestering properties of metallothioneins. Experientia Suppl, 1987, 52:159-169
    5. Ausubel F M. short protocols in molecular biology, 3rd edn. New York: John Wiley and Sons, 1995
    6. Barkay T, Miller S M, et al. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev, 2003, 27(2-3): 355-384
    7. Baysse C, De Vos D, et al. Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology, 2000, 146 (Pt 10): 2425-2434
    8. Banjerdkij P, Vattanaviboon P and Mongkolsuk S. Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Appl Environ Microbiol, 2005, 71: 1843-1849
    9. Barkay T, Miller S M and Summers A. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev, 2003, 27:355-384
    10. Beard S J, Hashim R, et al. Zinc(Ⅱ) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol, 1997, 25(5): 883-891
    11. Bell J M, Philp J C, et al. Methods evaluating vanadium tolerance in bacteria isolated from crude oil contaminated land. J Microbiol Methods, 2004, 58(1): 87-100
    12. Berson O and Lidstrom M E. Cloning and characterization of corA, a gene encoding a copper-repressible polypeptide in the type Ⅰ methanotroph, Methylomicrobium albus BG8. FEMS Microbiol Lett, 1997, 148(2): 169-174
    13. Binet M R & Poole R K. Cd(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett, 2000, 473:67-70
    14. Bilwes A M, et al. Structure of CheA, a signal-transducing histidine kinase. Cell, 1999, 96:131-141
    15. Blakemore R P, Blakemore N A, Bazylinski D A & Moench T T. Berjey's Manual of Systematic Bacteriology. 1989
    
    16. Blessing T C, Wielinga B W, et al. CoIIIEDTA- reduction by Desulfovibrio vulgaris and propagation of reactions involving dissolved sulfide and polysulfides. Environ Sci Technol, 2001, 35(8): 1599-1603
    
    17. Bloss T, Clemens S, et al. Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta, 2002, 214(5): 783-791
    
    18. Bond D R, Holmes D E, Tender L M and Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002,295: 483-485
    
    19. Boyer A, Magnin J-P, Ozil P. Copper ion removal by Thiobacillus ferrooxidans biomass. Biotechnol Lett, 1998,20: 187-190
    
    20. Brierley C L. Bioremediation of metal-contaminated surface and groundwater. Geomicrobiol J, 1990,8:201-223
    
    21. Bremner I and Beattie J H. Metallothionein and the trace minerals. Annu Rev Nutr, 1990, 10: 63-83
    
    22. Butt T R, Sternberg E, et al. Cloning and expression of a yeast copper metallothionein gene. Gene, 1984,27(1): 23-33
    
    23. Carpentier W, Sandra K, et al. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol, 2003, 69(6): 3636-3639
    
    24. Canovas D, Cases I & de Lorenzo V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol, 2003, 5: 1242-1256
    
    25. Calera J A, et al. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun, 2000, 68: 518-525
    
    26. Calera J A and Calderone R. Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology, 1999, 145: 1431-1442
    
    27. Cervantes C, Campos-Garcia J, et al. Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev, 2001,25(3): 335-347
    
    28. Chang J O, Law R, Chang C C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res, 1997,31: 1651-1658
    
    29. Chang C and Stewart R C. The two-component system: regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol, 1998, 117: 723-731
    
    30. Cobine P A, McKay R T, et al. Solution structure of Cu6 metallothionein from the fungus Neurospora crassa. Eur J Biochem, 2004, 271(21): 4213-4221
    31. Coyle P, Philcox J C, et al. Metallothionein: the multipurpose protein. Cell Mol Life Sci, 2002, 59(4): 627-47
    32. Dalgarno D C and Armitage I M. Elucidation of the structure and metal sequestering properties of metallothionein by nuclear magnetic resonance. Adv Inorg Biochem, 1984, 6:113-138
    33. Dey S, Papadopoulou B, Haimeur A, Roy G, Grondin K, Dou D, Rosen BP, Ouellette M. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol, 1994, 67:49-57
    34. Dey S, Rosen B P. Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol, 1995, 1770:385-389
    35. Dekkers L C, Bloemendaal C J, de Weger L A, Wijffelman C A, Spaink H P & Lugtenberg B J.A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact, 1998, 11: 45-56
    36. Donmez G, Aksu Z. Bioaccumulation of copper(Ⅱ) and nickel(Ⅱ) by the non-adapted and adapted growing Candida spp. Water Res, 2001, 35:1425-1434
    37. Donmez G, Aksu Z. The effect of copper (Ⅱ) ions on growth and bioaccumulation properties of some yeasts. Process Biochem, 1999, 35: 135-142
    38. Duan K, Dammel C, Stein J, Rabin H & Surette M G. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol, 2003, 50:1477-1491
    39. Dunn M A, Blalock T L, et al. Metallothionein. Proc Soc Exp Biol Med, 1987, 185(2): 107-119
    40. Endo G and Silver S. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J Bacteriol, 1995, 177(15): 4437-4441
    41. Ewan K B, Pamphlett R. Increased inorganic mercury in spinal motor neurons following chelating agents. Neurotoxicology, 1996, 17:343-349
    42. Fourest E, Canal C, Roux J C. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Peniciliium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev, 1994, 14:325-332
    43. Fu J K, Liu Y Y, Gu, P Y, Tang D L, Lin Z Y, Yao B X and Weng S Z. Spectroscopic characterization on the biosorption and bioreduction of Ag(Ⅰ) by Lactobacillus sp. A09. Acta Phys.-Chim, 2000, 16:779-782
    44. Gadd G M. Accumulation of metal by microorganisms and algae. Biotechnology, 1988, p. 401-430
    45. Garnham G W, Codd G A, Gadd G M. Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl Microbiol Biotechnol, 1992, 37:270-276
    46. Ghani B, Takai M, et al. Isolation and Characterization of a Mo -Reducing Bacterium. Appl Environ Microbiol, 1993, 59(4): 1176-1180
    
    47. Gonzalez-Guerrero M., C. Azcon-Aguilar, et al. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42(2): 130-40.
    
    48. Grosse C, Anton A, et al. Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans. Arch Microbiol, 2004, 182(2-3): 109-118
    
    49. Hartmeier W, Berends A. Biosorption of heavy metals by Bacillus amyloliquefaciens: contribution of cell walls. Med Fac Landbouww Univ Gent, 1995,60: 2585-2588
    
    50. Hanahan D. Studies on the transformation of Escherichia coli with plasmids. J Mol Biol, 1983, 166:557-580
    
    51. Hassan M T, van der Lelie D, Springael D, Romling U, Ahmed N & Mergeay M. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in pseudomonas aeruginosa. Gene, 1999 238:417-425
    
    52. Hassen A, Saidi N, Cherif M, Boudabous A. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thrungiensis. Bioresour Technol, 1998, 65: 73-82
    
    53. Haq R, Zaidi S K, Shakoori A R. Cadmium resistant Enterobacter cloacae and Klebsiella sp. isolated from industrial effluents and their possible role in cadmium detoxification. World J Microbiol Biotechnol, 1999, 15: 283-90
    
    54. Hamer D H. Metallothionein. Annu Rev Biochem, 1986, 55: 913-51
    
    55. Haney C J, Grass G, et al. New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol, 2005, 32(6): 215-226
    
    56. Haq F, Mahoney M, et al. Signaling events for metallothionein induction. Mutat Res, 2003, 533(1-2): 211-226
    
    57. Hmiel S P, Snavely M D, et al. Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol, 1989, 171(9): 4742-51.
    
    58. Hoch J A and Silhavy T J.Two-component signal transduction. American Society for Microbiology Press, 1995, Washington, DC
    
    59. Horak R, lives H, Pruunsild P, Kuljus M & Kivisaar M.The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol Microbiol, 2004, 54: 795-807
    
    60. Horitsu H, Yamamoto K, Wachi S, Kawai K & Fukuchi A. Piasmid-determined cadmium resistance in Pseudomonas putida GAM-1 isolated from soil. J Bacteriol, 1986, 165: 334-335
    61. Hogstrand C and Haux C. Binding and detoxification of heavy metals in lower vertebrates with reference to metallothionein. Comp Biochem Physiol C, 1991, 100(1-2): 137-141
    
    62. Horn K H, Lehnert N, et al. Reduction pathway of end-on coordinated dinitrogen. 3. Electronic structure and spectroscopic properties of molybdenum/tungsten hydrazidium complexes. Inorg Chem, 2003,42(4): 1076-1086
    
    63. Ibrahim Z, Ahmad W A, Baba A B. Bioaccumulation of silver and the isolation of metal-binding protein from P. diminuta. Braz Arch Biol Technol, 2001,44:223-225
    
    64. Jannetto P J, Antholine W E, et al. Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction. Toxicology, 2001, 159(3): 119-133
    
    65. Jin Y H, Clark A B, Slebos R J, Al-Refai H, Taylor J A, Kunkel T A, Resnick M A & Gordenin D A. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet, 2003, 34: 239-241
    
    66. Kagi J H. Overview of metallothionein. Methods Enzymol, 1991,205: 613-626
    
    67. Kagi J H, Kojima Y, et al. Metallothionein: an exceptional metal thiolate protein. Ciba Found Symp, 1979,72:223-237
    
    68. Kamaludeen S P, Megharaj M, et al. Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam Toxicol, 2003,178: 93-164
    
    69. Kambe T, Suzuki T, et al. Sequence similarity and functional relationship among eukaryotic ZIP and CDF transporters. Genomics Proteomics Bioinformatics, 2006,4(1): 1-9
    
    70. Kannan G M, Tripathi N, et al. Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs. J Toxicol Clin Toxicol, 2001, 39(7): 675-682
    
    71. Kapoor A, Viraraghavan T, Roy Cullimore D. Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol, 1999, 70: 95-104
    
    72. Kazy S K, Sar P, Singh S P, Sen A K, D'Souza S F. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol, 2002, 18: 583-588
    
    73. Ketchum P A, Taylor R C, et al. Model reaction for biological reduction of nitrate involving Mo(III)/Mo(V). Nature, 1976, 259(5540): 202-204
    
    74. Kille P, Hemmings A, et al. Memories of metallothionein. Biochim Biophys Acta, 1994, 1205(2): 151-161
    
    75. Kim D, Gustin J L, et al. The plant CDF family member TgMTPl from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J, 2004, 39(2): 237-251
    
    76. Kovach M E, Elzer P H, Hill D S, Robertson G T, Farris M A, Roop R M II & Peterson K M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 1995, 166: 175-176
    77. Koretke K K, Lupas A N, et al. Evolution of two-component signal transduction. Mol Biol Evol, 2000, 17(12): 1956-1970
    78. Krems B, Charizanis C, Entian K D. The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet, 1996, 29: 327-334
    79. Kurdihaidar B, Hom D K, Flittner D E, Heath D, Fink L, Naredi P, Howell S B. Dual cytoplasmic and nuclear distribution of the novel arsenite-stimulated human ATPase (hASNA-Ⅰ). J CeⅡBiochem, 1998, 71:1-10
    80. Laddaga RA & Silver S. Cadmium uptake in Escherichia coli K-12. J Bacteriol, 1985, 162: 1100-1105
    81. Lee S W, Glickmann E & Cooksey DA. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol, 2001, 67: 1437-1444
    82. Legatzki A, Grass G, Anton A, Rensing C & Nies D H. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol, 2003, 185:4354-4361
    83. Legatzki A, Franke S, et al. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation, 2003, 14(2): 153-168
    84. Lerch K. Copper metallothionein: a copper-binding protein from Nerrospora crassa. Nature, 1980, 284:368-370
    85. Lloyd J R. Microbial reduction of metals and radionuclides. FEMS Microbiol Rev, 2003, 27(2-3): 411-425
    86. Lloyd J R, Cole J A, et al. Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol, 1997, 179(6): 2014-2021
    87. Lloyd J R.and Lovley D R. Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol, 2001, 12(3): 248-253
    88. Lloyd J R, Yong P, et al. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol, 1998, 64(11): 4607-4609
    89. Li S, et al. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J, 1998, 17: 6952-6962
    90. Li J, Swanson R V, Simon M I, Weis R M. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry, 1995, 34:14626-14636
    91. Liu J, Gladysheva T B, Lee L,Rosen B P. Identification of an essential cysteinyl residue in the ArsC arsenate reductase of plasmid 8773. Biochemistry, 1995, 34:13472-13476
    92. Liu J, Rosen B P. Ligand interactions of the ArsC arsenate reductase. J Biol Chem, 1997, 2720: 21084-21089
    93. Lovley D R and Anderson R T. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol J, 2000, 8:77-88
    94. Lovley D R, Giovannoni S J, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol, 1993, 159(4): 336-344
    95. Lovley D R and Phillips E J. Reduction of Chromate by Desulfovibrio vulgaris and Its c(3) Cytochrome. Appl Environ Microbiol, 1994, 60(2): 726-728
    96. Lopez A, Larao N, Priergo J M, Marques A M. Effect ofpH on the biosorption biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol, 2000, 24:146-151
    97. Loomis W F, Shaulsky G, Wang N. Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci, 1997, 110:1141-1145
    98. Losi M E, Amrhein C, et al. Environmental biochemistry of chromium. Rev Environ Contam Toxicol, 1994, 136:91-121
    99. Luef E, Prey T, Kubicek C P. Biosorption of zinc by fungal mycelial wastes. Appl Microbiol Biotechnol, 1991, 34:688-692
    100. Lunin V V, Dobrovetsky E, et al. Crystal structure of the CorA Mg2+ transporter. Nature, 2006, 440(7085): 833-837
    101. Maguire M E. The structure of CorA: a Mg (2+)-selective channel. Curr Opin Struct Biol, 2006, 16(4): 432-438
    102. Maeda T, Wurgler-Murphy SM, Saito H.A. Two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 369:242-245
    103. Malik Anushree. Metal bioremediation through growing cells. Environ Int, 2004, 30:261-278
    104. Maier R J, Pihi T D, Stults L, Sray W. Nickel accumulation and storage in Bradyrhizobium japonicum. Appl Environ Microbiol, 1990, 56:1905-1911
    105. Matsunaga T, Takeyama H, Nakao T, Yamazawa A. Screening of microalgae for bioremediation of cadmium polluted seawater. J Biotechnol, 1999, 70:33-38
    106. Massaccesi G, Romero M C, Cazau M C, Bucsinszky A M. Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol, 2002, 18:817-820
    107. Magyarosy A, Laidlaw R D, Kilaas R, Ether C, Clark D S, Keasling J D. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol, 2002, 59: 382-388
    108. Mehra R K. and Winge D R. Candida glabrate metallothioneins. Proc Natl Acad Sci, USA, 1988, 85: 8815-8819
    109. Melchers K, Herrmann L, et al. Properties and function of the P type ion pumps cloned from Helicobacter pylori. Acta Physiol Scand Suppl, 1998, 643: 123-135
    110. Mergeay M, Nies D, et al. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol, 1985, 162(1): 328-334
    111. Miller J M. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press pp, 1972, p.352-355
    112. Miyabe S, Izawa S, et al. Expression of ZRC 1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zapl-dependent fashion in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 2000, 276(3): 879-884
    113. Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R. B iosorption of nickel using filamentous fungi. Appl Biochem Biotechnol, 1998, 70-72:593-601
    114. Moncrief M B and Maguire M E. Magnesium transport in prokaryotes. J Biol Inorg Chem, 1999, 4(5): 523-527
    115. Moore J W. Inorganic contaminants of surface water residuals and monitoring priorities. New York: Springer-Verlag, 1990, p. 178-210
    116. Murasugi A, et al. Cadmium-biding peptide induced in fission yeast: Schizo-saccharomyces pombe. J Biochem, 1981, 90:1561-1564
    117. Mukhopadhyay R, Rosen B, Phung L and Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev, 2002, 26:311-325
    118. Naganuma A. Metallothionein. Nippon Rinsho, 1997, 55(5): 1091-1095
    119. Nelson K E, Weinel C, Paulsen I T, Dodson R J & Hilbert H, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonasputida KT2440. Environ Microbiol, 2002, 4:799-808
    120. Nies D H. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol, 1992, 174(24): 8102-8110
    121. Nies D H. Effiux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev, 2003, 27(2-3): 313-339
    122. Nies D H and Silver S. Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol, 1995, 14(2): 186-199
    123. Nucifora G. L and Chu, et al. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci, 1989, 86(10): 3544-3548.
    124. Oh E T, Yun H S, Heo T R, Koh S C, Oh K H, So J S. Involvement of lipopolysaccharide of Bradyrhizobium japonicum in metal binding. J Microbiol Biotechnol, 2002, 12:296-300
    125. Olafson R W. Purification of prokaryotic metallothioneins. Environ Health Perspect, 1986, 65:71-75
    
    126. Oz G, Pountney D L, et al. NMR spectroscopic studies of I = 1/2 metal ions in biological systems. Biochem Cell Biol, 1998, 76(2-3): 223-234
    
    127. Patrick L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev, 2003, 8(2): 106-128
    
    128. Pattar G R, Tackett L, et al. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res, 2006,610(1-2): 93-100
    
    129. Palmiter R D, and Findley S D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J, 1995,14: 639-649
    
    130. Pang K M & Knecht D A. Partial inverse PCR: a technique for cloning flanking sequences. BioTechniques, 1997,22: 1046-1048
    
    131. Pardo R, Herguedas M, Barrado E & Vega M. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida. Anal Bioanal Chem, 2003, 376: 26-32
    
    132. Parkinson J S and Kofoid E C. Communication modules in bacterial signalingproteins. Annu Rev Genet, 1992,26:71-112
    
    133. Perraud A L, et al. Signalling pathways in two-component phosphorelay systems. Trends Microbiol, 1999,7:115-120
    
    134. Perez-Rama M, Alonoso J A, Lopez C H, Vaamonde E T. Cadmium removal by living cells of the marine microalgae Tetraselmis suecica. Bioresour Technol, 2002, 84: 265-270
    
    135. Pfeiffer J, Guhl J, et al. Magnesium uptake by CorA is essential for viability of the gastric pathogen Helicobacter pylori. Infect Immun, 2002, 70(7): 3930-3934
    
    136. Pirrung M C. Histidine kinases and two-component signal transduction systems. Chem Biol, 1999,6:167-175
    
    137. Posas F, Wurgler-Murphy S M, Maeda T. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 'two-component' osmosensor. Cell, 1996,86:865-875
    
    138. Prinz R and Weser U. A naturally occurring Cu-thionein in Saccharomyces cerevisiae. Hoppe Seylers Z Physiol Chem, 1975, 356(6): 767-776
    
    139. Racek J, Trefil L, et al. Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res, 2006, 109(3): 215-230
    
    140. Rensing C, Mitra B, et al. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPasc.Proc Natl Acad Sci, 1997,94(26): 14326-14331
    
    141. Rensing C, Pribyl T, Nies DH. New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol, 1997,179(22): 6871 -6879
    
    142. Ripa S and Ripa R. Metallothionein. Boll Chim Farm, 1999, 138(11 Suppl): 1S-18S
    
    143. Roane T M, Pepper 1 L. Microbial responses to environmentally toxic cadmium. Microb Ecol, 2000, 38: 358-64
    
    144. Roane T M, Josephson K L, Pepper I L. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol, 2001,67: 3208-3215
    
    145. Robinson V L, et al. A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol, 2000, 7:626-633
    
    146. Rosen B P, and Silver S. Ion transport in prokaryotes. Academic Press, San Diego, Calif. 1987
    
    147. Sar P, Kazy S K, Singh S P. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol, 2001, 32: 257-261
    
    148. Sambrook J, Fritsch E F, and Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory. Cold Spring Harbor, N.Y. 1989
    
    149. Schneider-Poetsch H A, Braun B, Marx S, Schaumburg A. Phytochromes and bacterial sensor proteins are related by structural and functional homologies. Hypotheses on phytochrome-mediated signal-transduction. FEBS Lett, 1991, 281: 245-249
    
    150. Sermon J, Wevers E M, et al. CorA affects tolerance of Escherichia coli and Salmonella enterica serovar Typhimurium to the lactoperoxidase enzyme system but not to other forms of oxidative stress. Appl Environ Microbiol, 2005,71 (11): 6515-6523
    
    151. Senthilkumar S, Bharathi S, Nithyanandhi D, Subburam V. Biosorption of toxic heavy metals from aqueous solutions. Bioresour Technol, 2000, 75: 163-165
    
    152. Shanker A K, Cervantes C, et al. Chromium toxicity in plants. Environ Int, 2005, 31(5): 739-753
    
    153. Slobodkin A I. Thermophilic microbial metal reduction. Mikrobiologiia, 2005, 74(5): 581-595
    
    154. Smith R L, Banks J L, et al. Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem, 1993,268(19): 14071-14080
    
    155. Smith R L, Gottlieb E, et al. Functional similarity between archaeal and bacterial CorA magnesium transporters. JBacteriol, 1998,180(10): 2788-2791
    
    156. Smith R L.and Maguire M E. Distribution of the CorA Mg~(2+) transport system in gram-negative bacteria. JBacteriol, 1995,177(6): 1638-1640
    
    157. Silver S. Bacterial resistances to toxic metal ions--a review. Gene, 1996, 179(1): 9-19
    
    158. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev, 2003,27: 341-354
    
    159. Silver S and Phung le T. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol, 2005, 32(11-12): 587-605
    160. Silver S and Phung L T. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol, 1996, 50:753-789
    
    161. Simon R, Priefer U & Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. BioTechnology, 1983, 1: 784-791
    
    162. Simon R, Quandt J & Klipp W. New derivatives of transposon Tn5 suitable for mobilization of repl icons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene, 1989,80: 161-169
    
    163. Singh S, Rai B N, Rai L C. Ni (II) and Cr (VI) sorption kinetics by Microcystis in single and multimetallic system. Process Biochem, 2001, 36: 1205-1213
    
    164. Srikantha T, et al. The two-component hybrid kinase regulator CaNIKl of Candida albicans. Microbiology, 1998,144: 271 Stock A M, et al. Two-component signal transduction. Annu Rev Bioche, 2000, 69: 183-215
    
    165. Srinivasan S, Annaraj J, et al. Spectral and redox studies on mixed ligand complexes of cobalt(III) phenanthroline/bipyridyl and benzoylhydrazones, their DNA binding and antimicrobial activity. J Inorg Biochem, 2005, 99(3): 876-882
    
    166. Stock A M, Martinez-Hackert E, Rasmussen B F, West A H, Stock J B, Ringe D, Petsko G A. Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry, 1993, 32:13375-13380
    
    167. Stock J B, et al. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev, 1989, 53: 450-490
    
    168. Sugawara H, Yoda A, Kitamoto K, Yamasaki M. Isolation and characterization of nickel-accumulating yeasts. Appl Microbiol Biotechnol, 1997, 48: 373-378
    
    169. Suh J H, Kim D S, Yun W Y, Song S K. Process of Pb2+ accumulation in Saccharomyces cerevisiae. Biotechnol Lett, 1998,20: 153-156
    
    170. Suzuki K T. Structure and function of metallothionein. Nippon Rinsho, 1996, 54(1): 33-39
    
    171. Theocharis S E, Margeli A P, et al. Metallothionein: a multifunctional protein from toxicity to cancer. Int J Biol Markers, 2003, 18(3): 162-169
    
    172. Thomason P, et al. Taking the plunge: terminal differentiation in Dictyostelium. Trends Genet, 1999, 15:15-19
    
    173. Timmis KN. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol, 2002, 4: 779-781
    
    174. Tripathi M, Munot H P, Shouche Y, Meyer J M & Goel R. Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol, 2005, 50: 233-237
    175. Tortes M, Goldberg J, Jensen T E. Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (cyanophycae). Microbios, 1998, 96:141-147
    176. Tynecka Z, Gos Z, & Zajac J. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J Bacteriol, 1981, 147:305-312
    177. Tucker M D, Barton L L, et al. Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol, 1998, 20(1): 13-19
    178. Urao T, et al. Two-component systems in plant signal transduction. Trends Plant Sci, 2000, 5: 67-74
    179. Vallee B L. Introduction to metallothionein. Methods Enzymol, 1991, 205:3-7
    180. van de Velde F, Arends I W, et al. Biocatalytic and biomimetic oxidations with vanadium. J Inorg Biochem, 2000, 80(1-2): 81-89
    181. Vasak M. Advances in metallothionein structure and functions. J Trace Elem Med Biol, 2005, 19(1): 13-17
    182. Vasak M, Overnell J, et al. Spectroscopic and chemical approaches to the study of metal-thiolate clusters in metallothionein (MT). Experientia Suppl, 1987), 52:179-189
    183. Vincent S P. Oxidation—reduction potentials of molybdenum and iron—sulphur centres in nitrate reductase from Escherichia coli. Biochem J, 1979, 177(2): 757-759
    184. Volesky B. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev, 1994, 14:291-302
    185. Volesky B, Holan Z R. Biosorption of heavy metals. Biotechnol Prog, 1995, 11:235-250
    186. Wang S Z, Chen Y, et al. Escherichia coli CorA periplasmic domain functions as a homotetramer to bind substrate. J Biol Chem, 2006, 281 (37): 26813-26820
    187. West A H, Stock A M. Histidine kinases and responseregulator proteins in two-component signaling systems. Trends Biochem Sci, 2001, 26:369-376
    188. White C, Gadd G M. Uptake and cellular distribution of copper, cobalt and cadmium in strains of Saccharomyces cerevisiae cultured on elevated concentrations of these metals. FEMS Microbiol Lett, 1986, 38:277-283
    189. Winge D R, Dameron C T, et al. The metallothionein structural motif in gene expression. Adv Inorg Biochem, 1994, 10: 1-48
    190. Witte W, Green L, et ai. Resistance to mercury and to cadmium in chromosomally resistant Staphylococcus aureus. Antimicrob Agents Chemother, 1986, 29(4): 663-669
    191. Wilson K H, Blitchington R B & Greene R C. Amplification of Bacterial 16S Ribosomal DNA with Polymerase Chain Reaction. J Clin Microbiol, 1990, 28:1942-1946
    192. Wong P K, Fung K Y. Removal and recovery of nickel ion (Ni2+) from aqueous solution by magnetite-immobilized cells of Enterobacter sp. 4-2. Enzyme Microb Technol, 1997, 20: 116-121
    193. Woolfolk C A and Whiteley H R. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilytieus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J Bacteriol, 1962, 84: 647-658
    194. Wurgler-Murphy S M. and Saito H. Two-component signal transducers and MAPK cascades. Trends Biochem Sci, 1997, 22:172-176
    195. Yeh K C, Lagarias J C. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci, 1998, 95:13976-13981
    196. Yoneda G S and Hoiwerda R A. Kinetics of the oxidation of Rhus vernicifera stellacyanin by the Co (EDTA)-ion. Bioinorg Chem, 1978, 8(2): 139-159
    197. Yoon K P and Silver S. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J Bacteriol, 1991, 173(23): 7636-7642
    198. Yong P, Farr J P G, Harris I R and Macaskie L E. Palladium recovery by immobilized cells of Desulfovibrio desulfuricans using hydrogen as the electron donor in a novel electrobioreactor. Biotechnol Lett, 2002, 24:205-212
    199. Zhulin I B, Taylor B L, Dixon R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci, 1997, 9:331-333
    200.赵斌,何绍江等。科学出版社。2002
    201.王敬中等,《农村实用技术》。2006,11期。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700