用户名: 密码: 验证码:
新型硅铝微粒助留助滤剂的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过将硫酸铝酸化硅酸钠合成了带负电荷的新型硅铝微粒助留助滤剂,并用DDJ动态滤水仪系统深人地探讨了以CS/CPAM/硅铝微粒构成的微粒助留体系的助留助滤性能,并优化其应用条件。
     首先,研究了硅铝微粒的合成反应,其适宜反应条件为:硅酸钠浓度0.15%、温度25-30℃、pH值6.5-7.5、反应时间1.5小时左右。
     其次,研究了合成硅铝微粒的物理性能,经测定硅铝微粒是一种高比表面积,粒径非常小的球状颗粒,粒径大约在5~10nm,比表面积为615m~2/g左右。合成硅铝微粒反应结束后,需作稳定处理,防止产生凝胶;但硅铝微粒在短期内贮存不会影响其助留助滤效果,贮存期超过两个月会产生凝胶;熟化时间的变化对留着性能影响不大。
     最后,本论文研究了硅铝微粒助留体系对漂白麦草浆的助留助滤作用,并与其它助留体系进行对比。
     硅铝微粒助留体系的助留助滤性能明显好于阳离子淀粉/CPAM双组分体系,各助剂的最佳添加量为阳离子淀粉1%、CPAM0.02%、硅铝微粒0.1%~0.3%。CPAM-硅铝微粒系统中,CPAM在高剪切力下加入时的助留助滤性能远远好于在低剪切力时加入的助留助滤性能。硅铝微粒助留系统对纸料的助留助滤性能优于常规CS-CPAM助留助滤体系,而且CS-CPAM-硅铝微粒助留助滤体系又要胜于CS-硅铝微粒助留助滤体系。
     硅铝凝胶溶液与硅铝溶胶具有相似的助留助滤效果,不同的是,硅铝凝胶系统需要的凝胶量较大,在5%时才能达到最好的助留助滤效果,而硅铝溶胶系统达到相同的助留助滤效果,只需要硅铝微粒0.1%。硅铝凝胶系统中,硅铝凝胶颗粒和凝胶滤液都具有很好的助留助滤性能,凝胶滤液的助留助滤作用比硅铝凝胶颗粒更强。
     在硅铝微粒助留助滤系统中,先加CPAM的助留助滤性能好于先加硅铝微粒的助留助滤性能;硅铝微粒体系抗剪切能力强,高剪切力对纸料的滤水性能没有影响,但对纸料的留着率影响很大;CS-CPAM-硅铝微粒助留助滤体系适用更宽的纸料pH范围,有更清洁的造纸白水。
     硅铝微粒系统在提高纸料留着率的同时,对纸页的物理性能影响不大。硅铝微粒对AKD施胶性能没有明显影响。在AKD用量较少,而硅铝微粒用量过大时,有削弱施胶效能的作用,相反,当AKD用量达到一定值时,硅铝微粒用量0.1%以下时有施胶增效作用。
     硅铝微粒系统与膨润土系统比较,硅铝微粒的用量比膨润土少,助滤效果相当,而助留效果更好。从手抄片性能测试结果比较,硅铝微粒系统手抄片的性能略好于膨润土系统。
Since the beginning of 90's years in the 20 century, Microparticle retention and drainage system have had wide development in both research and application field because its excellence capabilities. Presently, the development of microparticle retention and drainage system are main embodiment in the research and exploitation of new microparticle agent. The article mainly discussed these topics: Synthesizing a new type silica-aluminum microparticle retention and drainage agent; Testing the performance of retention and drainage in papermaking by using dynamic drainage jar. Major experimental results are as follow.
    The perfect processing condition of silica-aluminum micropartile synthesis was: The concentration of sodium silicate is 0.15%,Temprature of reaction is 25-30 C,pH value is 7.5-9.5.Time of reaction is about 1.5 hours.
    Silica-aluminum microparticle is a type of super little spherical paniculate with high surface area. Diameter is about 5-10nm, surface area is about 615 m2/g.
    The retention and drainage performance of silica-aluminum microparticle system is more better than two-component system comprised with CS and CPAM. The perfect dosage of each aid is: CS1%, CPAM0.02%, silica-aluminum microparticle 0.1%~0.3%.
    In CPAM/ silica-aluminum microparticle system, When CPAM is added in high shearing strength, the performance of retention and drainage are more better than it is added in low shearing strength. From comparison of the performances of retention and drainage, We found out silica-aluminum microparticle system is better than routine CS/CPAM system or CS/ Silica-aluminum microparticle system. The retention actions of both GCC and talcum powder is excellent.
    Silica-aluminum gel has the same performance of retention and drainage as Silica-aluminum sol. The difference lies in that the dosage of Silica-aluminum gel is 5%,while the Silica-aluminum sol is 0.1% when they achieve the same effect of retention and drainage. Both gel particle and gel filtrate have the abilities of retention and drainage, while gel filtrate is better than gel particle.
    Comparing the performance of retention and drainage, Adding CPAM first is better than adding silica-aluminum microparticle first. Silica-aluminum microparticle system are more powerful for resisting shearing strength, and it can be applied with abroad range of pH value.
    It is necessary to make it stabilization in the end of synthesis to resist producing gel; The
    
    
    action of retention and drainage will not change when Silica-aluminum microparticle is reserved less than two month.
    Silica-aluminum microparticle system won't affect the physical performance of paper when it enhances the retention efficiency.
    Silica-aluminum microparticle has no evident effect on AKD sizing. The sizing effect will be reduced when the dosage of AKD is less, while the dosage of silica-aluminum microparticle is overfull. On the contrary, AKD sizing effect will be enhanced when the dosage of AKD reaches some value, while the dosage of silica-aluminum microparticle is less than 0.1%.
    Silica-aluminum microparticle system comparing with bentonite system, It turns out the dosage of silica-aluminum microparticle is less than bentonite, but comparing with the performance of retention, the former is better than the later. The performance of hand sheet is superior too.
引文
1.朱勇强,张向丽,田振然.湿部化学与现代造纸工业.上海造纸,2002,33(4):38-45
    2.张光华.造纸湿部化学原理及其应用.中国轻工业出版社,1998,9
    3.陈根荣.世界造纸化学品市场最新动态[J].造纸化学品,2000,12(1):6~12
    4.陈根荣.湿部化学品在提高纸机车速中的作用[J].造纸化学品,2000,3:12
    5. Martin W. Beck. Wet end chemistry and paper machine stability[J]. Paper Technology. 1998, 39(4): 33-38
    6.张光华.造纸化学品.化学工业出版社,2002
    7.王海毅.纸料中两性聚丙烯酰胺的助留助滤作用机理.天津轻工业学院博士学位论文,2001
    8.山田博,张运展,张瑞生译.造纸过程中的界面动电现象.轻工业出版社,1984
    9.胡惠仁,徐立新,懂荣业.造纸化学品.化学工业出版社,2002
    10.花莉,陆赵情,王志杰.湿部化学品的发展状况.西南造纸.2002(6):14-16
    11.张旋,胡惠仁.季铵型CPAM组成的复式助留助滤系统对助留助滤作用的研究.国际造纸,2001,20 (3):43-47
    12.叶小春.造纸系统中阴离子物质的积累与防治[J].造纸化学品.1999.(2):16
    13. Lydia Bley. Measuring the concentration of anionic trash-the PCD. Paper Technology, 1992, (4): 32-37
    14. Agne Swerin. Et al. Flocculation-microparficle Retention Aid Systems[J]. Paper Technolohy. 1992, 33(12): 28-29
    15.宋海荣,杨崎,黄显南,郭凯.多元微粒子助留助滤技术.西南造纸,2001(3):8-9
    16.陆赵情,张美云.助留助滤系统基本理论和最新研究进展.西南造纸.2003(1):15-17
    17.曹邦威.现代高速宽幅纸机的发展概述.纸和造纸.2000(6):62-66
    18.樊惠明编译.纸厂生产硅基微粒胶助留滤剂.国际造纸.1999.18(6):45-48
    19. Han, S. T. and Chang, N. L., Retention of Fines in Fiber Mats, TappiJ, 1969, 52(4): 688
    20. Arledter, H. F. and Mayer, A., Papier, 1975, 29:32
    21. Janes, R. L. and Sharma, O. K., presentation atRetentionandDrainage Short Coursc, TAPPI, Seatle, Wash., 1977
    22. Carrard, J. and Pummer, H., U. S. Patent 4, 070, 236, 1987
    23. Pelton, R. H., Allen, L. H, andNugent, H. M., Pulp Paper Can., 1980, 81(1): T9
    24. LaMer, V. K. and Healy, T. W., Rev. Pure Appi. Chem. 1963, 13:112
    25. Hicmenz, P. C., Principles of Colloid and Strfaee Chemistry, 2nd Ed., Marcel Dekker, Inc., New York, 1986
    26. Lindstrom, T. and Eklund, D. Retention anddewatering. Paper Chemistry: Aninruoduetion, DT Papcr SeicneePublieations, Gankulla, F'mland, 1991:145-191
    
    
    27. Lindstrom, T. andGiad-Nordmark, G., J. Colloids lnterfaceSci. 1984, 97(1): 62
    28. Lindstrom, T. andGiad-Nordmark, G., Colloids andSurfaces, 1984, 8:337
    29. Stack, K. R., Dunn, L. A., and Robers, N. K., Colloids andSurfaces 1991, 61:205
    30.刘温霞。阳离子聚丙烯酰胺膨润土助留助滤体系.造纸化学品,2000(3):18-21
    31. Agne Swerin. Et al. Flocculation of Cellulosic Fibre Suspensions by Model Microparticulate Retention Aid Systems[J]. Nordic Pulp and Paper Research Journal. 1993, 8(4): 383-398
    32. Lars Wagberg, Et al. On the mechanism of flocculation by micropaxticle retention aid systems[J]. TAPPI. 1996, 79(6): 157-164
    33. I, RahmamandC. HTay. TappiJ, 1986, 69(4): 100
    34.宋海农,杨崎峰,黄显南,郭凯.多元微粒子助留助滤技术.西南造纸,2001,3:8~11
    35. T. Assehnan and G. Gamier. The Flocculation Mechanism of Microparficulate Retention Aid Systems[J]. Journal of Pulp and Paper Science. 2001, 27(8): 273-278
    36.戴红旗,徐祖梅,陈健.胶体氢氧化铝助留助滤性能探讨.上海造纸.2002,33(3):39~41
    37. Langley. J. G. and Litchfield. E. TAPPI. 1986 Papermakers Conference Proceedings, TAPPI PRESS, Atlanta, P89
    38. Adcrsson, K., Sandstrom, A., Strom, K., Eral. Nordic Pulp and Paper Research Journal. 1986, 1(2): 26
    39. Lindstrom, T., Hallgren, H., and Hedborg, F. Nordic PulpandPaperResearchJournal. 1989, 42(2): 99
    40. R. I. S. Gill. Developments inretentionaidtechnology. Paper technology. 1991, 32(8): 34~41
    41.刘温霞.硅铝类微粒子助留助滤体系.造纸化学品,2001,1:21~24
    42.冯群策,杨淑蕙,郝晓秀.微粒助留技术的新发展.国际造纸2003,22(3):9~11
    43.劳嘉葆.微粒留着技术的进展.纸和造纸,2003,9(5):38~39
    44. Juntai Liu. New aspect of the microparticle retention mechanism. Paper Technology, 1999, 40(4): 41
    45.王军利,陈夫山,刘忠.微粒助留系统的工厂应用及最新研究动态.上海造纸,2002,9(3):46~48
    46. 樊惠明译.O-site Production of a Silica-based micropaticulate Retention and Drainage Aid. World Pulp and Paper, 2000, 18(6):45
    47. Roger A. Crawlord and George E. Alderfer. Silica Use and Theory. Neutral/Alkaline Papermaking/TAPPI Short Course, 1990:125-140
    48. Agne Swerin et al. Silica based microparticulate retention aid systems. Paperi Ja Puu. 1995, 77(4): 215-221
    49. J. C. Alfano, P. W. Carter and J. E. Whitten. Use of scanning laser microscopy to investigate microparficle flocculation performance. Journal of pulp and paper science. 1999, 25(6): 189-195
    50.隆言泉.造纸原理与工程.轻工业出版社,1994
    51.李巧玲.硅溶胶的酸对其稳定性的影响.湖南化工,1998.28(6):38-37
    52.徐如人,庞文琴.无机合成与制备化学.高等教育出版社.2001,6
    
    
    53.陈夫山.两性助留助滤剂的研制及其湿部化学的研究.天津轻工业学院博士学位论文,1998
    54.陈荣三等.化工进展.1985(2):14
    55.陈观元.青岛化工.1994(2):27
    56. Du Pont EL and Company. Stable aluminosilicate aqcuasols having uniform particles and their preparation. Bergna HE. B 01J 13/00. US Pat 4217240, 1980
    57. Eka Noble AB. Manufacture of cellulosic fiber products with improved retention using anionic inorganic particles and cation carbohydrates. Johansson K, Johansson HE, Kloefver S. D21H17/68, Eur Pat App1490425, 1992
    58.王兴业.硅溶胶中二氧化硅粒径及比表面积测定.材料工程.1997(5):34~36
    59. Hunter, R. J. Zeta potential in colloidal science. Academic press, London, 1981.
    60. Seallan, A. M. Tappi. 1983, 66(11):73
    61. Lindstrom, T. Fundamentals of papermaldng, 1989, edited by C. EBaker, London, P311
    62.刘伯元.宋宝祥,徐金山等.超细重质碳酸钙在造纸工业中的应用研究.中国非金属矿工业导刊,2000(16):20~21
    63.陈根荣.造纸工业用填料和颜料(续).造纸化学品,2002(2):1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700