用户名: 密码: 验证码:
水稻分蘖角度动态变化的生态生理机理研究和数量遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分蘖是水稻等禾本科作物在生长发育过程中形成的一种特殊的分枝,是十分重要的株型指标,与籽粒产量密切相关。分蘖及其叶片着生姿态是分蘖性状研究中的核心内容,而分蘖角度控制分蘖和叶片的着生姿态,进而影响植株光能利用和群体内个体间竞争。水稻前期分蘖散生可增加植株截光面积、提早封行和抑制杂草发生,后期分蘖直立则改善群体通风透光、提高抵御病害和倒伏能力。作者及所在课题组在前期研究工作中发现了前期分蘖散生、拔节后分蘖渐趋直立的水稻基因型DI508,经初步研究,表明其分蘖角度的变化与光周期相关。在此基础上,本文以分蘖角度动态型水稻基因型DI508和全生育期分蘖直立型基因型(协优9308或9308)、半散生基因型(M09或DI444)为材料,分析比较它们的形态特征和生长发育特性、光能和养分吸收利用上的差异,利用大田分期播种试验和可控环境条件研究水稻分蘖角度的光周期和温度效应,利用2个重组自交系群体进行分蘖角度的QTL分析,以阐明分蘖角度动态变化的生理生态和遗传机理。主要结果如下:
     1、分蘖角度动态型水稻DI508表现为分蘖期散生快长、拔节后趋于直立的生长特性,其主茎第1、第2和第3分蘖在始蘖期与水平地面夹角平均分别为59.74°、62.94°和68.54°,与半散生型基因型M09相似,抽穗后分蘖角度几近90°,与直立型基因型9308相似。DI508的分蘖成穗率为68.35%,高于M09;成熟期单株干重达155.54 g,比M09和9308分别高15.84%和64.09%;单蘖干量9.15g,比M09和9308分别高63.69%和44.78%;生育后期上三叶净光合速率值为26.89μmol.m~(-2).s~(-1)、25.69μmol.m~(-2).s~(-1)和24.83μmol.m-~2.s~(-1),下降幅度明显小于M09和9308。
     2、DI508对光环境适应性较强,分蘖盛期和灌浆期的最大净光合速率和光饱和点介于协优9308(分蘖直立型)和DI444(分蘖半散生型)之间。DI508在弱光下光合速率和表观量子效率均要高于其它两个基因型,且光补偿点较低。在各种光强下,DI508的羧化效率在分蘖盛期与另外两个基因型相近,但在灌浆期明显高于DI444;同时,该材料有较高的水分利用效率。
     3、DI508的分蘖角度在不同施氮条件下均呈动态变化,且植株收敛指数在分蘖盛期后逐渐增大,但施氮水平对分蘖角度和植株收敛指数有明显的影响:200 kg/ha和400 kg/ha施氮水平下,DI508分蘖角度和植株收敛指数明显大于不施氮或100 kg/ha施氮处理。同样,在不同氮-磷-钾施用配比条件下,DI508的分蘖角度亦呈动态变化,但分蘖角度和植株收敛指数在不同养分配比下差异显著,表现为随磷钾施用比例的增加而减小。DI508从植株形态和产量上显示较高的氮利用效率,株高、冠层高度、茎蘖数、成穗率、净光合速率、比叶重、单株叶面积、叶面积指数、干物质和产量等均随着施氮水平和磷、钾肥比例的提高而增加。
     4、在田间不同播期条件下,DI508分蘖角度从半散生渐趋直立的变化均发生在自然光周期变短(6月21日夏日至)后10-15 d。人工光周期处理条件下,DI508的分蘖角度同样表现出动态变化,短日照(10 h光期)处理促使分蘖角度转变提前,而长日照(14 h光期)处理则延缓转变。结果显示,DI508分蘖角度发生变化的临界光照时数在10 h左右,而温度对分蘖角度的变化无显著影响。
     5、利用珍汕97B/密阳46杂交后代构建的重组自交系(RIL)群体和协青早B/密阳46杂交后代构建的重组自交系(RIL)群体,对分蘖角度进行QTLs分析。结果表明,在始蘖期2个遗传群体的第1和9染色体上均检测到控制主茎分蘖角度的QTLs;在齐穗期,控制主茎分蘖角度的QTLs较为分散。运用条件变量分析方法和条件QTLs的复合区间作图法,在2个遗传群体中均检测到显著影响主茎分蘖角度的条件QTLs。在珍汕97B/密阳46的RIL群体中,检测到的条件QTLs主要分布在第5和第9染色体上,而在协青早B/密阳46的重组自交系(RIL)群体中,检测到的条件QTLs主要分布于第6、8、9和11染色体上。
Tiller belongs to a special kind of branch in cereal crops,an important trait related closelyto grain yield.The stature of tillers and their leaves has been intensively studied as a key issuein the field of tiller trait,and tiller angle determines the stature of tillers and their leaves onthem,which in turn affect light utilization and competition among plant individuals.Semi-scattered tiller growth could be favorable for rapid formation of leaf area for lightinterception,enhancing formation of complete canopy and improving competitiveness of plantsagainst weeds during vegetative growth.On the other hand,erect tillers at reproductive stagecould improve aeration and light penetration within a canopy,thus enhancing anti-biotic stressability and lodge resistance of rice plants.In the previous research,we obtained a rice genotypeDI508,which is characterized by semi-scattered tillers at vegetative stage and erect tillers afterbooting,i.e.showing dynamic change of tiller angle with the growth.It was also found that thetrait of dynamic tiller angle was related to their responses to photoperiod.In this paper,wecompared DI508 with erect genotype(Xieyou 9308 or 9308) and semi-scattered genotype(M09 or DI444) in morphological and growth characters,light and nutrient utilization.Thephysiological and genetic mechanisms for the tiller angle change was also were studied usingthe experiments involving sowing date and controlled temperature and photoperiod.Moreover,the QTL analysis of tiller angle change was conducted using a RIL population developed froma cross of Zhenshan97B and Miyang46 and RIL population developed from a cross ofXieqingzaoB and Miyang46.The main results are as follows:
     1.DI508 is typically characterized by fast growth at tillering stage,and erect shoots andvigor leaves in terms of photosynthesis after booting.At initial tillering stage,the angles of thefirst,second and third on the main shoots of DI508 were 59.74°,62.94°and 68.54°respectively,very similar to those of M09.After booting the angle was close to 90°,very similar to those oferect type rice 9308.The percentage of effective tillers developing into panicles in DI508 was68.35%,being 3.09% higher than that in M09.Dry biomass per plant of DI508 was 155.54 g atmaturity stage,being 15.84% and 64.09% higher than that of M09 and 9308,respectively,anddry biomass per tiller of DI508 was 9.15g,being 63.69% and 44.78% higher than that of M09and 9308 respectively.After booting until maturity,photosynthetic capacity of the most top 3leaves in DI508 kept stable and higher,being 26.89,25.69 and 24.83μmol.m~(-2).s~(-1) for 1th,2nd and 3rd leaves,respectively.In comparison,other two rice genotypes had lower photosyntheticrates.
     2.DI508 showed a better adaptability to light intensity in comparison with that of theother two rice genotypes.During tillering and milking stages,the maximum net photosyntheticrate and light saturation point of DI508 were the medium of Xieyou9308(erect tiller angle) andDI444(semi-scattered tiller angle).DI508 had obviously higher photosynthetic rate andapparent quantum yield,and lower light compensation point under weak light conditionrelative to those of the other two rice genotypes,Under all light intensities,carboxylationefficiency in DI508 were similar to that of the other two genotypes.However,at milking stage,DI508 had a higher value in carboxylation efficiency than DI444.In addition,DI508 hadhigher water use efficiency than the other two rice genotypes.
     3.The tiller angle of DI508 showed the dynamic change during its growth under all Nlevels,and its convergent index increased gradually after maximum tillering.However,thetiller angle and convergent index of DI508 was significantly affected by N level.Thus,tillerangle and convergent index were obviously greater in the treatment of 200 kg/ha or 400 kg/hathan that in the treatment 0 or 100 kg/ha.Similarly,tiller angle of DI508 showed the dynamicchange during the growth under different ratios of N,P and K application rates.Tiller angleand convergent index of DI508 were significantly affected by ratios of the three fertilizers,decreasing with increased ratios of P and K application.DI508 had higher N utilizationefficiency in terms of morphological traits and grain yield,as reflected by improved plant andcanopy height,tillers per plant,effective tiller percentage,net photosynthetic rate,specific leafweight,leaf area per plant,leaf area index,dry matter and yield with increased N fertilizer andratios of P and K fertilizer.
     4.DI508 plants gradually changed into erect when photoperiod became shorter(10-15 dafter 21~(st) June,the Summer Solstice),irrespective of seeding dates(4~(th) April,5~(th) May and 4~(th)June) in a natural field.Under the controlled photoperiod,the tiller angle of DI508 plantschanged in the same way as happened in the field.Shorter lighting treatment(10 hours)advanced the angle changing while longer lighting treatment(14 hours) delayed the changing.The results showed that the critical photoperiod for tiller angle changing of DI508 is about 10hour.On the other hand,the tiller angle changing of DI508 was not affected by accumulated temperature or growing degree day(GDD).
     5.QTL analysis was conducted using a RIL population developed from a cross ofZhenshan97B and Miyang46 and RIL population developed from a cross of XieqingzaoB andMiyang46.At initial tillering,the QTLs for tiller angle of main shoots were detected inchromosomes 1 and 9 in both RIL and RIL populations.While at full-heading,the detectedQTLs for tiller angle were located on more chromosomes.The conditional QTLs for tillerangle from initial tillering to full-heading were detected in the both genetic populations usingconditional variable analysis and composite interval mapping.The conditional QTLs detectedin the genetic population of Zhenshan97B/Miyang46 were mainly located in chromosome 5and 9,and the conditional QTLs detected in the genetic population of XieqingzaoB/Miyang46were located in chromosome 6,8,9 and 11.
引文
1.Abe K, Takahashi H, Suge H.Lazy gene(la) responsible for both an agravitropism of seedlings and lazy habit of tiller growth in rice (Oryza Sativa L.).Plant Research, 1996,109: 381-386
    2.Abenes M L P, Tabien R E, MeCoueh S R, Ikeda R, Ronald P, Khush G S, Huang N.Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice.Euphytica, 1994, 76: 81-87
    3.Bangerth F.Response of cytokinin concentration in the xylem exudate of bean (Phaseolus-Vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance.Planta, 1994, 194: 439-442
    4.Betrano J, Montaldi E R, Barrerro R.Photoassimilate patitioning modulated by phytochrome in Bermuda grass, Cynodon dactylon L.Plant Science, 1991,73: 19-22
    5.Blancaflor E B and Masson P H.Plant gravitropism, unraveling the ups and downs of a complex process.Plant Physiology, 2003, 133: 1677-1690
    6.Bruinsma J, Hasegawa K. A new theory of theory of phototropism - its regulation by a light - induced gradient of auxin - inhibiing substrance. Physiology plant, 1990, 79: 700 -704
    7.Brayton F W. Apical control of branch growth and angle in woody plants. American Journal of Botany, 2000, 87: 601 - 607
    8.Burstin J. Differential expression of two barley XET-related genes during coleoptile growth. Journal of Experimental Botany, 2000, 51: 847 - 852
    9.Chen W F, Xu Z J, Zhang L B. Theories and practices of rice breeding for super high yield. Proceedings of International Conference on Engineering and Technological Sciences, 2000, 378-382
    10.Connell B M and Kelty M J. Crown architecture of understory and open-grown white pine (Pinus Strobus L.) saplings. Tree Physiology, 1994, 14: 89 - 102
    11.Cui D Y, Steven J N, Zhang C T, Wei M C. Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. Journal of Experimental Botany, 2005, 56: 1327 - 1334
    12.Datta K, Vasquez A, Khushi G S and Datta S K. Development of transgenic new plant type rice for stem borer resistance. Rice Genetics Newsletter. 1999, 16:143
    13.Digby J, Firn R D. The gravitropic setpoint angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell and Environment, 1995, 18:1434-1440
    14.Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403
    15.Edelmann H G. Ethylene perception generates gravicompetence in gravi-incompetent leaves of rye seedlings. Journal of Experimental Botany, 2002, 53: 1825 - 1828
    16.Emery R J N, Longnecker N E, Atkins C A. Branch development in Lupimts angmtifolius L. @@@: Relationship with endogenous ABA, IAA and cytokininsin axillary and main stem buds. Journal of Experimental Botany, 1998, 49: 555-562
    17.Engledow F L, Wadham S M. Investigation on yield in the cereals: Part I. Journal of Agriculture Science, 1923, 13: 16-18
    18.Estelle M. Transporters on the move. Nature, 2001, 413: 372 - 375
    19.Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. Lateral relocation of auxinefflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 2002, 415: 806 - 809
    20.Geldner N, Friml J, Stierhof Y D, Jurgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413: 425 - 428
    21.Gloria K M. Auxins and tropism. Journal of Plant Growth Regulation, 2001, 20: 226 - 243
    22.Hangarter R P. Gravity, light and plant form. Plant Cell and Environment, 1997, 20: 196 -800
    23.Heath D V, Gregory F G. The constancy of the mean net assimilation late and its eclogical importance. Annals of Botany, 1938,2: 811-818
    24.Ian M. Gravitropism: Lateral Thinking in Auxin Transport Dispatch. Current Biology,2002, 12:452-454
    25.Khush G S. Prospects of and approaches to increasing the genetic yield potential of rice. Rice research in Asia, progress and priorities, CAB International and IRRI, 1996: 59-71
    26.Kim J K, Vergara B S. A low tillering ideotype of rice plant for increasing grain yield potential. Korean Journal of Crop Science, 1991, 36: 134-142
    27.Kim J K, Vergara B S. Grain yield potential of a low tillering large panicle type in rice. Korean Journal of Crop Science, 1992, 37: 361-371
    28.Kinoshita T, Shinbashi N. Identification of dwarf genes and their character expression in the isogenic background. Japanese Journal of Breed, 1982, 32: 219-231
    29.Kinoshita T, Takahashi M. Moil K. Character expression and inheritance node of three kinds of dwarf rice. Research Bulletin, 1974, 19: 64 -75
    30.Kishimoto N, Shimoska E, Matsuura S, Saito A. A current RFLP linkage map of rice: Alignment of the molecular map with the classical map. Rice Genetics Newsletter, 1992, 9: 118- 124
    31.Kramer S, Piotrowski M, Kuhnemann F, Edelmann H G. Physiological and biochemical characterization of ethylene generated gravicompetence in primary shoots of coleoptileless gravi-incompetent rye seedlings. Journal of Experimental Botany, 2003, 54: 2723 - 2732
    32.Li P J, Zeng D L, Liu X F, Xu D, Gu D, Li J Y, Qian Q. Mapping and characterization of a tiller-spreading mutant lazy-2 in rice. Chinese science of bulletin, 2003, 48: 2715 -2717
    33. Li Z K, Paterson A H, Pinson S R M, Stansel J W. RFLP facilitated analysis of tiller and leaf angles in nce(Oryza Sativa L.). Euphytica, 1999, 109: 79 - 84
    34. Longnecker N, Kirby E J M, Robson A. Leaf emergence, tiller growth, and apical development of nitrogen-deficient spring wheat. Crop Science, 1993, 33, 154 - 160
    35. Marjolein C H, Joris J B, Robert A M, Cornells A M, Thomas M, Anton J M, Laurentius A.C. The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged rumex palustris petioles. Plant Physiology, 2004, 136: 2948 - 2960
    36. Miguel L C, Longnecker N E, Ma Q, Osborne L, Atkins C A. Branch development in Lupinus angustifolius L. I: Not all branches have the sanle potential growth rate. Journal of Experimental Botany, 1998, 49: 547 - 553
    37. Morris D A. Transmembrane auxin carrier systems-dynamic regulators of polar auxin transport. Plant Growth Regulation, 2000, 32: 161 - 172
    38. Muday G K, Murphy A S. An emerging model of auxin transport regulation. Plant Cell, 2002, 14:293-299
    39. Murata Y. Studies on the photosynthesis of rice plants and its culture significance. Bulletin of the National Institute of Agricultural Sciences, 1961, 9: 1-169
    40. Myers A B, Firn R D, Digby J. Gravitropic sign reversal - A fundamental feature of the gravitropic perception or response mechanisms in some plant organs. Journal of Experimental Botany, 1994, 45, 77 - 83
    41. Nagai T, Hirota H. Cultivated rice varieties viewed from root characters. Japanese Journal of Crop Science, 1957, 27: 217 - 220
    42. Peng S B, Yang J C. Current status of the research on high-yielding and high efficiency in resource use and improving grain quality in rice. Chinese Journal Rice Science, 2003, 17(3): 275-280
    43. Rodriguez D, Pomar M C, Goudriaan J. Leaf submergence initiation, leaf emergence and tillering in wheat {Triticum aestivum L.) grown under low-phosphorus conditions. Plant and Soil, 1998,202: 149- 157.
    44. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson C L, Paris S, Lweiler L G, Palme K, Rgens J U. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 1999, 286: 316-318
    45.Stoll P, B Schmid.Plant foraging and dynamics of indoleacetic acid under polar of Pinus Sylvestris in contrasting light environments.Journal of Ecology, 1998, 86: 934-945
    46.Takahashi M, Kinoshita T, Takeda K.Character expression and caudal genes of some mutants in rice plant (Genetical studies of rice plant ⅩⅩⅩⅢ).Journal of the Faculty of Agriculture, 1968, 55: 496-512
    47.Takahashi M.Linkage groups and gene schemes of some striking morphological characters in Japanese rice.Symposium of Rice Genetic Cytogenetics, 1963, 215-236
    48.Uozu S, Tanaka U M, Kitano H, Hattori K, Matsuoka M.Characterization of XET-related genes of rice.Plant Physiology, 2000, 122, 853-859.
    49.Watanabe T, Room R M, Hanan J S.Virtual rice: simulating the development of plant architecture.International Rice Research Notes.2001,26: 60-62
    50.Wei L, Chen H D, Zhong H, Lu W, Guo C Q.Relationship between tissue culture and agronomic traits of spring Wheat.Plant Science, 2003, 164: 1079-1085
    51.Yamamoto T, Sasaki T, Yano M.Genetic analysis of spreading stub using indica/japonica backcrossed progenies in rice.Breeding Science, 1997, 47: 141-144
    52.Yoshida S.Factors influencing rice yield production potential and stability.In: Rice Research Strategies for the Future, Philippines, IRRI, 1982
    53.Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D Y.TACl,a major quantitative trait locus controlling tiller angle in rice.The Plant Journal, 2007, 52: 891-898
    54.Zahir Z A, Asghar H N, Arshad M.Cytokinin and its precursors for improving growth and yield of rice.Soil Biology & Biochemistry, 2001,33: 405-408
    55.曹树青,翟虎渠,盛生兰,龚红兵,林添资,杨图南,张荣铣,匡廷云.高产杂交籼稻11优129光合碳同化特性的研究.杂交水稻,2001, 16: 46-50
    56.陈温福,徐正进,张龙步,杨守仁.水稻超高产育种研究进展与前景.沈阳农业大学学报,1998, 29: 101-105
    57.陈温福,徐正进,张文忠,张龙步,杨守仁.水稻新株型创造与超高产育种.作物学报,2001,27: 665-672
    58.陈友订,万邦惠,张旭.华南双季稻分蘖盛期理想形态性状研究.中国农业科学,2004,37: 968-974
    59.程式华,曹立勇,陈深广,朱德峰,王熹,闵绍楷,翟虎渠.后期功能型超级杂交稻的概念及生物学意义,中国水稻科学,2005, 19: 280-284
    60.程式华,翟虎渠.杂交水稻超高产育种策略.农业现代化研究,2000, 21: 147-150,154
    61.高亮之,金之庆,张更生,石春林,葛道阔.水稻最佳株型群体受光量与光合量的数值模拟.江苏农业学报,2000, 16: 1-9
    62.巩鹏涛,李迪.植物分枝发育的遗传控制.分子植物育种.2005, 3: 151-162.
    63.郝乃斌.杜维广.高光效大豆光合特性的研究.大豆科学,1989, 8: 283-286
    64.潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.1996, 13: 13-20
    65.黄瑞冬,王进军,许文娟.玉米和高粱叶片叶绿素含量及动态的比较.杂粮作物,2005,25:30-31
    66.黄耀祥,林青山.水稻超高产,特优质株型模式的构想和育种实践.广东农业科学,1994,4: 1-6
    67.黄耀祥.水稻超高产育种研究.作物杂志,1990, 4: 1-2
    68.黄耀祥.水稻生态育种科学体系的构建和新进展—两源并举“超优势稻”的选育.世界科技研究与发展,2003, 25: 1-8
    69.焦德茂.杂交水稻群体不同高度叶层的光合特性.江苏农业科学,1982, 9: 11-15
    70.蒋彭炎,洪晓富.水稻等蘖穗定向栽培的生物学根据及主要技术环节.浙江农业科学,1997, 5:201-204
    71.蒋彭炎,姚长溪,任正龙.水稻稀播少本插高产技术的研究.作物学报,1981, 7:241-248
    72.蒋彭炎.从水稻稀少平栽培法的高产效应看栽培技术与株型的关系.中国水稻科学,1987,1:111-117
    73.角田重三郎(黄湛节译).水稻生理生态译丛(1).北京:中国农业出版社,1992,108-109
    74.康文启,欧阳由男,董成琼,朱练峰,禹盛苗,许德海,金千瑜.水稻动态株型模式及其指标探讨.中国稻米,2007a, 1:1-6
    75.康文启,欧阳由男,章善庆,董成琼,朱练峰,禹盛苗,许德海,金千瑜.分蘖角度动态型水稻的形态特征及生长特性分析.中国水稻科学,2007b, 21: 372-378
    76.康文启.分蘖角度动态型水稻的形态特征与生理生态效应研究.硕士学位论文.北京:中国农业科学院,2007c
    77.李萍,韩亚东,郝兴宇.不同穗型不同种植方式对水稻光能利用的影响.山西农业大学学报,2004, 24: 112-115
    78.李熙英,权成武.不同密度、插植方式对水稻生育及产量的影响.延边大学农学学报,2000, 22:256-259
    79.吕艳东,郭晓红,郑桂萍,陈书强.水稻理想株型的研究进展.垦殖与稻作,2006, 2:3-7
    80.李扬汉.禾本科作物的形态与解剖:第八章第四节水稻的芽、分枝和分蘖.上海科学技术出版社,1979
    81.梁振兴,马兴林.冬小麦分蘖发生过程中内源激素作用的研究.作物学报,1998, 24:788-792
    82.凌凤楼,马景勇,杨福,贾恩吉,徐国佳.影响水稻分蘖有关栽培因素的研究.吉林农业科学,1999, 24: 5-7
    83.凌启鸿,陆卫平,蔡健中,曹显祖.水稻根系分布与叶角关系的研究初报.作物学报,1989,15:123-131
    84.凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究.中国农业科学,1986, 3:1-8
    85.凌启鸿,张洪程,蔡建中,苏祖芳,凌励.水稻高产群体质量及其优化控制讨论.中国农业科学,1993:1-11
    86.凌启鸿.作物群体质量.上海:上海科学技术出版社,2000, 58-63
    87.陆益,孙成明.不同群体水稻抽穗期主要株型指标的研究.中国农学通报,2006, 22:198-201
    88.吕川根,谷福林,邹江石,邹江石,陆曼丽.水稻理想株型品种的生产潜力及其相关特性研究.中国农业科学,1991, 24:15-22
    89.马汉云,王青林,吴淑平,刘新宇,霍二伟,沈光辉,郭桂英,李刚.水稻株型的遗传研究进展.安徽农学通报,2007, 13: 105-107
    90.马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用研究.作物学报,1997, 23:200-207
    91.莫永生,何龙飞,黄天进,韦政,农友业.高大韧稻育种论.中国农学通报,2004,20: 82-86
    92.聂军,郑圣先,廖育林,戴平安,易国英.控释氮肥对水稻叶片内源激素含量及平衡的影响.湖南农业大学学报(自然科学版),2006, 32: 15-19.
    93.牛立元,茹振钢,赵花周,薛国典.小麦叶片叶绿素含量系统变化规律研究.麦类作物,1999, 2: 36-38
    94.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland B,Christian W.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002, 35:1095-1103.
    95.潘学彪,韩月澎,陈宗祥,张洪熙.水稻植株形态遗传改良的研究进展.扬州大学学报,2004, 25: 36-40
    96.钱前,何平,腾胜.水稻分蘖角度的QTLs分析.遗传学报,2001, 28: 29-32
    97沈福成.水稻净光合速率与植株形态的关系—兼论水稻高光效株型.贵州农业科学,1983,1:12-18
    98.沈福成.水稻株型改良的理论与实践.贵阳:贵州科技出版社,1990
    99.沈圣泉,庄杰云,包劲松,郑康乐,夏英武,舒庆尧.水稻分蘖最大角度的QTL分析.农业生物技术学报,2005, 13: 16-20
    100.石利娟,邓启云,刘国华,庄文,陈立云.水稻理想株型育种研究进展.杂交水稻,2006,21:51-57
    101.松岛省三.稻作的理论与技术.庞诚译.北京:中国农业出版社,1981
    102.松岛省三.水稻栽培新技术.长春:吉林人民出版社,1973
    103.苏祖芳,孙成明,张亚洁,沙爱红,张林青.高产水稻生育前期株型指标的研究.作物学报,2002, 28: 660-664
    104.苏祖芳,张亚洁,孙成明水稻高产株型指标的研究.中国稻米,2003, 4: 5-6
    105.孙成明,苏祖芳,许乃霞,周培南.水稻有效分蘖叶龄期的株型特征及其与产量关系初探.江苏农业研究,2000, 21:10-15
    106.孙成明,苏祖芳.水稻株型的研究进展(综述).上海农业学报,2004, 20: 41-44
    107.汤玉庚,张兆兰.从江苏太湖地区水稻品种的演变论高产理想株型.江苏农业科学,1994,6:1-4
    108.屠曾平.水稻光合特性研究与高光效育种.中国农业科学,1997, 30: 28-35
    109.王冰,李家洋,王永红.生长素调控植株形成的研究进展.植物学通报,2006, 23:443-458
    110.王伯伦,王术,白恩波,金英孝.水稻大垄双行稀植栽培.新农业,1998, 2: 12-13
    111.王贵学,黄俊丽,金良,郑家奎,张子龙.水稻动态株型材料的遗传特性.重庆大学学报(自然科学版),2006, 29: 108-110
    112.王建林,徐正进,冯永祥,齐华.作物超高产栽培与株型育种的光合作用基础—以水稻为例.中国农学通报,2004, 20: 130-133, 135
    113.王建林,徐正进,高峰.杂交稻与常规稻叶绿素变化规律的研究.辽宁农业科学,2001,5:18-21
    114.王建林,徐正进,魏树和.水稻株型育种生理生态特性的研究现状与展望.辽宁农业科学,2000, 4: 23-27
    115.王世之.小麦分蘖规律及其生产上的应用.植物学杂志,1974, 3: 27-30
    116.王天铎.光合作用研究进展.北京:科学出版社,1980
    117.王熹,陶龙兴,俞美玉,黄效林.超级杂交稻协优9308生理模型的研究.中国水稻科学,2002, 16: 38-44
    118.吴志强.杂交水稻根系发育研究.福建农学院学报,1982, 2: 19-27
    119.夏仲炎,王学栋.水稻理想株型的再次探讨.安徽农业科学,1990, 1: 15-20
    120.星川清亲(蒋彭炎,许德海,译).稻的生长.上海:上海科技出版社,1981
    121.徐云碧,申宗坦.水稻分蘖角基因分散态组合的检测及遗传分析.浙江农业学报,1992,4:54-60
    122.徐云碧,申宗坦.早籼稻品种分蘖角度的遗传分析.浙江农业学报,1993, 5: 1-5
    123.薛大伟,方茂庭,钱前.有效积温在水稻生产中的应用.中国稻米,2004, 4: 47-48
    124.薛利红,曹卫星,罗卫红,王绍华.光谱植被指数与水稻叶面积指数相关性的研究.植物生态学报,2004, 28: 47-52
    125.杨建昌,王朋,刘立军,王志琴,朱庆森.中籼水稻品种产量与株型演进特征研究.作物学报,2006, 32: 949-955
    126.杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展.杂交水稻,1998, 13: 29-31
    127.杨守仁,张龙步,陈温福,徐正进,王进民.水稻超高产育种的理论和方法.中国水稻科学,1996, 10: 115-120
    128杨守仁,张龙步,王进民.水稻理想株形育种的理论和方法初论.中国农业科学,1984,17: 6-11
    129.杨守仁.水稻超高产育种的新动向—理想株型与有利优势相结台.沈阳农业大学学报,1987, 18: 1-5
    130.杨守仁.水稻株型研究的进展.作物学报,1982, 8: 205-209
    131.杨守仁.杨守仁水稻文选.沈阳:辽宁科学技术出版社,1998
    132.于亚辉,徐正进.不同栽培条件下水稻分蘖角度动态变化分析.中国农学通报,2006,22: 179-181
    133.袁隆平.杂交水稻超高产育种.杂交水稻,1997, 12: 1-3
    134.翟虎渠,曹树青,万建民,陆巍,张荣铣,李良璧,匡廷云,闵绍楷,朱德峰,程式华.超高产杂交稻灌浆期光合功能与产量的关系.中国科学(C辑),2002, 32:211-217
    135.张龙步,董克.水稻田间试验方法与测定技术.沈阳:辽宁科学技术出版社,1993
    136.张其鲁,陈香芝,张立全,李相奎,王家盛.小麦株型分类探讨.山东农业科学,2006,1:17-19
    137.郑景生,林文.超高产水稻根系发育形态学研究.福建农业学报,1999, 14: 1-6
    138.郑寨生,刘新华.施肥方法和栽培密度对水稻品种间产量与品质的影响.上海农业学报,1995, 11: 81-86
    139.周炳炎.水稻理想株型与超高产育种途径的探讨.湖北农学院学报,1995, 15: 52-60
    140.周劲松,梁国华水稻分蘖性状的分子遗传研究进展.江西农业学报,2006, 18: 80-84
    141.周开达,马玉清,刘太青,沈茂松.杂交水稻亚种间重穗型组合选育—杂交水稻超高产育种的理论与实践.四川农业大学学报,1995, 13: 403-407
    142.朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34: 429-432
    143.朱维琴,吴良欢,陶勤南.氮营养对干旱逆境下水稻生长及抗氧化性能的影响.浙江农业学报,2006, 18: 67-71
    144.朱云集,郭汝礼,郭天财,王永华,李翔两种穗型冬小麦品种分蘖成穗与内源激素之间关系的研究.作物学报,2002, 28: 783-788
    145.左清凡,谢平,宋宇,陈莹,李伟,刘亚云.水稻籽粒不同发育时期灌浆速率的遗传及其与环境互作的分析.中国农业科学,2002, 35: 465-470
    1.Berkowitz A. Competition for resources in weed - crop mixtures. In: Altieri, M.A., Liebman M. (Eds). Weed management in agroecosystems: Ecological approaches. Boca Raton, FL: CRC, 1988,89- 119.
    2.Callaway M B, Forcella F. Crop tolerance to weeds. In Callaway MB, Francis CA, ed. Crop improvement for sustainable agriculture. Lincoln, NE: University of Nebraska Press. 1993, 100- 131.
    3.Callaway MB.A compendium of crop varietal tolerance to weeds. American Journal of Alternative Agriculture, 1992, 7: 169 - 180.
    4.Chang T T, Li C C. Genetics and breeding. In: Rice production and utilization. Luh BS, ed. AVI Publishing Co. Inc., Westport, CT. 1980, 87 - 146.
    5.Cheng S H, Cao L Y, Yang S H, Zhai H Q. Forty year's development of hybrid rice: China's experience. Rice Science, 2004, 11: 225 - 230.
    6.Dennis H G, Alla N S, Green S R. From controlled environments to field simulations: leaf area dynamics and photosynthesis of kiwifruit vines (Actinidia deliciosa). Functional Plant Biology, 2004, 31: 169- 179.
    7.Dingkuhn M, Jones M P, Johnson D E, Sow A. Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Research, 1998,57:57-69.
    8.Dingkuhn M, Singh B B, Clerget B, Chantereau J, Sultan B. Past, present and future criteria to breed crops for water - limited environments in West Africa. Agricultural Water Management, 2006, 80: 241 - 261.
    9.Dong Y J, Lin D Z, Kamiunten H, Ogawa T, Cai Q S, Tsuzuki E, Terao H, Matsuo H. Molecular genetic mapping of QTLs for tiller angle in rice {Oryza sativa L.). Japanese Journal of Tropical Agriculture, 2004, 40: 228 - 234.
    10.Forcella F. Tolerance of weed competition associated with high leaf area expansion rate in tall fescue. Crop Science, 1987, 27: 146 - 147.
    11.Johnson D E, Dingkuhn M.Jones M P, Mahamane M C.The influence of rice plant type on the effect of weed competition on O.sativa and O.glaberrima.Weed Research, 1998,38: 207-216.
    12.Jones M P, Dingkuhn M, Aluko G K, Semon M.Interspecific O.sativa L.×O.aberrima steud progenies in upland rice improvement.Euphytica, 1997, 92: 237-246.
    13.Khush G S.Breaking the yield frontier of rice.GeoJournal., 1995, 35: 329-332.
    14.Khush G S.Green revolution: preparing for the 21st century.Genome, 1999, 42: 646-655.
    15.Mao O, Ennos A R.Structural development and stability of rice Oryza sativa L.var.Nerica 1 .Journal of Experimental Botany, 200, 57:3123-3130.
    16.Microcal.Origin.Version 5.0.An advanced scientific graphing and data analysis software.Microcal software Inc., 1997.
    17.李晋,秦琳琳,岳大志,吴刚,薛美盛,陈薇,王子洋,胡振华.试验温室温度系统建模与仿真.系统仿真学报,2008, 7: 1869-1875
    18.Nangju D.Effect of plant density, spatial arrangement, and plant type on weed control in cowpea and soybean.In: Akobundu IO, ed.Weeds and their control in the humid and subhumid tropics.lbadan, Nigera: International Institute Tropical Agriculture, 1978, 288-293.
    19.Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S.Yield Potential Trends of Tropical Rice since the Release of IR8 and the Challenge of Increasing Rice Yield Potential.Crop Science, 1999, 39: 1552-1559.
    20.Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi T M, Mizutani M,Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice.Natature Biotechnology, 2006, 24: 105-109.
    21.Seleznyova A N, Greer D H.Effects of temperature and leaf osition on leaf area expansion of kiwifruit (Actinidia deliciosa) shoots: development of a modeling framework.Annals of Botany, 2001,88: 605-615.
    22.Thomas R S, Sheehy, J.E..Erect Leaves and Photosynthesis in Rice.Science, 1999, 283:1455.
    23.Virk P S, Khush G S, Peng S.Breeding to enhance yield potential of rice at IRRI: the ideotype approach.International Rice Research Notes, 2004, 29: 5-9.
    24.Wang G Y, McGiffen M E, Jeff D E, Marchi E C S.Competitive ability of cowpea genotypes with different growth habit.Weed Science, 2006, 54: 775-782.
    25.Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W.Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling.Annals of Botany, 2005, 95:1131-1143.
    26.Xu Y B, Mccouch S R, Shen Z.Transgressive segregation of tiller angle in rice caused by complementary gene action.Crop Science, 1998, 38: 12-19.
    27.Zhao D L, Atlin G N, Bastiaans L, Spiertz J H J.Comparing rice germplasm groups for growth, grain yield and weed-suppressive ability under aerobic soil conditions.Weed Research, 2006, 46: 444-452.
    28.黄耀祥.水稻生态育种科学体系的构建和新进展—两源并举“超优势稻”的选育.世界科技研究与发展,2003, 25:1-8
    29.康文启,欧阳由男,章善庆,董成琼,朱练峰,禹盛苗,许德海,金千瑜.分蘖角度动态型水稻的形态特征及生长特性分析.中国水稻科学,2007, 21: 372-378
    30.吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较分析.中国农业科学2003,36: 633-639
    31.孙成明,苏祖芳.水稻株型的研究进展(综述).上海农业学报,2004, 20: 41-44
    32.石利娟,邓启云,刘国华,庄文,陈立云.水稻理想株型育种研究进展.杂交水稻,2006,21:51-57
    1.Chen Y, Yuan L P, W ang X H, Zhang D Y, Zhao B R, Xu D Q.Relationship between grain yield and leaf photosynthetic rate in superhybrid Rice.Journal of Plant Physiology and Molecular Biology, 2007, 33: 235—243.
    2.Condon A G, Richards R A, Rebetzke G J.Improving intrinsic water-use efficiency and crop yield.Crop Science, 2002, 42: 122-131.
    3.Farquhar G D, von Caemmerer S, Berry J.A biochemical model of photosynthesis CO2 assimilation in leaves of C3 species.Planta, 1980, 149:78-90
    4.Julian M H, John E S, Jane A L.Using C_4 photosynthesis to increase the yield of rice-rationale and feasibility.Current Opinion in Plant Biology, 2007, 10: 1-4.
    5.Yumiko S, Tamizi S, Daisaku Y, Taiichiro O, Tadashi H.The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants.Field Crops Research, 2006, 96: 113-114.
    6.程旺大,姚海根,张红梅.南方晚粳杂交稻与常规稻籽粒灌浆及后期叶片光合特性的差异.中国水稻科学,2007, 21: 174-178.
    7.郭江,郭新宇,王纪华,张凤路.不同株型玉米光响应曲线的特征参数研究.西北植物学报,2005, 25: 1612-1617.
    8.蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用—光响应曲线的新方法.植物学通报,1999, 16: 712-718.
    9.匡廷云.光合作用高效光能转化的机理及其在农业中的应用.中国科学院院刊,2002,1:43-45
    10.刘怀年,邓晓建,李平.水稻品种资源光合速率研究.四川农业大学学报,2007, 25:379-383.
    11.刘允芬,于贵瑞,王利军,李家永,宋霞.红壤丘陵区双季稻表观光合量子效率的研究.中国生态农业学报,2004, 12:49-52.
    12.刘宇锋,萧浪涛,童建华,李晓波.非直线双曲线模型在光合光响应曲线数据分析中的应用.中国农学通报,2005, 21: 76-79
    13.马文波,马均,明东风,许风英,严志彬,孙晓辉.不同穗重型水稻品种剑叶光合特性的研究.作物学报,2003, 29: 236-240.
    14.王伯伦,王术.水稻大垄双行稀植栽培.新农业,1998, 2: 12-13.
    15.王强,张其德,卢从明,匡廷云,李成荃.超高产杂交稻不同生育期的光合色素含量、净光合速率和水分利用效率.植物生态学报,2002, 26: 647-651.
    1.Dingkuhn M, Johnson D E.Sow A, Audebert A Y.Relationships between upland rice canopy characteristics and weed competitiveness.Field Crops Research.1999, 61:79-95
    2.Dingkuhn M, Singh B B, Clerget B, Chantereau J, Sultan B.Past, present and future criteria to breed crops for water-limited environment in west Africa.Agricultural Water Management, 2006, 80: 241-261
    3.Duan C, Wang B, Wang P.Wang D, Cai S.Relationship between the minute structure and the lodging resistance of rice stems.Colloids and Surfaces B: Biointerfaces, 2004, 35: 155-158
    4.Huang Y X.Foundation and new development on the scientific system of rice ecological breeding.Chinese Rice Reseach Newsletter, 2000, 8: 13-14
    5.Peng S B, Yang J C.Current status of the research on high-yielding and high efficiency in resource use and improving grain quality in rice.Chinese Jounal Rice Science, 2003, 17:275-280
    6.Russell C A, Dunn B W, Batten G D, Williams R L, Angus J F.Soil tests to predict optimum fertilizer nitrogen rate for rice.Field Crops Research, 2006, 97: 286-301
    7.Xu Y B, Shen Z T.Diallel analysis of tiller number at different growth stages in rice (Oryza Sativa L.).Theoretical and Applied Genetics, 1991,83:243-249
    8.贺帆,黄见良,崔克辉,曾建敏,徐波,彭少兵,R J Buresh.实时实地氮肥管理对水稻产量和稻米品质的影响.中国农业科学,2007, 40: 123-132.
    9.江立庚,甘秀芹,韦善清,徐建云,曹卫星.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系.应用生态学报,2004, 15: 226-230
    10.康文启,欧阳由男,章善庆,董成琼,朱练峰,禹盛苗,许德海,金千瑜.分蘖角度动态性水稻的形态特征及生长特性分析.中国水稻科学,2007, 21: 372-378
    11.李成亮,何园球,王艳玲,刘晓利.氮磷钾肥对红壤区水稻增产效应的影响.中国水稻科学,2007, 21:179-184
    12.李水山,皇甫植.水稻半矮秆基因对根系氮吸收的影响.沈阳农业大学大学,1994,25:377-381
    13.梁康迳,林文雄,王雪仁,陈志雄,郭玉春,梁义元,陈芳育,李亚娟.籼型三系杂交水稻茎蘖数的发育遗传研究.中国农业科学,2002, 35: 1033-1039
    14.凌启鸿,张洪程,蔡建中,苏祖芳,凌励.水稻高产群体质量及其优化控制探讨.中国农业科学,1993, 26: 1-11
    15.凌启鸿.论中国特色作物栽培科学的不可替代性.中国农学通报,2003, 19: 1-6
    16.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森, Roland Buresh,Christian Witt.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002, 35:1095-I103
    17.钱前,何平,腾胜.水稻分蘖角度的QTLs分析.遗传学报,2001, 28: 29-32
    18.钱晓晴,顾竹英,周明耀,柏彦超,倪梅娟,蔡树美,杜洪艳,沈淮东,吴晶,薛巧云.水分供应和氮素形态对水稻一些水分生理特征的影响.作物学报,2007, 33:2016-2020
    19.苏祖芳,孙成明,张亚洁,沙爱红,张林青.高产水稻生育前期株型指标的研究.作物学报,2002, 28: 660-664
    20.孙永飞,陈霞,梁尹明.水稻超高产模式株型栽培法.乌鲁木齐:新疆科技卫生出版社,2000
    21.杨守仁,张龙步,王进民.水稻理想株形育种的理论和方法初论.中国农业科学,1984,17: 6-13
    22.于亚辉,徐正进.不同栽培条件下水稻分蘖角度动态变化分析.中国农学通报,2006,22: 179-181.
    23.余柳青,徐正浩,郭怡卿,陶大云.野生稻和非洲栽培稻抗稗草作用研究初报.中国水稻科学,2002, 16: 288-290.
    24.张其鲁,陈香芝,张立全,李相奎,王家盛.小麦株型分类探讨.山东农业科学,2006,1:17-19.
    25.张耀鸿,吴洁,张亚丽,王东升,沈其荣.不同株高粳稻氮素积累和运转的基因型差异.南京农业大学学报,2006, 29: 71-74.
    1.Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A,Ikeda Y,Ichinoki Y, Notaguchi M, Goto K, Araki 1 T.F D, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex.Science, 2005,309: 1052-1056
    2.Atsushi M, Atsuko I, Hitoshi U, Hiroshi I.Identification of 2,4,6-Trichloroanisole (T CA) Causing a Musty/Muddy Off-Flavor in Sake and Its Production in Rice Koji and Moromi Mash.Journal of Bioscience and Bioengineering, 2005, 100:178-183
    3.Dingkuhn M, Singh B B, Clerget B, Chantereau J, Sultan B.Past, present and future criteria to breed crops for water-limited environments in West Africa.Agricultural Water Management, 2006, 80: 241-261
    4. Garg A K, Garg A K, Sawers R J H, Haiyang W, Kim J K, Walker J M, Brutnell T P, Arthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta,2006, 223:627-636
    5. Han T, Wu C, Mentreddy R S, Zhao J, Xu X, Gai J. Post-flowering photoperiod effects on reproductive development and agronomic traits of long-day and short-day crops. Journal of Agronomy and Crop Science, 2005, 191, 255-262
    6. Hernan E B, Ploschuk E L, Yanovsky M J, Sanchez R A, Gatz C, Casal J J. Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiology, 2003, 133: 1539-1546
    7. Khush G S. Breaking the yield frontier of rice. GeoJoumal, 1995, 35: 329-332
    8. Khush G S. Green revolution: preparing of the 21st century. Genome, 1999, 42, 646-655
    9. Klein B. Growing Degree Day Worksheet. NW Michigan Horticultural Research Station, Michigan State University,Traverse City.1999, http://www.maes.msu.edu/n\vmihort/gdd_web.xls
    10. Kong F J, Gao X, Nam K H. Takahashi K, Matsuura H, Yoshihara T. Theobroxide inhibits stem elongation in Pharbitis nil by regulating jasmonic acid and gibberellin biosynthesis. Plant Science, 2005, 169: 721-725
    11. Lerman J C, Queiroz O. Carbon fixation and isotope discrimination by a crassulacean plant: dependence on the photoperiod. Science, 1974, 183: 1207-1209
    12. Li Z K, Paterson A H, Pinson S R M, Stansel J W. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza saliva L.). Euphytica, 1999, 109: 79-84
    13. Qian Q, He P, Teng S, Zeng D L, Zhu L H. QTL analysis of rice (Oryza sativa L.) tiller angle in a double haploid population derived from anther culture of indica/japonica. Chinese Rice Research Newsletter, 1999, 7:1-2
    14. Robson P R H, Mccormac A C, Irvine A S, Smith H. Genetic engineering of harvest indes in tobacco through overexpression of a phytochrome gene. Nature Biotechnology, 1996, 14:995-999
    15. Turner A, Beales J, Fame S, Dunford R P, Laurief D A. The pseudo-response regulator ppd-h provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034
    16.Wang YH, Li JY.The plant architecture of rice (Oryza sativa L).Plant Molecular Biology,2005, 59: 75-84
    17.XuYB,Susan R M,Shen Z T.Transgressive segregation of tiller angle in rice caused by complementary gene action.Crop Science, 1998, 38: 12-19
    18.Yan J Q, Zhu J, He C X, Benmoussa M, Wu P.Molecular marker-assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sativa L.).Crop Science, 1999, 39: 538-544
    19.Yu B S, Lin Z W, Li HX, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q.TAC1, a major quantitative trait locus controlling tiller angle in rice.The Plant Journal, 2007, 52: 891-898
    20.陈友订,万邦惠,张旭,黄农荣,黄秋妹.两系法超级杂交稻粤杂122动态株型结构研究.广东农业科学,2006, 4: 5-9
    21.黄耀祥.水稻生态育种科学体系的构建和新进展-两源并举“超优势稻”的选育.世界科技研究与发展,2003, 25: 1-8
    22.康文启,欧阳由男,董成琼,朱练峰,禹盛苗,许德海,金千瑜.水稻动态株型模式及其指标探讨.中国稻米,2007a, 1: 1-6
    23.康文启,欧阳由男,章善庆,董成琼,朱练峰,禹盛苗,许德海,金千瑜.分蘖角度动态型水稻的形态特征及生长特性分析.中国水稻科学,2007b, 21: 372-378
    24.沈圣泉,庄杰云,包劲松,郑康乐,夏英武,舒庆尧.水稻分蘖最大角度的QTL分析.农业生物技术学报,2005, 13: 16-20
    25.石利娟,邓启云,刘国华,庄文,陈立云.水稻理想株型育种研究进展.杂交水稻,2006, 21:1-6
    26.童平,杨世民,马均,吴合洲,傅泰露,李敏,王明田.不同水稻品种在不同光照条件下的光合特性及干物质积累.应用生态学报,2008,19(3): 505-511
    27.薛光行,申岳正.光周期条件对水稻光敏不育温度效应值的影响.应用生态学报,1997, 8(1):17-20
    28.杨守仁.再论水稻超高产育种的理论和方法.沈阳农业大学学报,2003,34(5):321-323
    29.余传元,刘裕强,江玲,王春明,翟虎渠,万建民.水稻分蘖角度的QTL定位和主效基因的遗传分析遗传学报,2005, 32: 948-954
    30.袁隆平.超级杂交水稻的现状和展望.粮食科技与经济,2003, 28: 2-3
    31.周鸿凯,郭建夫,黎华寿,吴钿,张建中.光温因子与杂交水稻生态群体的产量和品质性状的典型相关分析.应用生态学报,2006, 17(4): 663-667
    1. Crasta O R, Xu WW, Rosenow D T, Mullet J, Nguyen H T. Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Molecular and General Genetics, 1999, 262: 5879 - 5888
    2. Kheiralla A I, Whittington W J. Genetic analysis of growth in tomato: the F_1 generation. Annals of Botany, 1962,26: 489 - 504
    3. Li Z K, Paterson A H, Pinson S R M, Stansel J W. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica, 1999, 109: 79 - 84
    4. Li Z K, Pinson S R M, Stansel J W, W. D. Park. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theoretical and Applied Genetics, 1995. 91:374-381
    5. McCouch S R, Cho Y G, Yano M, E. Paul, M Blinstrub, H Morishima, T Kinosita. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11 - 13
    6. Qian Q, He P, Teng S, et al. QTL analysis of rice (Oryza sativa L.) tiller angle in a double haploid population derived from anther culture of indica/japonica. Chinese Rice Research Newsletter, 1999,7: 1 -2
    7. Scartazza A, Lauteri M, Guido MC, Brugnoli E. Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Australian Journal of Plant Physiology, 1998,25:489-498
    8. Stewart A D, Hunt D M. The Genetic basis of development. Blackie, Glasgrow and London, 1982,81 - 179.
    9. Wang D L, Zhu J, Li Z K. A H Paterson. Mapping QTLs with epistati- effects and QTL@@@environment interactions by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99:1255 - 1264
    10. Xu Y B, Susan R M, Shen z T. Transgressive segregation of tiller angle in rice caused by complementary gene action. Crop Science, 1998, 38: 12-19
    11.Yan J Q, Zhu J, Ci X H, Mebrouk Benmoussa, Ping Wu.Molecular marker-assisted detection of genotype×environment interaction for plant type traits in rice (Oryza sativa L.).Crop Science, 1999, 39: 538-544
    12.Yu B S, Lin Z W, Li HX, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q.TAC1, a major quantitative trait locus controlling tiller angle in rice.The Plant Journal, 2007, 52: 891-898
    13.包劲松,陈英.不同发育阶段水稻苗高的QTL分析.遗传,1999, 21: 38-40
    14.陈友订,万邦惠,张旭,黄农荣,黄秋妹.两系法超级杂交稻粤杂122动态株型结构研究.广东农业科学,2006, 4: 5-9
    15.姜华,姜亮,孙焕明,曾龙军,薛大伟,梁国华.两个水稻DH群体茎蘖消长的发育QTL分析.扬州大学学报(农业与生命科学版),2008, 29 (2):53-60
    16.寇从贤.水稻主茎叶龄与分蘖关系的探讨.湖北农业科学,2001, 2: 15-17
    17.钱前,何平,滕胜,曾大力,朱立煌.水稻分蘖角度的QTLs分析.遗传学报, 2001,28(1):29-32
    18.沈圣泉,庄杰云,包劲松,郑康乐,夏英武,舒庆荛.水稻分蘖最大角度的QTL分析.农业生物技术学报,2005, 13(1):16-20
    19.吴国海.玉米几个数量性状在不同发育阶段的基因效应分析.遗传学报,1987, 14(5):363-369
    20.余传元,刘裕强,江玲,王春明,翟虎渠,万建民.水稻分蘖角度的QTL定位和主效基因的遗传分析.遗传学报,2005, 32 (9): 948-954

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700