用户名: 密码: 验证码:
水稻关联定位群体的构建及若干品质性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻的许多重要农艺性状如产量、品质、抗逆性等多表现为数量性状,是由多个基因和环境共同作用的结果,对其遗传基础的研究比较困难。水稻品种的改良有赖于所掌握资源的数量和对其农艺、品质等性状遗传基础的了解与掌握程度。近年来,随着基因组学的发展和生物统计软件的完善,特别是分子标记技术在遗传育种领域的广泛应用,以连锁不平衡(linkage disequilibrium,LD)为基础的关联分析(association analysis)方法的出现为水稻数量性状遗传的研究提供了新途径,也为作物的分子设计育种提供了新的思路,它与基于连锁作图的数量性状位点(quantitative trait locus,QTL)定位结果可相互验证、相互补充。本研究利用关联分析和QTL定位两种方法来研究稻米淀粉品质和营养品质性状的分子遗传基础,并利用分子标记辅助选择(marker assisted selection,MAS)进行稻米品质改良。其主要结果如下:
     1.利用全基因组上的100个微卫星标记(simple sequence repeat,SSR),对广泛收集的416份水稻材料(包括地方品种、栽培品种和育种系)进行全基因组扫描,分析群体遗传多样性、LD状况和群体结构,以构建关联定位群体。结果表明这个群体具有广泛的遗传变异。基于模型的群体SSR数据遗传结构分析发现,该群体可划分为7个亚群体。整个群体中,62.8%的SSR位点之间存在显著的LD(P<0.05),而在各亚群中存在显著LD的位点占5.9~22.9%。测定了9个农艺性状,发现群体结构可解释6.2%~46.6%的变异,平均值为27.7%。这个群体可用于全基因范围上的SSR标记、候选基因与表型性状的关联分析。
     2.对淀粉品质性状与淀粉合成有关基因标记进行了基于群体结构的关联分析,结果表明在结构化的水稻群体中Wx SNP和Wx SSR与表观直链淀粉含量(AAC)、淀粉粘滞性(HPV、CPV、BD和SB)、凝胶硬度(HD)显著相关,是控制淀粉品质性状重要的位点。SSⅡa SNP与成糊温度(PT)显著相关,是控制PT的重要位点。Wx SNP、Wx SSR和SSⅡa SNP位点对于改良稻米淀粉品质有十分重要的意义。
     3.对淀粉品质性状与全基因组上100个SSR标记进行关联分析。结果表明,与5个淀粉品质性状显著(P<0.001)关联的标记位点累计达到了21个。有5个SSR标记与AAC显著关联,不过这些位点的变异解释率都小于5%。其中,RM346与这5个性状都显著关联。位于第6染色体上的RM276对于PT变异的解释超过了10%。2个SSR位点(RM253、RM484)已有相应的QTL报道。这些SSR位点可能也是淀粉品质相关的基因。
     4.以籼粳互交加育293/Lemont的重组自交系(RIL)群体为材料,研究淀粉合成相关基因的SSR标记与淀粉品质性状的相关性。结果表明Wx和SSl(淀粉合酶1)基因的确与淀粉特性相关。而淀粉特性与SBEl(淀粉分枝酶1)等位基因没有相关性。
     5.通过两次回交和两次自交,并利用功能标记的辅助选择(MAS),将来自品质优良保持系宜香B(有香味,低AAC、GT)中Wx-(CT)_(17)、SSⅡa-TT和fgr(8bp缺失)等位基因导入到品质较差Ⅱ-32B(高AAC,高GT,没有香味)中,以改良其品质。利用功能标记来选择具有Wx-(CT)_(17)、SSⅡa-TT和fgr等位基因型的植株。最终选出17株具有Wx-(CT)_(17)、SSⅡa-TT和fgr纯合基因型的株系。改良后的Ⅱ-32B具有香味和较低的AAC和GT。
     6.对稻米颜色参数和营养品质性状与控制种皮颜色的Rc、Ra,香味基因fgr、淀粉主效基因位点以及100个SSR标记位点进行基于群体结构的关联分析。结果表明,对于颜色参数性状,Ra、Rc确实是主效基因,而RM316可能是一个影响较大的位点。与3个营养品质性状显著关联的标记位点累计达到15个。对于多酚含量、类黄酮含量和抗氧化活性,Ra对表型变异解释率最大,都超过44%。而对于多酚含量和抗氧化活性Rc对表型变异解释率仅次于Ra,也分别达到了27.39%和23.09%。而RM316对于3个性状的表型变异解释率都超过10.0%,RM316可能是一个重要的未知的QTL。
     7.对本群体中361份白米材料的颜色参数及营养品质性状与100个SSR标记,以及fgr和淀粉主效基因位点进行关联分析。发现累计34个位点与5个颜色性状显著关联(P<0.001)。不过各个位点的贡献率都比较小,表明在白米材料群体中,其颜色参数性状受微效多基因(位点)控制,其遗传方式比较复杂。对白米材料的营养品质性状的关联分析表明,累计6个位点与多酚含量和抗氧化活性性状显著关联(P<0.001),共解释超过30%的表型变异。没有检测到与类黄酮含量显著关联的位点。对于多酚含量RM336对表型变异解释率最大,为7.16%;对于抗氧化活性,只检测到一个显著关联的位点RM251,其表型变异解释率为6.10%。对于白米材料颜色参数以及营养品质性状的关联分析表明,颜色参数性状受多微效基因控制,而影响多酚含量和抗氧化活性位点的效应也较小。
     8.以典型的籼粳交窄叶青8号/京系17的加倍单倍体(DH)群体及其分子图谱,对稻米颜色参数、多酚、类黄酮含量以及抗氧化能力性状进行了QTL定位分析。在这个群体中,这些性状均呈连续性分布,并存在一定数量的超亲分离。对于5个颜色参数性状,总共检测出12个主效QTL,其中qL-2、qB-2和qC-2都位于第2染色体上的同一区域。对于多酚含量性状检测到3个主效QTL,分布在第2、4、12染色体上,总共解释超过43%的表型变异。对于类黄酮含量检测到3个QTL,分布在第2、11染色体上,总共解释超过26%的表型变异。对于抗氧化能力性状检测到3个QTL,分布在第1、7、11染色体上,总共解释超过32%的表型变异。
Most agronomic traits such as yield, quality and stress-tolerance of rice are quantitativetraits. Dissection of the genetic basis for these traits is difficult, because they are controlledby multi-genes that are affected by environmental factors, Rice improvement and dissectionof complex traits require germplasm diversity and understanding the genetic basis of thesetraits. With the development of genomics and biostatistics software and applications ofmolecular markers in crop breeding, association analysis based on the linkage disequilibrium(LD) offers a new method for identifying of loci controlling those traits. Combination ofquantitative trait loci (QTL) mapping and association analysis facilitates dissection ofcomplex traits, which results in important information and markers for molecular breeding bydesign in crops. In the present study, association analysis (mapping) and QTL mapping wereused to study genetic basis for starch quality and nutritional quality of rice grain, facilitatingmolecular improvement of rice quality. The main results are summarized as follows:
     1. One hundred genome-wide simple sequence repeat (SSR) markers were used toassess the genetic diversity, population structure, and LD of a set of 416 rice accessionsincluding landraces, cultivars and breeding lines. Results showed that the population includeda diverse genetic variation. A model-based population structure analysis subdivided thepopulation into 7 clusters. LD was significant at a 0.05 level among 62.8% of the SSR pairsin the entire sample and with a range of 5.9~22.9% in each cluster. On average, theestimates of population structure account for 27.7% of phenotypic variation, ranging from6.2% to 46.6%. The results suggested that the population could be used for detection ofgenome-wide SSR marker-phenotype association mapping.
     2. Association analysis was carried out between the starch gene markers and starchquality traits based on population structure. Results confirmed that Wx SSR and singlenucleotide polymorphism (SNP) were strongly associated with apparent amylose content(AAC), pasting viscosities (HPV, CPV, BD and SB), gel hardness (HD), whereas the SSⅡaGC/TT SNPs were strongly associated with the pasting temperature (PT). These markers areuseful in molecular breeding for improvement of rice eating and cooking qualities.
     3. In addition, a genome-wide scan was performed using 100 SSR markers to identifyQTL associated with starch quality in rice. A total of 21 SSR loci were found to besignificant associated (P<0.001 ) with 5 starch quality traits. Five SSR loci were found to besignificant associated with AAC, but all the five SSR loci explained less than 5% of the totalphenotypic variations. The RM346 on chromosome 7 was associated simultaneously with the 5 traits. RM276 on chromosome 6 explained more than 5% of the total phenotypic of PT.Two associated markers (RM253, RM484) were located in regions where QTL hadpreviously been identified. These results suggested that the association analysis approachcould be a useful alternative to linkage mapping for the identification of unreported regionsof the rice genome containing putative QTL of starch quality.
     4. A recombinant inbred line (RIL) population derived from the reciprocal cross ofLemont (a premium high-quality tropical japonica rice)and Jiayu 293 (a high-yield butlow-quality indica rice) was used to test the association of microsatellite markers ofstarch-synthesizing genes with starch quality parameters. The results confirmed theassociation of Wx and starch synthase 1 (SSl) alleles with various starch properties measuredin rice flour. However, the starch properties were not associated with the starch branchingenzyme 1 (SBE l) gene alleles.
     5.Ⅱ-32B is a key Chinese maintainer line used for hybrid rice breeding. However, it isof poor quality because of a high AAC, a high gelatinization temperature (GT), andnon-fragrant. It is known that the AAC, GT and fragrance traits are controlled by the Wx,starch synthaseⅡa (SSⅡa) and fragrance (fgr) genes. The quality ofⅡ-32B was improved byintrogressing the Wx, SSⅡa and fgr genes from YixiangB, another maintainer line, that has alow AAC, a low GT and fragrant sensory, with the assistance of the functional markers. TheWx microsatellite [(CT)_(17) allele] SSⅡa single nucleotide polymorphism (TT allele) and fgrinsertion/deletion allele (8 bp), were transferred toⅡ-32B by two backcrosses and twoselfings. Molecular marker-assisted selection was applied in the series to select forindividuals carrying Wx-(CT)_(17), SSⅡa-TT and fgr alleles. According to the marker genotypes,17 homozygous lines for Wx, SSⅡa and fgr gene were finally selected. The improvedⅡ-32Blines were fragrant with reduced AAC and GT.
     6. Association analyses were performed between the Rc, Ra, fgr and starch gene markersto grain color and nutritional quality traits in the 416 rice accessions. The result showed thatRc and Ra gene markers were strongly associated with grain color traits, whereas the RM316might be a putative QTL of grain color. A total of 15 SSR loci were found to be significantassociated (P<0.001) with 3 nutritional traits i.e. total phenolics content, flavonoids contentand antioxidant capacity. Ra explained more than 44% of the total phenotypic variations forthe three nutritional traits. For total phenolics contents and antioxidant capacity, Rc explained27.39% and 23.09% of the total phenotypic variations, respectively. RM316 explained morethan 10% of the total phenotypic variations for the three nutritional traits. The resultconfirmed that Ra and Rc were main-effect loci for rice grain color and nutritional quality traits, whereas RM316 might be an important putative QTL.
     7. Association analysis between the fgr, starch gene markers and SSRs and grain colorand nutritional quality traits in the 361 white rice accessions were also performed. A total of34 markers were found to be significant associated (P<0.001 ) with the five grain color traits,which showed these traits were controlled by polygenes with minor effects. Five SSR lociwere found to be significant associated (P<0.001 ) with total phenolics contents, whichexplained more than 30% of the total phenotypic variations. Among them, RM336 explained7.16% of the total phenotypic variations of total phenolics content. RM251 was the onlylocus associated with antioxidant capacity, which explained 7.16% of the total phenotypicvariations. No SSR locus was found to be significant associated with flavonoids content.
     8. Mapping of quantitative trait loci (QTL) for grain color, Total phenolics, flavonoids,antioxidant capacity was carried out using a doubled haploid (DH) population derived from across between indica variety Zaiyeqing 8 (ZYQ8) and japonica variety Jingxi 17 (JX17). Theresults indicated that all three parameters were continuously distributed among the DH lines,but many DH lines showed transgressive segregation for all traits. A total of 12 QTLs wereidentified for five color parameters, three of which, qL-2, qB-2 and qC-2 shared the sameregion on chromosome 2. A total of three QTLs on chromosome 2, 4, 12 were identified fortotal phenolic content, which explained more than 43% of the total phenotypic variations.Three QTLs on chromosome 2, 11 were identified for total flavonoid content, whichexplained more than 26% of the total phenotypic variations. Three QTLs on chromosome 1, 7,11 were identified for antioxidant capacity, which explained more than 32% of the totalphenotypic variations.
引文
1.包劲松(2007a)稻米淀粉品质遗传与改良研究进展.分子植物育种5(S):1-20
    2.包劲松(2007b)应用RVA测定米粉淀粉成糊温度.中国水稻科学21(5):543-546
    3.包劲松,舒庆尧,吴殿星,崔海瑞,朱立煌,夏英武(2000)水稻Wx基因(CT)n微卫星标记与稻米淀粉品质的关系研究.农业生物技术学报8(3):241-244
    4.包劲松,舒庆尧,吴殿星,夏英武(2001)用糙米粉代替精米粉测定淀粉粘滞性的效果研究.中国水稻科学15 (3):145-146
    5.陈罡,钟鸣,徐正进,张丽,刘少霞,李敏(2006)一种水稻幼苗单株DNA的快速提取及PAGE银染改良法.生物技术通讯17(2):213-215
    6.陈起萱,凌文华,梅节,马静,王彤,唐志红(2001)黑米和红米抗动脉粥样硬化和抗氧化作用初步研究.营养学报23(3):246-249
    7.方宣钧,吴为人,唐纪良(2001)作物DNA标记辅助育种.北京:科学出版社pp 35-83;91-127
    8.高振宇,曾大力,崔霞,周奕华,颜美仙,黄大年,李家洋,钱前(2003)水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析.中国科学(C辑)33:481-487
    9.胡培松,唐绍清,顾海华,王晓焰(2006)水稻香味的遗传研究与育种利用.中国稻米13 (6):1-5
    10.华蕾,袁筱萍,余汉勇,王一平,徐群,汤圣祥,魏兴华(2007)我国水稻主栽品种SSR多样性的比较分析.中国水稻科学21(02):150-154
    11.李清华,江川,林玲娜,郑金贵(2005)不同色稻精米与米糠中黄酮含量的差异分析.福建农业学报20(1):49-52
    12.刘巧泉,蔡秀玲,李钱峰,汤述翥,龚志云,于恒秀,严长杰,王宗阳,顾铭洪(2006)分子标记辅助选择改良特青及其杂交稻米的蒸煮与食味品质.作物学报32(1):64-69
    13.陆艳婷,刘庆龙,王俊敏,严文潮,俞法明,金庆生(2007)利用等位基因特异扩增快速检测水稻香味基因.作物学报34(2):243-246
    14.彭茂民,杨国华,张菁晶,安保光,李阳(2007)不同遗传背景下水稻剑叶形态性状的QTL分析.中国水稻科学21(3):247-252
    15.彭锁堂,庄杰云,颜启传,郑康乐(2003)我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定.中国水稻科学17(1):1-5
    16.阮成江,何祯祥,钦佩(2003)我国农作物QTL定位研究的现状和进展.植物学通报20(1):10-22
    17.沈芸,肖鹏,包劲松(2008)水稻营养成分遗传育种研究进展.核农学报22(4):455-460
    18.舒庆尧,吴殿星,夏英武,高明尉,Anna McClung(1998)稻米淀粉RVA谱特征与食用品质的关系.中国农业科学31(3):25-29
    19.孙玲,张名位(2000)黑米的抗氧化性及其与黄酮和种皮色素的关系.营养学报22(3):246-249
    20.孙明茂,韩龙植,李圭星,洪夏铁,于元杰(2006)水稻花色苷含量的遗传研究进展.植物遗传资源学报7(2):239-245
    21.万建民(2006)作物分子设计育种.作物学报32(3):455-462
    22.王彩霞(2007)有色米的品质特性与种皮颜色性状的分子遗传学研究.浙江大学博士学位论文
    23.王彩霞,舒庆尧(2007)水稻紫色种皮基因Pb的精细定位与候选基因分析.科学通报52 (21):2517-2523
    24.王丰,李金华,柳武革,廖亦龙,朱满山,刘振荣,黄慧君,黄德娟(2008)一种水稻香味基因功能标记的开发 中国水稻科学22(4):347-352
    25.王荣焕,王天宇,黎裕(2007a)植物基因组中的连锁不平衡.遗传29(11):1317-1323
    26.王荣焕,王天宇,黎裕(2007b)关联分析在作物种质资源分子评价中的应用.植物遗传资源学报8(3):366-372
    27.文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒(2008a)中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ.群体结构及关联标记.作物学报34(7):1169-1178
    28.文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒(2008b)中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘.作物学报34(8):1339-1349
    29.邢永忠,徐才国(2001)作物数量性状基因研究进展.遗传23(5):498-502
    30.杨小红,严建兵,郑艳萍,余建明,李建生(2007)植物数量性状关联分析研究进展.作物学报33(4):523-530
    31.游光霞 张学勇(2007)基于选择牵连效应的标记/性状关联分析方法简介.遗传29(7):881-888
    32.曾长英,徐芳森,孟金陵,王运华,胡承孝(2005)从QTL到QTG的路还有多远?遗传28(9):1191-1198
    33.张冬玲,张洪亮,魏兴华,齐永文,王美兴,孙俊立,丁立,汤圣祥,裘宗恩,曹永生,王象坤,李自超(2006)贵州栽培稻的遗传结构及其遗传多样性.科学通报51(23):2747-2754
    34.张军,赵团结,盖钧镒(2008)大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报34(12):2059-2069
    35.张磊,张宝石(2007)植物数量性状基因的定位与克隆.植物学通报24(4):553-560
    36.张名位,郭宝江,池建伟,魏振承,徐志宏,张雁,张瑞芳(2006)不同品种黑米的抗氧化作用及其与总黄酮和花色苷含量的关系.中国农业科学38(7):1324-1331
    37.张名位,郭宝江,池建伟,魏振承,徐志宏,张雁,张瑞芬(2005)黑米皮提取物的体外抗氧化作用与成分分析.中国粮油学报20(7):49-54
    38.张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声(2006)选择牵连效应分析:发掘重要基因的新思路.中国农业科学39(8):1526-1535
    39.中华人民共和国农业部部颁标准(2004)NY/T 83-1988.米质测定方法.北京:中国标准测定出版社
    40.朱军(1999)运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报:自然科学版33(3):327-335
    41.庄杰云,施勇峰,应杰政,鄂志国,曾瑞珍,陈洁,朱智伟(2006)中国水稻主栽品种微卫星标记数据库的初步构建.中国水稻科学20(5):460-468
    42.庄杰云,杨长登,钱惠荣,赵成章,郑康乐(1996)紫米基因与RFLP标记的连锁分析.遗传学报23(5):372-375
    43.于永涛(2006)玉米核心自交系群体结构及耐旱相关候选基因rabl7的等位基因多样性分析.北京:中国农业科学院研究生院学位论文
    44. AACC (2000) Approved Methods of the AACC,10th ed. St. Paul MN, method 61-02
    45. Abdel-Aal ESM, Young JC, Rabalski I (2006) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry 54:4696-4704
    46. Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarimov A (2008a) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplas. Genomies 92:478-487
    47. Abdurakhmonov IY, Saha S, Jenkins JN, Buriev ZT, Shermatov SE, Scheffler BE, Pepper AE, Yu JZ, Kohel RJ, Abdukarimov A (2008b) Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136: 401-417
    48. Adom KK, Liu RH (2002) Antioxidant activity of grains. Journal of Agricultural and Food Chemistry 50: 6182-6187
    49. Agrama HA, Eizenga GC,Yan W (2007) Association mapping of yield and its components in rice cultivars. Molecular Breeding 19: 341-356
    50. Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008) Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Molecular Breeding 21: 49-65
    51. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends in Plant Science 8: 554-560
    52. Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theoretical and Applied Genetics 111: 206-217
    53. Andersen JR, Zein I, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, L(?)bberstedt T (2007) High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia -Lyase locus in European maize (Zea mays L.) inbreds. Theoretical and Applied Genetics 114:307-319
    54. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C,Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genetics 1: e60
    55. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741-745
    56. Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theoretical and Applied Genetics 94: 773-781
    57. Bao JS, Zheng XW, Xia YW, He P, Shu QY, Lu X, Chen Y, Zhu LH (2000) QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.) Theoretical and Applied Genetics 100: 280-28
    58. Bao JS (2002) Analysis of the relationship between Wx alleles and some starch quality parameters of rice(Oryza sativa L.). Cereal Research Communications 30: 397-402
    59. Bao JS, Corke H, Sun M (2002a) Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theoretical and Applied Genetics 105: 898-905
    60. Bao JS, Sun M, Corke H (2002b) Analysis of genetic behavior of some starch properties in indica rice (Oryza sativa L.): thermal properties, gel texture, swelling volume. Theoretical and Applied Genetics 104: 408-413
    61. Bao JS, Wu YR, Hu B, Wu P, Cui HR, Shu QY (2002c) QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica 128: 317-324
    62. Bao JS, Corke H, He P, Zhu LH (2003) Analysis of quantitative trait loci for starch properties of rice based on an RJL population. Acta Botanica Sinica 45: 986-994
    63. Bao JS, Sun M, Zhu LH, Corke H (2004) Analysis of quantitative trait locus for some starch properties in rice (Oryza sativa L.), thermal properties, gel texture, swelling volume. Journal of Cereal Science 39: 379-385
    64. Bao JS, Cai Y, Sun M, Wang GY, Corke H (2005) Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubrd) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry 53:2327-2332.
    65. Bao JS, Corke H, Sun M (2006a) Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice (Oryza sativa L.). Theoretical and Applied Genetics 113: 1185-1196
    66. Bao JS, Corke H, Sun M (2006b) Nucleotide diversity in starch synthase Ⅱa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theoretical and Applied Genetics 113: 1171-1183
    67. Bao JS, Shen SQ, Sun M, Corke H (2006c) Analysis of genotypicdiversity in the starch physicochemical properties of nonwaxy rice: apparent amylose content, pasting viscosity and gel texture. Starch/St(?)rke 58: 259-267
    68. Bao JS, Jin L, Shen Y, Xie JK (2007) Genetic mapping of quantitative trait loci associated with fiber and lignin content in rice. Cereal Research Communications 35(1): 23-30
    69. Bao JS, Jin L, Xiao P, Shen SQ, Sun M, Corke H (2008) Starch physicochemical properties and their associations with microsatellite alleles of starch-synthesizing genes in a rice RIL population. Journal of Agricultural and Food Chemistry 56: 1589-1594
    70. Belo AP, Zheng S, Luck B, Shen DJ, Meyer B, Li S, Tingey , Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics 279: 1-10
    71. Bergman CJ, Xu Z (2003) Genotype and environment effects on tocopherol, tocotrienol, and γ-oryzanol contents of Southern U.S. rice. Cereal Chemistry 80: 446-449
    72. Bligh HFJ, Till RI, Jones CA (1995) A microsatellite sequenceclosely linked to the waxy gene of Oryza sativa. Euphytica 86: 83-85
    73. Bouis HE, Chassy BM, Ochanda JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality. Trends in Food Science and Technology 14: 191-209
    74. Bradbury LMT, Fitzgerald TL, Henry RJ, Jin QS, Waters DLE (2005a) The gene for fragrance in rice. Plant Biotechnology Journal 3: 363-370
    75. Bradbury LMT, Henry RJ, Jin QS, Reinke RF, Waters DLE (2005b) A perfect marker for fragrance genotyping in rice. Molecular Breeding 16: 279-283
    76. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165-1177
    77. Brooks SA, Yan W, Jackson AK, Deren CW (2008) A natural mutation in rc reverts white-rice-pericarp to red and results in a new, dominant, wild-type allele: Rc-g. Theoretical and Applied Genetics 117: 575-580
    78. Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant Journal 14: 459-465
    79. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172: 557-567
    80. Camus-Kulandaivelu L, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics 172: 2449-2463
    81. Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic association. Lancet 361: 598-604
    82. Carlborg (?), Haley CS (2004) Epistasis: too often neglected in complex trait studies. Nature Reviews Genetics 5: 618-625
    83. Casa AM, Pressoira G,. Brown PJ, Mitchell SE, Rooney WL, Tuinstrac MR, Franks CD, Kresovicha S. (2008) Community resources and strategies for association mapping in sorghum. Crop Science 48:30-40
    84. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xie J, Yu Z, Ronald PC,Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251-1274
    85. Chang TT, Li CC (1991) Genetics and breeding. In: Luh BS (ed) Rice Production, 2nd edn. Van Nostrand Reinhold, NewYork, pp 32-101
    86. Chen MH, Bergman CJ, Pinson SRM, Fjellstrom RG (2008a) Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. Journal of Cereal Science 47: 536-545
    87. Chen MH, Bergman CJ, Pinson SRM, Fjellstrom RG (2008b) Waxy gene haplotypes: Associations with pasting properties in an international rice germplasm collection. Journal of Cereal Science 48: 781-788
    88. Chen MS, Barbaruk WB, Presting P (2002) An integrated physical and genetic map of the rice genome. The Plant Cell 14: 537-545
    89. Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008c) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. The Plant Cell 20: 1850-61
    90. Ching A, Caldwell K, Jung M, Dolan M, Smith OS, Tingey ST, Morgante M, Rafalski AJ. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3:19
    91. Choi Y, Jeong HS, Lee J (2007) Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chemistry 103:130-138
    92. Collado LS, Corke H (1999) Accurate estimation of sweetpotato amylase activity by flour viscosity analysis. Journal of Agricultural and Food Chemistry 47: 832-835
    93. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 363(1491): 557-572
    94. Collardb CY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169-196
    95. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genetics 7: 180-184
    96. Deu M, Glaszmann JC (2004) Linkage disequilibrium in sorghum. In: Plant & Animal Genomes Ⅻ Conference, 10-14 January, Town & Country Convention Center, San Diego, CA, W10.
    97. Devlin B, Risch NA (1995) Comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29: 311-322
    98. D'hoop BB, Paulo MJ, Mank R A, van Eck HJ, van Eeuwijk FA (2008) Association mapping of quality traits in potato ( Solarium tuberosum L.). Euphytica 161: 47-60
    99. Doyle JJ (1991) DNA protocols for plants-CTAB total DNA isolation. In Molecular Techniques in Taxonomy; Hewitt, G. M., Ed.; Springer: Berlin, Germany, pp 283-293
    100. Dykes L, Rooney LW (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Food World 52(3): 105-111
    101. Ehrenreich IM,. Stafford PA, Purugganan MD (2007) The genetic architecture of shoot branching in Arabidopsis thaliana: A comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics 176: 1223-1236
    102. Eizenga GC, Agrama HA, Lee FN, Yan W, Jia Y (2006) Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Science 46: 1870-1878
    103. Falconer DS, Mackay TF (1996) Introduction to Quantitative Genetics (fourth ed.). Pearson Education Limited, Harlow, England
    104. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data:Linked loci and correlated allele frequencies. Genetics 164: 1567-1587
    105. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotypedata: dominant markers and null alleles. Molecular Ecology Notes 7: 574-578
    106. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang QF (2005) The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theoretical and Applied Genetics 110: 1445-1452
    107. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54: 357-374
    108. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant Journal 44: 1054-1064
    109. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley SD. (2000) fw2.2, A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85-88
    110. Fujioka S, Yamane H, Spray CR, Katsumit M, Phinney BO, Gaskin P, Macmillan J, Takahashi N (1988) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proceedings of The National Academy of Sciences of The United States of America 85:9031-9035
    111. Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki KI. (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant Journal 49: 91-102
    112. Garland SH, Lewin L, Abedinia M, Henry R, Blakeney A (1999) The use of microsatellite polymorphisms for the identification of Australian breeding lines of rice (Oryza sativa L.) Euphytica 108:53-63
    113. Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effects on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L). Genetics 165:759-769.
    114. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch SR (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631-1638
    115. Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. The Plant Cell 15: 1502- 506
    116. Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P,Schuler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding 13:93-102
    117. Glaszmann JC (1987) Isozymes and classification of asian rice varieties. Theoretical and Applied Genetics 74: 21-30
    118. Gof SA (1999) Rice as a model for cereal genomics. Current Opinion in Plant Biology 2: 86-89
    119. Goffman FD, Bergman CJ (2004) Rice kernel phenolic content and its relationship with antiradical efficiency. Journal of the Science of Food and Agriculture 10: 1002-1007
    120. Gonzalez-Martinez SC, Brown GR, Ersoz E, Gill GP,Kuntz RJ, Beal JA, Wheeler NC, Neale DB (2004) Nucleotide diversity, linkage disequilibrium and adaptive variation in natural populations of loblolly pine. In: Plant & Animal Genomes Ⅻ Conference, 10-14 January, Town & Country Convention Center, San Diego, CA, W3. 121. Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of Tag singlenucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172: 1915-1926
    122. Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175: 399-409
    123. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology 57: 461-485
    124. Hagenblad J, Nordborg M (2002) Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics 161: 289-298
    125. Hamblin MT, Mitchell SE, White GM, Gallego J,Kukatla R, Wing RA, Paterso, AH, Kresovich S (2004) Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167: 471-483
    126. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330-333
    127. He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH (1999) Genetic analysis of rice grain quality. Theoretical and Applied Genetics 98: 502-508
    128. Hu C, Zawistowski J, Ling W, Kitts DD (2003) Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. Journal of Agricultural and Food Chemistry 51: 5271-5277
    129. Huang N, McCouch SR, Mew T, Parco A, Guiderdoni E (1994) Development of an RFLP map from a doubled haploid population in rice. Rice Genetics Newsletter 11: 134-137
    130. Igartua E, Casas AM, Ciudad F, Montoya JL, Romagosa I (1999) RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity 83(5): 551-559
    131. Ingvarsson PK (2004). Nucleotide polymorphism and linkage disequilibrium within and among natural populations of european aspen (Populus tremula L., Salicaceae). Genetics 169: 945-953
    132. Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant Journal 15: 133-138
    133. Jannoo N, Grivet L, Dookun A, Hont AD, Glaszmann JC (1999) Linkage disequilibrium among modern sugarcane cultivars. Theoretical and Applied Genetics 99: 1053-1060
    134. Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Science 48: 1266-1276
    135. Jiang SL, Wu JG, Feng Y, Yang XE, Shi CH (2007) Correlation analysis of mineral element contents and quality traits in milled rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry 55: 9608-9613
    136. Jin QS, Waters D, Cordeiro GM, Henry RJ, Reinke RF (2003) A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Science 165: 359-364
    137. Juliano BO (1998) Varietal impact on rice quality. Cereal Food World 43: 207-211, 214 -216,218-222
    138. Jun TH, Van K,Kim MY, Lee SH, Walker DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179-191
    139. Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A (2004) Linkage -disequilibrium and sequence diversity in a 500-kbp regionaround the adh1 locus in elite maize germplasm. Theoretical and Applied Genetics 109: 681-689
    140. Kantartzi SK,Stewart JMcD (2008) Association analysis of fibre traits in Gossypium arboreum accessions. Plant Breeding 127:173-179
    141. Kerem B S, Rommens J M, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073-1080
    142. Knowler WC, W illiams RC, Pettitt DJ, Steinberg AG (1988) Gm~(3;5,(13),(14)) and type 2 diabetes mellitus: an association in American Indians with genetic admixture. American Journal of Human Genetics 43:520-52
    143. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312: 1392-1396
    144. Kraakman AT, Niks RE, van den Berg PMMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168: 435-446
    145. Kraakman ATW, Martinez F, Mussiraliev B, v. Eeuwijk F, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding 17: 41-58
    146. Kraft T, Hansen M, Nilsson NO (2000) Linkage disequilibrium and fingerprinting in sugar beet Theoretical and Applied Genetics 101: 323-326
    147. Larkin PD, McClung AM, Ayres NM, Park WD (2003) The effect of the Waxy locus (Granule bound starch synthase) on pasting curve characteristics in specialty rice (Oryza sativa L.). Euphytica 131:243-253
    148. Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics of rice (Oryza sativa L.). Molecular Breeding 12: 335-339
    149. Li C, Zhou A, Sang T (2006b) Rice domestication by reducing shattering. Science 311: 1936-1939
    150. Li L, Paulo MJ, Strahwald J, L(?)beck J, Hofferbert HR, Tacke E, Junghans H, Wunder J, Draffehn A,van Eeuwijk F, Gebhardt C (2008) Natural DNA variation at candidate loci is associated with potatochip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics 116:1167-1181
    151. Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, Lin F, Luan W, Chen P, Yan Z, Guan Y, Zhu L, Ning X, Smulders MJ, Li W, Piao R, Cui Y, Yu Z, Guan M, Chang R, Hou A, Shi A, Zhang B, Zhu S, Qiu L (2008) Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theoretical and Applied Genetics 117(6): 857-871
    152. Li ZL, Nelson RL (2001) Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Science 41: 1337-1347
    153. Liu JP, Eck JV, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit (2002) Proceedings of The National Academy of Sciences of The United States of America 99: 13302-13306
    154. Liu K, Muse SV (2005) PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 21: 2128-2129
    155. Liu QQ, Li QF, Cai XL, Wang HM, Tang SZ, Yu HX, Wang ZY, Gu MH (2006) Molecualr marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Science 46: 2354-2360
    156. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. Journal of Nutrition 134: 3479S-3485S.
    157. Liu RH (2007) Whole grain phytochemicals and health. Journal of Cereal Science 46: 207-19
    158. Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Research 9(8): 720-731
    159. Long AD, Lyman RF, Langley CH, Mackay TFC (1998) Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149:999-1017
    160. Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquiere A (1996) Aroma in rice: genetic analysis of a quantitative trait. Theoretical and Applied Genetics 93: 1145-1151
    161. Lou XY, Casella G, Littell RC, Yang MCK, Johnson JA, Wu R (2003) A haplotype-based algorithm for multilocus linkage disequilibrium mapping of quantitative trait loci with epistasis. Genetics 163: 101 1533-1548
    162. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theoretical and Applied Genetics 93: 1211-1217
    163. Lu H, Redus MA, Coburn JR, Rutger JN, McCouch SR, Tai TH (2005) Population structure and breeding patterns of 145 U.S. rice cultivars based on SSR marker analysis. Crop Science 45:66-76
    164. L(?)bberstedt T, Zein I, Andersen JR, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Chun S (2005). Development and application of functional markers in maize. Euphytica 146: 101-108
    165. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Molecular Breeding 15: 271-289
    166. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12:57-63
    167. Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthorα infestans in potato. Genetics 175:879-889
    168. Mather DE, Hyes PM, Chalmers KJ, Eglinton J, Matus I, Richardson K, VonZitzewitz J, Marquez-Cedillo L, Hearnden P, Pal N (2004) Use of SSR marker data to study linkage disequilibrium and population structure in Hordeum vulgare: Prospects for association mapping in arley. In: 9th International barley genetics symposium, Brno, Czech Republic, 20-26 June 2004.pp 302-307
    169. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177: 2223-2232
    170. Maurer HP, Knaak C, Melchinger AE, Ouzunova M, Frisch M (2006) Linkage disequilibrium between SSR markers in six pools of elite lines of an European breeding program for hybrid maize. Maydica 51: 269-280
    171. Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics 116: 657-669
    172. McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M (1997) Report on QTL nomenclature. Rice Genetics Newsletter 14: 11-13.
    173. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9: 199-207
    174. McKenzie KS, Rutger JN (1983) Genetic analysis of amylose content, alkali spreading score, andgrain dimensions in rice. Crop Science 23: 306-319
    175. Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo L B, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theoretical and Applied Genetics 107: 89-101
    176. Miller A, Engel KH (2006) Content of γ-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of European origin. Journal of Agricultural and Food Chemistry 54: 8127-8133
    177. Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution Grasses line up and form a circle. Current Biology 7: 737-739
    178. Nakamura Y, Francisco P, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acid of starch synthase Ⅱa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Molecular Biology 58: 213-227
    179. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends in Plant Science 9: 325-330
    180. Nei M, Tajima F A. Tateno (1983) Accuracy of estimated phylogenetic trees from molecular data.Journal of Molecular Evolution 19: 153-170
    181. Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Science 42: 601-607
    182. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN,Noyes T, Oefner P, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nature Genetic. 30: 190-193.
    183. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng HG, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg N A, Shah C, Wall JD, Wang J, Zhao K Y, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005)The pattern of polymorphism in Arabidopsis thaliana. PLoS Biology 3: e196
    184. Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan D (2006) Selection under domestication: evidence for a sweep in the rice Waxy genomic region. Genetics 173: 975-983
    185. Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361-1369.
    186. Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162: 941-950
    187. Orthoefer FT, Eastman J (2004) Rice bran and oil. In: E.T. Champagne, Editor, Rice Chemistry and Technology. AACC, St. Paul, Minnesota, U.S.A. pp. 569-593
    188. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell 15: 1795-1806
    189. Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Yl gene are indicative of an asymmetric selective sweep. Proceedings of The National Academy of Sciences of The United States of America 101:9885-9890
    190. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335:721-726
    191. Perez CM, Juliano BO (1978) Modification of the simplified amylase test for milled rice. Starch/Starke 30: 424-426
    192. Price A H (2006) Believe it or not, QTLs are accurate. Trends in Plant Science 11:213-216
    193. Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155: 945-959
    194. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. American Journal of Human Genetics 67: 170-181
    195. Pritchard JK, Wen W (2004) Documentation for STRUCTURE software. The University of Chicago Press, Chicago
    196. Przeworski M (2002) The signature of positive selection at randomly chosen loci. Genetics 160: 1179-1189.
    197. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics and breeding. Current Opinion in Plant Biology 5: 94-100
    198. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics 20:103-111
    199. Rakshit S, Rakshit A, H Matsumura, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita N T, Terauchi R (2007) Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theoretical and Applied Genetics 114: 731-743
    200. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt S R, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkagedisequilibrium and phenotypic associations in the maize genome. Proceedings of The National Academy of Sciences of The United States of America 98: 11479-11484
    201. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37: 1141-1146
    202. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516-1517
    203. Salvi S (2007) Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proceedings of The National Academy of Sciences of The United States of America 104:11376-11381
    204. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs, present and future challenges. Trends in Plant Science 10:297-304
    205. Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17(5): 914-921
    206. Shen Y, Jin L, Xiao P, Lu Y, Bao JS (2009) Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science 49: 106-111
    207. Shi WW, Yang Y, Chen SH, Xu ML (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Molecular Breeding 22:185-192
    208. Shu XL, Shen SQ, Bao JS, Wu DX, Nakamura Y, Shu QY (2006) Molecular and biochemical analysis of the gelatinization temperature characteristics of rice (Oryza sativa L.) starch granules Journal of Cereal Science 44: 40-48
    209. Simko I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends in Plant Science 9: 441-448
    210. Skot L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydratecontent in Lolium perenne (L.). Genetics 177:535-547
    211. Skot L, Humphreys MO, Armstead I, Heywood S, Skot KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Molecular Breeding 15: 233-245
    212. Song XJ, Huang W, Shi M, Zhu MZ , Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics 39: 623-630
    213. Sood BC, Siddiq EA (1978) A rapid technique for scent determination in rice. Indian Journal of Genetics and Plant Breeding 38: 268-271
    214. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theoretical and Applied Genetics 111: 723-730
    215. Stich B, YuJ, Melchinger AE, Piepho HP, Utz HF, Maurer HP, Buckler ES (2007) Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 176:563-570
    216. Storozhenko S, Brouwer VE, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, Lambert W, Van Der Straeten D (2007) Folate fortification of rice by metabolic engineering. Nature Biotechnology 25: 1277-1279
    217. Stracke S, Perovic D, Stein N, Thiel T, Graner A (2003) Linkage disequilibrium in barley. 11th Molecular Markers Symposium of the GPZ: http://meetings.ipk-gatersleben.de/moma2003/ index. php.
    218. Sweeney MT, Thomson MJ, Pfeil BE, McCouch SR (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell 18: 283-294
    219. Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theoretical and Applied Genetics 110(7): 1324-1333
    220. Tamura K, Dudley J, Nei M , Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.
    221. Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang QF (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theoretical and Applied Genetics 99: 642-648
    222. Tan YF, Sun M, Xing YZ, Hua JP, Xun XL, Zhang QF, Corke H (2001) Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics 103: 1037-1045
    223. Tanaka KI, Ohnishi S, Kishimoto N, Kawasaki T, Baba T (1995) Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase. Plant Physiology 108:677-683
    224. Templeton AR (1995) A cladistic-analysis of phenotypic associations with haplotypes inferred from restriction-endonuclease mapping or DNA-sequencing. V. Analysis of case-control sampling designs —Alzheimer's-disease and the apoprotein-E locus. Genetics 140: 403-409
    225. Tenaillon M, Sawkins M C, Long AD, Anderson LK, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of The National Academy of Sciences of The United States of America 98: 9661-9166
    226. Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theoretical and Applied Genetics 114: 559-5568
    227. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ESIV (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28: 286-289 228. Thumma BR, Nolan MF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfi bril angle in Eucalyptus spp. Genetics 173: 1257-1265
    229. Tian XJ, Zheng J, Hu SN, Yu J (2006) The rice mitochondrial genomes and their variations. Plant Physiology 140:401-410
    230. Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theoretical and Applied Genetics 115: 697-708
    231. Tracy WF, Whitt SR, Buckler ES (2006) Recurrent mutation and genome evolution: Example of Sugaryl and the origin of sweet maize. Crop Science 46: S49-S54.
    232. Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase Ⅱa that alter starch gelatinization and starch association of the enzyme. Functional Plant Biology 2: 763-768
    233. Umemoto T, Aoki N, Lin HX, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S (2004) Natural variation in rice starch synthase Ⅱa affects enzyme and starch properties. Functional Plant Biology 31: 671-684
    234. Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theoretical and Applied Genetics 104: 1-8
    235. Varshney RK , Tuberosa R (2007) Genomics Assisted Crop Improvement: Vol. 2: Genomics Applications in Crops 147-168
    236. Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Omblies K, Lukens L, Doebley JF (2002) The origin of the naked grains of maize. Nature, 436: 714-719
    237. Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Departmentof Statistics,North Carolina State University, Raliegh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
    238. Wang R, Yu Y, Zhao J, Shi Y, Song Y, Wang T, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theoretical and Applied Genetics 117(7): 1141-1153
    239. Wang YS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies, theoretical and practical concerns. Nature Reviews Genetics 6: 109-118
    240. Wang ZY, Wu Z, Xing Y, Zheng F, Gao J, Hong MM (1990) Nucleotide sequence of rice waxy gene. Nucleic Acid Research 18: 19
    241. Wang ZY, Zheng FQ, Shen GZ, Gao IP, Snustad DP, Li MG, Zhang JL, Hong MM (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant Journal 7: 613-622
    242. Waters DLE, Henry RJ, Reinke RF, Fitzgerald MA (2005) Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnology Journal 4: 115-122
    243. Wei XM, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theoretical and Applied Genetics 114: 155-164
    244. Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D (2005) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proceedings of The National Academy of Sciences of The United States of America 102: 2460-2465
    245. Whitt SR, Buckler ES (2003) Using natural allelic diversity to evaluate gene function. Methods in Molecular Biology 236: 123-139
    246. Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES (2004). Dissection of maize kernel composition and starch production by candidate associations. The Plant Cell 16: 2719-2733
    247. WuJZ, MacharaT, ShimokawaT, YamamotoS, HaradaC, Takazaki Y, OnoN, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, AndoT, Kono I, Waki K, Yamamoto K, YanoM, Matsumoto T, Sasaki T (2002) A comprehensive rice transciption map containing 6591 expressed sequence tag sites. The Plant Cell 14: 525-535
    248. Xie CX, Warburton M, Li MS, Li XH, XiaoMJ, Hao ZF, Zhao Q , Zhang SH (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Molecular Breeding 21: 407-418
    249. Xie CX, Zhang SH, Li MS, Li XH, Hao ZF, Bai L, Zhang DG,Liang YH (2007) Inferring Genome Ancestry and Estimating Molecular Relatedness Among 187 Chinese Maize Inbred Lines. Journal of Genetics and Genomics 34(8): 738-748
    250. Xu Y, Beachell H, McCouch SR (2004) A marker-based approach to broadening the genetic base of rice in the USA. Crop Science 44: 1947-1959
    251. Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Science 48: 391-407
    252. Xu YB, Shen LS, McCouch SR, Zhu LH (1998) Extension of the rice DH population genetic map with microsatellite markers. Chinese Science Bulletin 43: 149-153
    253. Xu Z, Hua N, Godber JS (2001) Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2'-azobis (2-methylpropionamidine) dihydrochloride. Journal of Agricultural and Food Chemistry 49:2077-2081
    254. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics 40: 761-767
    255. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. The Plant Cell 12:2473-2483
    256. Yawadio R, Tanimori S, Morita N (2007) Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chemistry 101:1644-1653
    257. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrokus I(2000) Engineering the pro-vitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305
    258. Yokoyama W (2004) Nutritional properties of rice and rice bran. In: Rice Chemistry and Technology. Ed. Champagne, E.T., AACC, St. Paul, Minnesota, U.S.A. 2004: 595-609
    259. Yoshimura A, Ideta O, Iwata N (1997) Linkage map of phenotype and RFLP markers in rice. Plant Molecular Biology 35:49-60
    260. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178: 539-551
    261. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Holland JB, Nielsen D, Holland JB, Kresovich S, Buckler ES (2005) A unified mixed-model method for association mapping accounting for multiple levels of relatedness. Nature Genetics 38: 203-208
    262. Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17: 1-6
    263. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An arabidopsis example of association mapping in structured samples. PLoS Genetics 3: e4
    264. Zheng X, Wu JG, Lou XY, Xu HM, Shi CH (2008) The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.). Theoretical and Applied Genetics 116: 335-342
    265. Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theoretical and Applied Genetics 106: 326-331
    266. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and Prospects of association mapping in plants. The Plant Genome 1: 5-20
    267. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single nucleotide polymorphisms in soybean. Genetics 163: 1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700