用户名: 密码: 验证码:
稻米外观品质性状遗传及其杂种优势分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻米品质主要包括外观品质、加工品质、营养品质、蒸煮和食用品质等。稻米外观品质性状主要包括粒长、粒宽、粒长宽比、垩白和透明度等性状,是稻米商品品质的第一要素,直接影响稻米的商品价值。由于稻米品质一般由多基因控制,且易受环境条件的影响,因此利用传统的育种方法改良这些性状具有较大的难度。本研究利用多个群体系统地研究了稻米外观品质性状的遗传基础,定位了控制稻米外观品质性状的QTL,同时对其进行了相关遗传分析,为利用分子育种手段改良稻米外观品质建立了基础。主要结果如下:
     (1)利用所构建的“Lemont×特青”重组自交系(RIL)群体,采用混合线性模型和复合区间作图法,对旱、雨季条件下获得的稻米外观品质性状进行QTL定位及上位性和环境互作(Q×E)效应分析。结果表明,亲本Lemont和特青间米粒外观品质性状差异显著;外观品质性状尤其是垩白度在旱季和雨季不同条什下变化较大。共检测到20个控制粒长、粒宽、粒长宽比和垩白度的QTL,其中在第7染色体上检测到同时控制粒长、粒宽和长宽比的基因座位,位于标记区间OSR4-RM336之间。共检测到29对上位性互作位点,表明上位性效应对稻米外观品质性状具有重要的作用。共有5个主效QTL和8对上位性效应位点与环境之间互作显著,表明稻米外观品质性状的一些QTL对环境敏感。基因型与环境互作在不同性状和不同基因(QTL)间差别很大,就稻米外观品质性状而言,QTL与环境互作对垩白度及粒长宽比影响较大,分别占14.07%和17.78%的表型变异,而对粒长和粒宽的影响相对较小,分别只占2.77%和2.15%的表型变异。一些QTL(如ck4b、gl7a、gw5和lw3b)仅表现为加性效应,未检测到显著的环境互作,但另一些QTL(如ck3、gl3和lw9)与环境发生显著的互作。在实际育种上应利用在不同环境稳定检测到的QTL进行分子标记辅助选择。
     (2)分析了特青背景高代回交导入系(ILs)的遗传结构。在160个SSR标记位点上均不同程度地检测到供体等位基因,不同染色体及同一染色体的不同位点的供体等位基因导入频率各不相同,平均导入片段以第4染色体最多,第7染色体最少,表明染色体本身会影响等位基因导入。每个IL的供体基因平均占10.30%,变幅为0%~35%;平均导入片段数量为8.7个,单片段平均长度为17.8cM。选择56个导入系构建特青背景的全染色体组导入系群体,每个染色体由3~7个导入片段覆盖,非目标区域的导入成分有待标记辅助回交纯化。
     (3)利用特青背景的高代回交导入系对粒长、粒宽、粒长宽比和垩白度等性状进行了QTL分析。部分在重组自交系中定位的QTL尤其是主效QTL(qCD-7、qGL-7、qGW-7)在ILs中能够得到证实。但也有一部分QTL在两个群体的定位结果中有差异,尤其是利用ILs检测到控制粒宽的qGW-2,可解释表型变异的28.05%,但这个QTL在RIL群体里没有检测到,这可能是因为遗传背景的差异造成的。与RILs群体定位的结果一样,我们发现第7号染色体的OSR4-RM505区间是垩白度、粒长和粒宽的共同基因座位;另外还发现第6号染色体的RM439-RM340区间同时控制垩白度、粒宽和粒长宽比等性状。结果表明,利用ILs和RILs的定位QTL结果存在一定的差异,影响稻米外观品质相关性状的一些QTL位于同一染色体的相同或者相邻区域上。
     (4)选用IR75589-31S、IR60、IR70和重组自交系或高代回交导入系中选取的90个株系进行不完全双列杂交,以获得的270个杂交组合为材料,对杂交稻米外观品质性状表现及其与亲本的关系进行了研究。就杂交组合外观品质性状相对优势而言,除粒长宽比以外,其它外观品质性状的中亲优势都表现为正向组合个数大于负向。杂种稻米外观品质性状表现的差异因性状而异,以垩白度的变异系数最大,杂种米粒垩白度、粒长、粒宽和粒长宽比普遍介于双亲之间。稻米外观品质性状间的相关、回归和通径分析表明,垩白度、粒长、粒宽及粒长宽比间的相关系数均达极显著水平,粒长、粒长宽比与垩白度呈显著负相关,粒宽与垩白度显著正相关;粒长、粒宽和粒长宽比对垩白度的直接通径系数分别为-1.9409、2.1738和2.7805。直线回归分析显示外观品质性状间回归方程为y=-39.892x_1+141.389x_2+77.341x_3-269.906,从方程可以看出,当x_1、x_2、x_3变化量相同时,粒宽(x_2)对垩白度(y)的影响最大,其次为粒长宽比(x_3)。SSR分子标记遗传距离与杂种稻米外观品质相关性状杂种优势关系分析表明,亲本间的遗传距离在0.2914到0.4205之间,平均遗传距离为0.3520;杂交亲本遗传距离与外观品质性状间的相关系数偏小(-0.0307,0.1358,-0.1408),均未达到显著水平,外观品质性状杂种优势与亲本间的遗传差异大小无关。
     (5)采用禾谷类作物种子品质性状的遗传模型及其统计分析方法,对杂交稻米外观品质性状进行了遗传研究,结果表明,杂交稻外观品质性状主要受遗传控制且遗传效应以加性效应为主。粒长、粒宽和粒长宽比以种子直接加性效应为主,母体效应也起到一定的作用,垩白度主要受到种子直接效应和母体效应控制,同时还受到细胞质的影响。粒长、粒宽和粒长宽比三性状的狭义遗传率均较高,都在80%以上,其中以粒宽为最高,达89.90%,垩白度的遗传率相对来说低一点,为72.94%。稻米外观品质各性状的均以种子直接遗传率最高,其次为母体遗传率,细胞质遗传率最低。
environmentally sensitive.Another important finding of this study was that genetic by environment interactions(GEIs) were trait and gene(QTL) specific.The four traits differed considerably with respect to the effects of QEs.QE had larger effect on CD and LWR,accounting for 14.07%and 17.78%of the phenotypic variation,respectively.Very little of the phenotypic variation observed for GL and GW was due to QE only accounting for 2.77%and 2.15%of the variation,respectively.Some QTLs(e.g.ck4b, gl7a,gw5 and lw3b) had only additive main effects,while others(e.g.ck3,gl3 and lw9) also had an additive×environment interaction effects.The information obtained in this study should be very useful for manipulating the QTLs for these traits by molecular MAS.
     (2) A total of 217 Near-Isogenic Introgression Lines(ILs) in the Teqing background with introgressed Lemont segments were analyzed using 160 rice microsatellite markers. The donor segments from different chromosomes and chromosomal locations were introgressed into the recipient genome in different frequencies,suggesting that some known internal mechanisms could affect the transmission of genomic segments.The total introgressed segments were highest in chromosome 4 and lowest in chromosome 7.The average donor genomic portion in the ILs was 10.30%,ranging from 0 to 35%.The mean number of donor segments in a IL was 8.7 with 17.8 cM average length of introgressed segments.A set of 56 lines was selected to build ILs in Teqing background with approximately 3 to 7 lines for each chromosome.There are a few introgressive segments on none target regions requiring further elimination by marker-aided backcrossing.
     (3) The ILs with Teqing genetic background were used to dissect the genetic basis of CD,GL,GW and LWR by using QTL Network 2.0.Some of the main QTLs which were detected in the RILs,such as qCD-7,qGL-7 and qGW-7,were also identified in the ILs. But there are still some differences about the two populations.A major QTL(qGW-2) was detected for GW contributing 28.05%of the phenotypic variance.Surprisingly,the major QTL was not identified in the RILs.This may be due to the different genetic background.Among these QTLs,one common QTL for CD,GL and GW in interval OSR4-RM505 on chromosome7 was identified.This QTL also was identified in the RILs. A common QTL for CD,GW and LWR in interval RM439-RM340 on chromosome 6 was also identified.These results suggested that there were some differences in QTLs between the RILs and ILs.Moreover,there were some common QTLs for the closely relative traits at the same or near chromosome regions.
     (4) Ninety-three parents including IR75589-31S,IR60,IR70 and ninety recombinant inbred lines or advanced backcrossing introgression lines with different indica-japonica degrees were chosen to compare four characters of grain quality between F_1 hybrids and their parents.Based on the relative heterosis for all characters in all hybrids,the frequency of positive mid-parent heterosis was higher than that of negative mid-parent heterosis except for LWR.Grain appearance quality among F_1 hybrids varied significantly with greatest variation on CD.The performance of most F_1 hybrids for all the four characters was between the low-value parent and high-value parent.F_1s were found to be highly correlated with the male parent,female parent and average of the parents for all the four characters.Correlation analyses also revealed different relationships among the four characters tested.CD was significantly negatively correlated with GL(R=-0.5628~(**)) and LWR(R=-0.7498~(**)) but positively correlated with GW(R=0.7539~(**)).The results of path analysis showed that magnitudes of direction from GL,GW and LWR to CD were-1.9409,2.1738 and 2.7805,respectively. Regression analysis of rice grain appearance traits resulted in linear regression equation between CD(y) and GL(x_1),GW(x_2),LWR(x_3) of y=-39.892x_1+141.389x_2+77.341x_3 -269.906.This shows that GW is the most important factor affecting rice CD.The genetic distance of the rice parents and the relativity analysis were determined using SSR markers.The genetic distance between three female and ninety male based on 161 SSR markers varied in the range from 0.2914 to 0.4205 with an average of 0.3520.The relative coefficients between SSR genetic distance and heterosis of four grain appearance traits were partial to small(CD=-0.0307,GL=-0.1358,GW=0.1147,LWR=-0.1408). The genetic distance of rice parents selected and the grain appearance heterosis was not significantly correlated.Because of this,SSR markers selected in this study couldn't predict rice appearance quality heterosis,thus,the genetic analysis based on molecular markers predicting the grain appearance quality needs further studies.
     (5) The genetic effect of appearance quality traits on hybrid rice were studied by using the genetic model and analysis method for quality traits.The results indicated that all appearance quality traits were mainly influenced by directive additive variance(V_A) and maternal additive variance(V_(Am)).GL,GW and LWR were controlled mainly by directive effects and less by maternal additive effects.CD on the other hand,was mainly controlled by direct additive and maternal additive effects.GL,GW and LWR had very high narrow sense heritability values(86.03%,89.70,and 83.78%,respectively) while CD had relatively lower narrow sense heritability(72.94%).Heritability for all the four grain appearance traits was more of direct heritability than maternal heritability.
引文
1.杨春献,向邦豪,张其茂,等.两系超级杂交稻百亩片平均单产12.26/hm~2的栽培技术[J].杂交水稻,2003,18(2):42-44
    2.廖伏明.中国超级稻单季稻第2期目标提前一年实现[J].杂交水稻,2004,19(6):50
    3.罗明,霍中洋,张洪程,等.稻米品质及其影响因素的分析[J].吉林农业科学,2005,30(1):18-20
    4.Ikehashi H,Khush G S.Methodology of assessing appearance of the rice grain,including chalkiness and whiteness.In:Brady N C ed,Proceedings of the workshop on chemical aspects of rice grain quality[M].IRRI,Philippines,1979,223-229
    5.莫惠栋.我国稻米品质的改良[J].中国农业科学,1993,26(4):8-14
    6.陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型环境互作效应研究[J].中国农业科学,1998,31(4):1-7
    7.李欣,莫惠东,王安民,等.粳型杂交稻米品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204
    8.Mckenzie K S,Rutger J N.Genetic analysis of amylase content,alkali spreading score and grain dimensions in rice[J].Crop Sci,1983,23(2):306-313
    9.Takite T.Breeding for grain shape in rice[J].Agri sci,1989,44(6):39-42
    10.石春海,申宗坦.早籼粒形的遗传和改良[J].中国水稻科学,1995,9(1):27-32
    11.芮重庆,赵安常.籼稻粒重及粒形性状F_1遗传特性的双列分析[J].中国农业科学,1983,(5):14-20
    12.石春海,申宗坦.早籼稻谷性状遗传效应的分析[J].浙江农业大学学报,1994,20(4):405-410
    13.熊振民,孔繁林.水稻粒重的超亲遗传及其在育种中的应用[J].浙江农业大学学报,1982,8(1):17-25
    14.廖伏明,周坤炉,阳和华,等.籼型杂交水稻米质性状配合力及遗传力研究[J].湖南农业大学学报(自然科学版),2000,26(5):323-328
    15.方平平,林荔辉,吴为人,等.杂交稻外观性状的遗传控制[J].福建农林大学学报,2004,33(2):137-140
    16.林建荣,吴明国,石春海.粳型杂交稻稻米外观品质性状的遗传效应研究[J].中国水稻科学,2001,15(2):93-96
    17.林建荣,石春海,吴明国.不同环境条件下粳型杂交稻稻米外观品质性状的遗传效应[J].中国水稻科学,2003 17(1):16-20
    18.杨仁崔,粱康迳,陈青华.稻米垩白直感遗传和杂交稻垩白米遗传分析[J].福建农学院学报,1986,15(1):51-54
    19.徐云碧,申宗坦.籼稻米粒垩白的遗传[J].浙江农业大学学报,1989,15(1):8-13.
    20.林鸿宣,闵绍楷,夏加发,等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J].中国农业科学,1995,28(4):1-7
    21.Huang N,Parco A,Mew T,et al.RFLP mapping of isozymes,RAPD and QTLs for grain shape,brown planthopper resistance in a doubled haploid rice population[J].Mol Breed,1997,3:105-113
    22.Tan Y F,Xing Y Z,Li J X,et al.Genetic bases of appearance quality of rice in Shanyou 63,an elite rice hybrid[J].Theor Apple Genet,2000,101:823-829.
    23.邢永忠,谈移芳,徐国才,等.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因[J].植物学报,2001,43(1):840-845
    24.Li J M,Thomson M,McCouch S R.Fine mapping of a.grain-weight quantitative trait locus in the pedcentromeric region of rice chromosome[J].Genetics,2004,168:2187-2195
    25.Fan C C,Xing Y Z,Mao H L,et al.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theor Appl Genet.2006,112:1164-1171
    26.郭咏梅,穆平,刘家富,等.水、旱栽培条件下稻谷粒形和粒重的相关分析及其QTL定位[J].作物学报,2007,33(1):50-56
    27.曾瑞珍,Akshay T,刘芳,等.利用单片段代换系定位水稻粒形QTL[J].中国农业科学,2006,39(4):647-654
    28.Song X J,Huang W,Shi M,et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin Iigase[J].Nature Genetics,2007,39(5):623-630
    29.Redona E D,Mackill D J.Quantitative trait locusan alysis for rice panicle and grain characteristics[J].Theor Appl Genet,1998,96:957-963
    30.钱前,何平,郑先武,等.籼粳分类的形态指数及其相关鉴定性状的遗传分析[J].中国科学(C辑),2000,30:305-310
    31.He P,Li S G,Qian Q,et al.Gnetic analysis of rice grain qulity[J].Theor Appl Genet,1999,98:502-508
    32.Wan X Y,Wan J M,Weng J F.Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments[J].Theor Appl Genet,2005,110:1334-1346.
    33.曾大力,钱前,阮刘表,等.稻米垩白三维切面的遗传分析[J].中国水稻科学,2002,16(1):11-14
    34.何平,李仁贵,李晶熠,等.影响稻米品质几个性状的基因座位分析[J].科学通报,1998,43(16):1747-1750
    35.陆朝福,朱立煌.植物育种中分子标记辅助选择[J].生物工程进展,1995,15(4):11-17
    36.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10
    37.McCouch S R,Kochert G,Yu Z H,et al.Molecular mapping office chromosome[J].Theor Appl Genet 1988,76:815-829
    38.Causse M,Fulton T,Ahn N,et al.Saturated molecular map of the rice genome basedon an interspecific backcross population.Genetics[J].1994,138:1251-1274
    39.Kurata N Y,Nagamura K,Yamamoto,et al.A 300 kilobase interval genetic map office including 883 expressed sequences[J].Nature Genet,1994,8:365-3-2
    40.Huang N,Angeles E R,Domingo J,et al.Pyramiding of bacterial blight resistance genes in rice:Marker-assisted selection using RFLP and PCR[J].Theor Appl Genet,1997,95:313-320
    41.http://rgp.dna.affrc.go.jp/publicdata/geneticmap2000/index.html
    42.申时全,曾亚文,李自超,等.分子标记及其在云南稻种核心种质中的应用[J].种子,2001(6):8-11
    43.Zhu J H.Abstract of plant Genome Ⅲ.San Diego[M].USA.1995:282
    44.杨益善,邓启云,陈立云,等.野生稻高产QTL的分子标记辅助育种进展[J].杂交水稻,2005,20(5):1-5
    45.薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J].浙江农业大学学报,1998,24(6):581-582
    46.Chen Sheng,Zhang Qifa.Improvement of bacterial blight resistance of hybrid rice by molecular marker assisted selection[J].华中农业大学学报,2000,19(3):183-189
    47.黄廷友,李仕贵,王玉平,等.分子标记辅助选择改良蜀恢527对白叶枯病的抗性[J].生物工程学报,2003,19(2):153-157
    48.彭应财,李文宏,樊叶扬,等.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218[J].杂交水稻,2003,18(5):5-7
    49.童海军,薛庆中.抗病杂交水稻新组合Ⅱ优8220[J].杂交水稻,2003,18(5):73-74
    50.罗彦长,王守海,李成荃,等.应用分子标记辅助选择培育抗白叶枯病光敏核不育系3418S[J].作物学报,2003,29(3):402-407
    51.李进波,夏明元,戚华雄,等.水稻抗褐飞虱基因Bph14和Bph15的分子标记辅助选择[J].中国农业科学,2006,39(10):2132-2137.
    52.Yang H,You A,Yang Z,et al.High-resolution genetic,mapping at the Bph15locus for brown planthopper resistance in rice(Oryza Sativa L)[J].Theor Appl Genet,2004,110:182-191.
    53.Neeraja C N,Maghirang-Rodriguez R,Pamplona A,et al.A marker-assisted backcross approach for developing submergence-tolerant rice cultivars[J].Theor Appl Genet,2007,115:,767-776
    54.Bligh H F J,Till R I,Jones C A.Microsatellite sequence closely linked to the waxy gene of Oryza Sativa[J].Euphytica,1995,86:83-85
    55.Ayres N M.Microsatellites and a single-nuleotide polymorphism diferentiate apparent amylose classes in an extendedpedigree of US rice germplasm[J].Theor Appl Genet,1997,94:773-781
    56.舒庆尧,吴殿星,夏英武,等.籼稻和粳稻中蜡质基因座位上微卫星标记的多态性及其与直链淀粉含量的关系[J].遗传学报,1999,26(4):350-358
    57.李竞雄.中国大百科全书:生物学卷:遗传学分册.杂种优势[M].北京:中国大百科全书出版社.1983:230-234
    58.Xiao J H,Li J M,Yuan L P,et al.Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J].Genetics,1995,140:745-754
    59.Sax K.The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris[J].Genetics,1923,8:552-560
    60.Thoday J M.Location ofpolygenes[J].Nature,1961,191:368-370
    61.Paterson A H,Devema J W,Lanini B et al.Fine mapping of quantitative loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato[J].Genetics,1990,124:735-742
    62.惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2):129-136
    63.Lander E S,Botstein D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121:185-199
    64.Jiang C J,Zeng Z B.Multiple trait analysis of genetic mapping for quantitative trait loci[J].Genetics,1995,140(3):1111-1127
    65.Zeng Z B.Precision mapping of quantitative trait loci[J].Genetics,1994,136(4):1457-1468
    66.朱军.复合数量性状基因定位的混合线性模型方法[M].王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998:11-20
    67.Yan J Q,Zhu J,He C X,et al.Molecular dissection of developmental behavior of plant height in rice(Oryza sativa L.)[J].Theor Appl Genet,1998,150:1257-1265
    68.Yan J Q,Zhu J,He C X,et al.Quantitative trait loci analysis for developmental behavior of tiller number in rice(Oryza sativa L.)[J].Theor Appl Genet,1998,97:267-274
    69.Wang D L,Zhu J,Li Z K.Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches[J].Theor App Genet 1999,99:1255-1264
    70.李平.水稻分子图谱的构建与基因分析:[博士学位论文].四川:四川农业大学,1994
    71.Li Z K,Yu S B,Lafitte R H,et al.QTL×environment interactions in rice Ⅰ.Heading date and plant height[J].Theor Appl Genet,2003,108:141-1530
    72.Zhuang J Y,Lin H X,Lu J,et al.Analysis of QTL×environment interaction for yield components and plant height in rice[J].Theor Appl Genet,1997,95:799-808
    73.MacMillan K,Emrich K,Piepho H P,et al.Assessing the importance of genotype×environment interaction for root traits in rice using a mapping population Ⅱ:Conventional QTL analysis[J].Theor Appl Genet,2006,113:953-964
    74.袁爱平,曹立勇,庄杰云,等.水稻株高、抽穗期和有效穗数的QTL与环境的互作分析[J].遗传学报,2003,30(10):899-906
    75.Wright S.Genic and organismic selection[J].Evolution,1980,34:825-843
    76.Allard R W.Genetic basis of the evolution of adaptedness in plants[J].Euphytica,1996,92:1-11
    77.Rieseberg L H,Sinervo B,Linder C R,et al.Role of gene interactions in hybrid speciation:evidence from ancient and experimental hybrids[J].Science,1996,272:741-745
    78.Li Z K,Luo L J,Mei H W,et al.Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice:Ⅰ.Biomas and grain yield[J].Genetics,2001,158:1737-1753
    79.Lark K G,Chase k,Adler F,et al.Interaction between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another[J].Ptoc Natl Acad Sci USA,1995,92:4656-4660
    80.Darvasi A,Weinreb A,Minke V,et al.Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map[J].Genetics,1993,134:943-951
    81.Asaoka M,Okuno K,Sugimoto Y,et al.Elect of environmental temperatrued uring development of rice plants on some properties of endosperm starch[J].Starch/Starke,1984,36:186-193
    82.Tanksley S D.Mapping polygenes[J].Annu Rev Genet,1993,46:1210-1215
    83.Yamamoto T,Kuboki Y,Lin S Y,et al.Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice,as single Mendelian factors[J].Theor Appl Genet,1998,97:37-44
    84.Wu J,Maehara T,ShimokawaT,et al.A comprehensive rice transcript map containing 6591 expressed sequence tag sites[J].Plant Cell,2002,14:525-535
    85.Thomsberry J M,Goodman M M,Doebley J,et al.Dwarf8 polymorphisms associate with variation in flowering time[J].Nat Genet,2001,28:286-289
    86.Flint-Garcia S A, Thomsberry J M, Buckler I V. Structure of linkage disequilibrium in plants[J]. Annu Rev Plant Biol, 2003, 54: 357-374
    
    87.Stumpf M P H. Haplotype diversity and the block structure of linkage disequilibrium[J]. Trend Genet, 2002, 18: 226-228
    
    88.Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS[J]. Plant Cell, 2000, 12: 2473-2484
    
    89.Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2[J].PNAS, 2001, 98(14): 7922-7927
    
    90. Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of Arabidopsis FT gene promotes transition to flowering downstream of Hdl under short day conditions[J]. Plant Cell Physiol, 2002, 43(10): 1096-1105
    
    91.Doi K, Izawa T, Fuse T, et al. Ehdl, a B-type response regulator in rice, confers short day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes& Development, 2004,18: 926-936
    
    92.Motoyuki A, Hitoshi S, Lin S Y, et al. Cytokinin Oxidase Regulates Rice Grain Production[J]. Science, 2005, 309: 741-745.
    
    93.Lu C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population[J]. Theor Appl Genet,1996,93: 1211-1217
    
    94.Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics, 1995, 140:745-754
    
    95.Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice (Oryza sativa L) using backcross inbred lines [J].Theor Appl Genet, 1998, 96: 997-1003
    
    96.Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map[J]. Theor Appl Genet, 1997,95:1025-1032
    97.Xiao J H,Li J M,Yuan L P,et al.Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross[J].Theor Appl Genet,1996,92:230-244
    98.Lin H X,Qian H R,Zhuang J Y,et al.RFLP mapping of QTLs for yield and related characters in rice(Oryza sativa L)[J].Theor Appl Genet,1996,92:920-927
    99.Li Z K,Pinson S R M,Park W D,et al.Epistasis for three GrainYield Components in rice(Oryza sativa L.)[J].Genetics,1997,145:453-465
    100.林鸿宣,庄杰云,钱惠荣,等.水稻株高及其构成因素数量性状基因座位的分于标记定位[J].作物学报,1996,22(3):257-263
    101.谭震波,沈利爽,袁柞廉,等.水稻再生能力和头等稻产量性状的QTL定位及其遗传效应分析[J].作物学报,1997,23(3):289-295
    102.刘桂富,卢永根,王国昌,等.水稻产量、株高及其相关性状的QTLs定位[J].华南农业大学学报,1998,19(3):5-9
    103.李春丽,郑康乐.应用RAPD标记检测与水稻株高和抽穗期有关的QTLs[J].遗传学报,1998,25(1):34-39
    104.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析[J].农业生物技术学报,1999,7(4):386-394
    105.Wang L,Mackill D J,Bonman J M,et al.RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar[J].Genetics,1994,136:1421-1434
    106.Champoux M C,Wang G,Sarkarung S,et al.Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers[J].Theor Appl Genet,1995,90:969-981
    107.Yadav R,Courtvis B,Huang N,et al.Mapping gene controlling root morphology and root distribution in a doubled haploid population of rice[J].Theor Appl Gener,1997,94:619-632
    108.Saito K,Miura K,Nagano K,et al.Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety 'Norin-PL8'[J].Breed Sci,1995,45:337-340
    109.Xiao J,Li J,Yuan L,et al.Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J].Genetics,1995,140:745-754
    110.李平,周开达,陈英,等.利用分子标记定位水稻野败型核质互作雄性不育恢复基因[J].遗传学报,1996,23(5):357-362
    111.Nandi S,Subudhi P K,Senadhira D,et al.Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotype[J].Mol Gen Genet,1997,255:1-8
    112.谭震波,沈利爽,袁祚廉,等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析[J].作物学报,1997,23(3):289-295
    113.Lin S Y,Sasaki T,Yano M.Mapping quantitative trait loci controlling seed dormancyand heading date in rice(Oryza sativa L.) using backcross inbred lines[J].Theor Appl Genet,1998,96:997-1003
    114.Hyne V,Kearsey M J,Pike D J,ed al.QTLanalysis:unreliability and bias in estimation procedures[J].Molecular Breeding,1995,1:273-282
    115.庄杰云,郑康乐.水稻产量性状遗传机理及分子标记辅助高产育种[J].生物技术通报,1998,(1):1-9
    116.Beckmann J S,Soller M.Restriction fragment length polymorphisms in genetic improvement:methodologies,mapping and costs[J].Theor Appl Genet,1983,67:35-43
    117.Tanksley S D.RFLP mapping in plant breeding:new tools for an old science[J].Biotechnology,1989,7:257-264
    118.Shull G H.The composition of a field of maize[J].Am Breed Assoc Rep,1908,4:296-301
    119.胡建广,杨水金,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21(2):41-50
    120.Stuber C W,Lincoln S E,Wolff D W,et al.Identification of Genetic Factors Contributing to Heterosis in a Hybrid From Two Elite Maize Inbred Lines Using Molecular Markers[J].Genetics,1992,132(3):823-839
    121.庄杰云,樊叶杨,吴建利,等.杂交水稻中超显性效应的分析[J].遗传,2000,22(4):205-208
    122.Wright S.Evaluation and genetics of populations[M].Chicago:Univ of Chicago Press,1968,23-28
    123.Yu S B,Li J X,Xu C G,et al.Importance of epistasis as the genetic basis of heterosis in elite rice hybrid[J].Proc Natl Acad Sci USA,1997,94:9226-9231
    124.廖春燕,吴平,易可可,等.不同遗传背景及环境中水稻(Oryza sativa L.)穗长的QTL及上位性分析[J].遗传学报,2000,27(7):599-607
    125.李平,陆朝福,周开达,等.利用RFLP标记定位水稻重要农艺性状的主效基因与微效基因[J].中国科学(C辑),1996,26(3):251-263
    126.李春丽,郑康乐.应用RAPD标记检测与水稻株高和抽穗期有关的QTLs[J].遗传学报,1998,25(1):34-39
    127.吴平.应用RFLP标记分析水稻株高与分蘖的遗传相关性[J].中国科学(C辑),1996,26(3):264-270
    128.樊叶杨,庄杰云,李强,等.水稻株高QTL分析及其与产量QTL的关系[J].作物学报,2001,27(6):915-992.
    129.Hua J P,Xing Y Z,Xu C G,et al.Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J].Genetics,2002,162:1885-1895
    130.Lee M,Godshalk E B,Lamkey K R,et al.Association of restriction fragment length polymorphisma among maize inbreds with agronomic performance of their crosses[J].Crop Sci,29:1067-1071
    131.Smith O S,Smith J S C,Bowen S L,et al.Similarities among a group of elite maize as measured by pedigree:F1 grain yield,grain yield heterosis and RFLPs[J].Theor Appl Genet,1990,80:833-840
    132.Godshalk E B,Lee M,Lamkey K R.Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize[J].Theor Appl Genet,1990,80:273-280
    133.Dudley J W,Saghai-Maroof M A,Rufener G K.Molecular markers and grouping of parents in maize breeding programs[J].Crop Sci,1991,31:718-723
    134.Mechinger A E,Lee M,Larnkey K R,et al.Genetic diversity for restriction fragment length polymorphisms:relation to estimated genetic effects in maize breeding[J].Crop Sci,1990,30:1033-1040
    135.Boppenmaier J,Melchinger A E,Seitz G,et al.Genetic diversity for RFLPs in European maize inbreds Ⅲ.Performance of crosses within versus between heterotic groups for grain traits[J].Plant Breed,1993,111:217-226
    136.Zhang Q,Gao Y J,Saghai-Maroof M A,et al.Molecular divergence and hybrid performance in rice[J].Molecular Breeding,1995,1:133-142
    137.吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测[J].植物学报,2000,42(6):600-604
    138.李云海,钱前,曾大力,等.我国主要杂交水稻亲本的RAPD鉴定及遗传关系研究[J].作物学报,2000,26(2):171-176
    1.朱军.包括基因型×环境互作效应的种子遗传模型及其分析方法[J].遗传学报,1996,23(1):56-69
    2.朱军.遗传模型分析方法[M].北京:中国农业出版社,1997
    3.Pooni H S,Kumar I,Khush G S.A comprehensive model for disomically inherited metrical traits expressed in triploid tissue[J].Heredity,1992,69:166-174
    4.邢永忠,谈移芳,徐才国,等.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因[J].植物学报,2001,43(1):840-845
    5.敖雁,徐辰武,莫惠栋.籼型杂交种稻米品质性状的数量遗传分析[J].遗传学报,2000,27(8):706-712
    6.He P,Li S G,Qian Q,et al.Genetic analysis of rice grain quality[J].Theor Apple Genet,1999,98:502-508
    7.Tan Y F,Xing Y Z,Li J X,et al.Genetic bases of appearance quality of rice in Shanyou 63,an elite rice hybrid[J].Theor Apple Genet,2000,101:823-829
    8.Li Z K,Luo L J,Mei H Wet al.A "defeated" rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzaepv,oryzae[J].Mol Gen Genet,1999,261:58-63
    9.Yu S B.An interated molecular linkage map and genomic regions with clustered QTLs detected in the LT RI population[C].International Rice Research Institute.Abstract of the 4th Interactional Rice Genetics Symposium.Los Banos,Philippines:Interactional Rice Research Institute,2000,278
    10.Wang D L,Zhu J,Li Z K,et al.Mapping QTLs with epistatic effects and QTL×environment interactions by mixed model approaches[J].Theor Apple Genet,1999,99:1255-1264
    11.Amarawathi Y,Singh R,Singh A K,et al.Mapping of quantitative trait loci for basmati quality traits in rice(Oryza stiva L.)[J].Mol Breeding,2007,21(1):49-65
    12.Hittalmani S,Huang N,Courtois B,et al.Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia[J].Theor Apple Genet,2003,107:679-690
    13.Kobyashi S,Fukuta Y,Sato T,et al.Molecular marker dissection of rice(Oryza sativa L.)plant architecture under temperate and tropical climates[J].Theor Apple Genet,2001,57:107-116
    14.林鸿宣,闵绍楷,夏加发,等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J].中国农业科学,1995,28(4):1-7
    15.Li Z K,Luo L J,Mei H W,et al.Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice:Ⅰ.Biomas and grain yield[J].Genetics,2001,158:1737-1753
    16.Cao G,Zhu J,He C,et al.Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice[J].Theor Apple Genet,2001,103:118-123
    17.Liao C Y,Wu P,Hu B,et al.Effects of genetic background and environment on QTLs and epistasis for dee panicle number[J].Theor Apple Genet,2001,103:104-111.
    18.侯名语,江玲,王春明等.水稻种子低温发芽力的QTL定位和上位性分析[J].中国水稻科学,2004,18(6):483-488.
    19.Carlborg O,Haley C S.Epistasis:Too often neglected in complex trait studies?[J].Nat Rev Genet,2004,5:618-625.
    20.Asako K,Bao G L,Ye S H,et al.Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties[J].Theor Apple Genet,2007,57:107-116
    21.李泽福,万建民,夏加发,等.水稻外观品质的数量及基因位点分析[J].遗传学报,2003,102(1):41-52
    22.Li Z K,Yu S B,Lafitte R H,et al.QTL×environment interactions in rice Ⅰ.Heading date and plant height[J].Theor Appl Genet.108,141-153
    23.Cao G,Zhu J,He C,et al.Impact of epistasis and QTL x environmental interaction on the developmental behavior of plant height in rice(Oryza sativa L)[J].Theor Appl Genet.103,153-160.
    24.Fan C C,Yu X Q,Xing Y Z,et al.The main effects,epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population[J].Theor Appl Genet.110,1445-1452.
    25.Zhuang J Y,Lin H X,Lu J,et al.(1997).Analysis of QTL×environment interaction for yield components and plant height in rice[J].Theor Appl Genet.95,799-808.
    1.Fridman E,Carrari F,Liu Y S,et al.Zooming in on a quantitative trait for tomato yield using interspecific introgressions[J].Science,2004,305:1786-1789
    2.Jansen R C.Complex plant traits:time for polygenic analysis[J].Trends in plant science,1996,1(3):89-94
    3.Lander E S,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121:185-199
    4.Carbonell E A,JAsns M,Baselga M,et al.Power studies in the estimation of genetic parameters of quantitative trait loci for backcross and doubled haploid populations[J].Theor Appl Genet,1993,86:411-416
    5.Soller M,Beckmann J S.Marker-based mapping of quantitative trait loci using replicated progenies[J].Theor Appl Genet,1990,80:205-208
    6.Melchinger H F,Melchinger A E,Sch(o|¨)n C C.Bias and sampling error of the estimated proportion of the genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples[J].Genetics,2000,154:1839-1849
    7.Paterson A H,DeVerna J,Lanini B,et al.Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes,from an interspecies cross of tomato[J].Genetics,1990,124:735-742
    8.Nadeau J H,Singer JB,Matin A,et al.Analysing complex genetic traits with chromosome substitution strains[J].Nat Genet,2000,24:221-225
    9.Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker assisted selection[J]. Genome, 1996, 39: 348-358
    
    10.Yano M. Genetic and molecular dissection of naturally occurring variation[J], Current opinion in plant biology. 2001,4:130-135
    
    11.Allen W C J, Richard J R, Howard J J. Application of chromosomal substitution techniques in gene-function discovery[J]. J Physiol, 2003, 554, 1:46-55
    
    12. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics, 1995,141:1147-1162
    
    13.Frary A N, Nesbitt T C, Frary A M, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2002,289:85-88
    
    14.Takahashi Y, Shomura A, Sasaki T, et al. Hd-6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the subunit of protein kinase CK2[J].Proc Natl Acad Sci USA, 2001, 98: 7922-7927
    
    15.Yano M, Katayose Y, Ashikari M, et al. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant cell, 2000, 12: 2473-2483
    
    16.Ramsay L D, Jennings D E, Bohuon E J R, et al. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci[J]. Genome, 1996, 39: 558-567
    
    17.Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.) [J]. Breeding Sci. 2002, 52: 319-325
    
    18.Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the backgound of Japonica rice (O.sativa L.)[J].Rice Genetics Newsletter, 1998, 14: 39-41
    
    19. Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar "kasalsth" in a genetic background of japonica elite cultivar "koshihikari"[J]. Breeding Sci, 2005, 55: 65-73
    20. Xi Z Y, He F H, Zeng R Z, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.) [J]. Genome, 2006,49: 476-48
    1.Salvi S,Tuberosa R.To clone or not to clone plant QTLs;Present and future challenges[J].Trends Plant Sci,2005,10:297-304
    2.Eshed Y,Zamir D.Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids[J].Theor Appl Genet,1994,88:891-897
    3.Eshed Y,Zamir D.A genomic library of Lycopersicon pennellii in L.esculentum:A tool for fine mapping of genes[J].Euphytica,1994,79:175-179
    4.Paterson A H,Deverna J W,Lanini B,et al.Fine mappingof quantitative trait loci using selected overlapping recombinant chromosomes,in a interspecific cross of tomato[J].Genetics,1990,124:735-742
    5.Ghesquiere A,Sequier J,Second G,et al.First steps towards a rational use of African rice,Oryza glaberrima,in rice breeding through a 'contig line' concept[J].Euphytica,1997,96:31-39
    6.Koumproglou R,Wilkes T M,Townson P,et al.STAIRS:A new genetic resource for functional genomic studies of Arabidopsis[J].Plant J,2002,31(3):355-364
    7.Peleman J D,Wye C,Zethof J,et al.Quantitative trait locus(QTL) isogenic recombinant analysis:A method for high resolution mapping of QTL within a single population[J].Genetics,2005,171:1341-1352
    8.Yang J,Hu C,Hu H,et al.QTL Network:mapping and visualizing genetic architecture of complex traits in experimental populations[J].2008,24(5):721-723
    9.Doerge R W,Churchill G A.Permutation tests for multiple loci affecting a quantitative character[J].Genetics,1996,142(1):285-294
    10.McCouch S R,Cho Y G,Yano M.Report on QTL nomenclature[J].Rice Genet Newsl,1997,14:11-13
    11.林鸿宣,闵绍楷,夏加发,等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J],中国农业科学,1995,28(4):1-7
    12.Song X J,Huang W,Shi M,et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nature Genetics,2007,39(5):623-630
    1.曾世雄,杨秀青,卢庄文.栽培稻籼粳亚种内杂种一代优势的研究[J].作物学报,1980,6(4):193-202.
    2.肖金华,袁隆平.水稻籼粳亚种间杂种一代优势及其与亲本关系的研究[J].杂交水稻,1980,3(1):5-9.
    3.袁隆平.杂交水稻育种的战略设想[J].杂交水稻,1987,2(1):1-3.
    4.Rohlf F J.NTSYSpc:numerical taxonomy and multivariate analysis system version 2.1 user guide.New York:Exeter Publications,2000.
    5.李成荃,孙明,许克农,等.杂交粳稻品质性状的遗传研究[J].杂交水稻,1988(3):32-35.
    6.李仕贵,黎汉云,周开达,等.杂交水稻稻米外观品质性状的遗传相关分析[J].西南农业大学学报,1996,17(3):197-201.
    7.徐正进,陈温福,马殿荣,等.稻谷粒形与稻米主要品质性状的关系[J].作物学报,2004,30(9):894-900.
    8.朱作峰,孙传清,姜廷波,等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报,2001,28(8):738-745.
    9.曹永国,向道权,黄烈健,等.SSR分子标记与玉米杂种优势关系的研究[J].农业生物技术学报,2002,10(2):120-123.
    10.武耀廷,张天真,朱协飞,等.陆地棉遗传距离与杂种F_1、F_2产量及杂种优势的相关分析[J].中国农业科学,2002,35(1):22-28.
    11.Zhang Q F,Zhou Z Q,Yang G P,Xu C G,Liu K D,Saghai Maroof M A.Molecular marker heterosis gosity and hybridperformance in indica and japonica rice[J].Theoretical and Applied Genetics,1996,93:1218-1224.
    12.Xiao J,Li J,Yuan L,McCoueh S R,Tanksley S D.Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers[J].Theoretical and Applied Genetics,1996,92:637-643.
    13.李云海,钱前,曾大力,孙宗修.我国主要杂交水稻亲本的RAPD鉴定及遗传关系研究[J].作物学报,2000,26:171-176.
    1.李欣,莫惠栋,王安民,等.粳型杂种稻米品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204
    2.朱军.遗传模型分析方法[M].北京:中国农业出版社,1997:56-278
    3.林建荣,石春海,吴明国,等.不同环境条件下粳型杂交稻稻米外观品质性状的遗传效应[J].中国水稻科学,2003,17(1):16-20
    4.石春海,申宗坦.早籼粒形的遗传和改良[J].中国水稻科学,1995,9(1):27-32
    5.陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型环境互作效应研究[J].中国农业科学,1998,31(4):1-7
    6.朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报,1993,8(1):32-34
    7.朱军,许馥华。胚乳性状的遗传模型及其分析方法[J].作物学报,1994,20(3):264-270.
    8.朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报:农业与生命科学版,2000,26(1):1-6
    9.莫惠栋.谷类作物胚乳品质性状的遗传研究[J].中国农业科学,1995,28(2):1-7.
    10.历艳志,马建,沙录,等.北方粳稻稻米品质性状的遗传效应分析[J].吉林农业大学学报,2007,29(1):7-10
    11.方平平,林荔辉,李维明,等.杂交稻外观品质性状的遗传控制[J].福建农林大学学报,2004,33(2):137-140
    12.林建荣,吴明国.粳型杂交稻稻米外观品质性状的遗传效应研究[J].中国水稻科学,2001,15(2):93-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700