用户名: 密码: 验证码:
基于有限元方法的重型车变速器整体动态模拟与寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于有限元的方法,针对重型自卸车变速器的整体动态特性、疲劳寿命预测和试验研究展开,文中采用变速器整体完全弹性体的研究模型,从整体的角度出发,充分考虑各部件接合部的非线性特征和相互的作用,对变速器在主箱内各个档位实际工作状态下,分别进行了动态模拟,得到包括齿轮、轴承、箱体在内的各部件的动强度、动态响应的结果,并对变速器总成进行了固有模态和齿轮啮合频率的综合分析,通过以上这些反映变速器整体性能的各项动力学指标,来全面综合的考察变速器总成的强度和振动问题。然后将变速器整体动态模拟的结果,应用多轴疲劳的分析方法,在充分考虑齿轮系统啮合传动过程中产生的冲击载荷、传动误差、振动效应等造成的齿轮上的接触应力和齿根弯曲应力的大小和发生位置随着齿轮的运转而呈现出周期性的基础上,在时域上预测变速器各齿轮的疲劳寿命,全面、深入的分析变速器齿轮系统疲劳破坏的成因和规律,并得到可信的寿命预测结果。本文在仿真分析的基础上设计了齿根弯曲应力测量、变速器整体固有模态测试和变速器总成疲劳可靠性三个试验,结果表明变速器动态模拟与寿命预测结果准确、方法可行。文章从仿真到试验,以全面的角度,形成了基于有限元的方法下,变速器整体动态模拟与多轴寿命预测的研究方法和技术流程,对变速器的开发设计提供了有力的技术支持,并且为变速器系统的疲劳寿命预测提供了新方法。
With the growth of our country’s national economy in recent years, the heavy-duty truck plays an increasingly important role in some infrastructure industries like energy and raw materials, and also becomes the mainstream products for our country’s automotive export industry. Therefore, people attach more attention to the power and reliability of heavy-duty truck. However, heavy-duty dumper mainly operates in some severe conditions like construction site and mine, and users usually have higher requirements for its transmission and load carrying system. As the key component in transmission system of heavy-duty dumper, gearbox’s efficiency and reliability are closely linked with the dumper’s power and safety. Since the gearbox is very complicated with many components inter-connected with each other and also works in complex conditions, the previous study on its dynamic and fatigue property usually included many simplifications or focused on certain specific components. However, it is evident that the study on the dynamic property and multi-axle fatigue life of the complete gearbox based on full elastomer model is more accurate and can acquire more information, but also with more difficulties. In this paper, the dynamic simulation is conducted for a heavy-duty dumper’s gearbox, and the analysis for its dynamic stress, complete modal and dynamic response is also carried out with FE method and taking into consideration of the strength and stiffness of gears, driving shafts, bearings as well as case. Finally, the accuracy of the simulation analysis is validated through the test research on bending stress of gear tooth root, complete modal and fatigue life.
     This paper focuses on the research of complete gearbox’s dynamic property and fatigue life with analysis and tests, and altogether includes 8 chapters:
     Chapter I summarizes the current status of the research on gearbox’s dynamic property and fatigue life prediction in domestic and overseas. The advantages and disadvantages of applying complete gearbox’s full elastomer model are presented by making comparison between different types of gearbox models; the advantages and disadvantages of applying multi-axle fatigue analysis are also explained by presenting various methods for predicting gearbox’s gear life. The main study subjects, methods and purposes are put forward at the end of this chapter.
     Chapter II analyzes the dynamic stress of the complete gearbox. The model for the complete gearbox including gears, bearings and case is established on Software Hypermesh to display the real state of the gearbox. In the Abaqus/CAE module, the contact relation is established based on the real assembly relations, and the real load and the constrain are put on the assembly under the situation of the max export moment of the engine. The magnitude, distributing and change rule with time of the dynamic contact pressure and the bend stress on the gear in different gear condition are simulated by Abaqus/Explicit software, and the intensity of the transmission assembly is verified, the groundwork is done for the dynamic property and fatigue life prediction of the transmission assembly.
     ChapterⅢdesigns the test of the bending stress measure of gear tooth root. Through the all-around research of test method, equipment, measure position, signal collection and disposal, the test-bed is created using torsion machine, the bending stresses of middle axle gear tooth root are measured in different gear condition by resistance strain method, then the test results are analyzed contrastively with the dynamic simulation results in the same place. The preciseness ratio is up 75% percent, and it indicates that the FEA results are correct and credible, have engineering significance, then the method and the results can apply for dynamic performance simulation and fatigue life prediction of the transmission assembly.
     ChapterⅣsimulations the dynamic performance of the transmission assembly. Firstly, the quality distributing and link rigidity are reflected fully and precisely through the transmission inherent model analysis including main box, subsidiary box, clutch and shift device using Abaqus software, and all the frequencies and vibration of the gear box and axle system, then the gear tooth frequency is analyzed contrastively with the inherent model of the transmission and analyze the influence of them, under the conditions of engine idle speed, the max torque and the max power. Secondly, all kinds of vibration properties of transmission shaft and transmission in time domain are researched under the condition of different transmission speed, including the gear circle acceleration changing with time, gear shaft axle displacement changing with time, shaft circle acceleration changing with time and the box displacement changing with time in X, Y and Z direction. The vibration effect of the transmission is researched all-sided and compositively through these parameters, and analyze the changing rules providing design guidance for the transmission.
     ChapterⅤresearches and designs the inherent model test of the transmission. Firstly, the test method is researched, the test project and equipment are confirmed. The Test.lab multicenter test system is used, and the random signal is loaded on the transmission using electromagnetism stimulate device. Secondly, the test data in time domain from acceleration sensors are transformed to the frequency domain. The total frequency response curve is get through the data of frequency domain, then the parameter is identified, and the frequency and vibration of the transmission inherent model is get from frequency response curve. The damp ratio of the models is get from semi power method. Finally, the test results are analyzed contrastively with the FEA results, it indicates that the results of the test and the simulation are highly consistent, the relative error is small, and the FEA result is correct, has engineering value.
     ChapterⅥpredicts the fatigue life of the transmission. The max axle fatigue method is used through the result of the dynamic simulation, and the fatigue software-FEMFAT is used, the dynamic load conditions are evaluated using time domain method in one work circle that the gear runs one circle. The influence of gear fatigue life is researched including the gear material, real machining method, heat treatment, stress convergence, part size, stress grads and surface treatment, then the gear fatigue life under different gear condition is predicted using fatigue cumulate theory, the gear fatigue reasons and rules are analyzed.
     Chapter VII conducts fatigue reliability tests and calculation & analysis of damages for the gearbox. Based on the utilization ratio of each gear, the fatigue reliability tests under max. input torque and the validation tests for gearbox’s warranty life are carried out by using propeller shaft test rig to accurately control the input torque, rotate speed and transmission oil temperature of the gearbox. Then the damage on the gears reaching warranty life is calculated by combining the results of gearbox’s life prediction, to evaluate the reliability of complete gearbox.
     Chapter VIII is a summary chapter mainly presenting the main work and achievements as well as study direction in the future.
     In this paper, the in-depth and detail study on complete gearbox’s dynamic property and life prediction is conducted with the methods of combining tests and analysis, which is of significance for improving our country’s independent development capabilities of the gearbox, enhancing the gearbox’s performance and shortening the gap with the developed countries. It also will play an important role in accelerating the development and prosperity of our country’s automotive industry and other related industries, and bring enormous social and economic benefits.
引文
[1]陈家瑞.汽车构造(下册)[M].北京:机械工业出版社,2000.
    [2]常志全.汽车变速器齿轮啮合瞬态性能分析研究[D].重庆:重庆大学,2005.
    [3]黎勇,郭晓冬.汽车变速器振动噪声控制研究[D].重庆:重庆大学,2004.
    [4]周林福.汽车底盘构造与维修[M].北京:人民交通出版社, 2005.
    [5]康一坡.基于多零件接触的重型汽车变速器壳体强度分析[D].长春:吉林大学,2008.
    [6]黎勇.汽车变速器振动噪声控制研究[D].重庆:重庆大学,2004.
    [7]杨晓宇.齿轮传动系统动力学特性的有限元分析及试验方法研究[D].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [8] Nelson,H.D.and Mc Vaugh,J.M. The Dynamics of Rotor-Bearing Systems Using Finite Elements[J]. ASME Journal of Engineering for Industry,1985(2):593-600.
    [9] K.umezawa. Vibration of power transmission helical gear with narrow face width[J]. ASME Paper,1984:84-159.
    [10] R.A.Ibrahim , A.A.A faneh , B.H.Lee. Structural Modal Multifurcation with International Resonance[J]. ASME,1993(115):193-201.
    [11] M.H.Richardson , D.L.Formenti. Parameter estimation from frequency response measurements using rational fraction polynomials[J]. Proceeding of the 1St IMSC,Orlando,Florida,1982(11):8-10.
    [12] UMEZAWAK,HOUJOH. The effect of shaft stiffness on the gear vibration[J]. Transation of JSME,1988(C54):699-705.
    [13] H.N.Ozguven. Assessment of some recently developed mathematical models in gear dynamics[J].Proceedings of the Eighth World Congress on the Theory of Machines and Mechanisms,Prague,1991:605-608.
    [14] H.N.OZguzen,D.R.Houser. Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error[J].Journal of Sound and Vibration,1998(125):71-83.
    [15] T.Tsuta. Excitation Force Analysis of Helical Gear Pair Tolerance in Their ToothShape and Pitch[J]. Mounted on F1exible Shaft.Proceedings of International Conference on Motion and Power Transmission,Hiroshima,1991,JSME:72-77.
    [16] S.V.Neriya,R.B.Bhat,T.S.Sankar. On the Dynamic Response of a Helical Geared System Subjected to A Static transmission Error in the Form of Deterministic and Filtered white Noise Inputs[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design.1988(110):501-506.
    [17] Aktaa J,Schinke B. Unified modeling of time dependent damage taking into account an explicit dependency on backstress[J]. Int. J. Fatigue,1997,19(3):195-200.
    [18] A.Kahraman.Effect of Axial Vibration on the Dynamic of A Helical Gear Pair[J]. Journal of Vibration and Acoustics,1993(115):33-39.
    [19] P.Velex,M.Maatar. A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behavior[J]. Journal of Sound and Vibration,1996(191):629-660.
    [20] N.Iwatsubo,S.Arii,R.Kawai.Coupled Lateral-Torsional Vibration of Rotor System Trained by Gears(Part I Analysis by Transfer Matrix Method) [J].Bulletin of JSME,1984(27):271-277.
    [21] S.V. Neriya,R.B.Bhat,T. S.Sanker. Effect of Coupled Torsional-flexural Vibration of a Geared Shaft System on the Dynamic Tooth Loads[M].Shock and Vibration Bulletin.1984.
    [22] A.Kahraman,H.N.Ozguven,D.R.Houser. Dynamic Analysis of Geared Rotors by Finite Elements [J].Journal of Mechanical Design,1992(114):507-514.
    [23] G.V. Tordion,R.Gouvin.Dynamic Stability of a Two-stage Gear Train under the Influence of variable Meshing Stiffness [J].ASME Journal of Engineering for Industry,l997(99):785-791.
    [24] H.Linke,J. Bomer. Dynamic Loads on Gear Trains with idler Gears [J].Proceedings of the Japanese Society of Mechanical Engineers International Conference on Motion and Power Transmission Hiroshima,1991:31-36.
    [25] M,Rashdi,T. L.Krantz.Dynamics of a Split Torque Helicopter Transmission [J].ASME Proceedings of the 6th International Power Transmission and Gearing Conference,Phoenix,1992:347-358.
    [26] P.Velex,A.Sanda. A Model for the Dynamic Behaviour of Multi-Stage Geared System[J].Proceedings of the 8th International Federation for the Theory of Machines and Mechanisms World Congress,Prague,1991:621-625.
    [27]傅志方.振动模态分析与参数识别[M].北京:机械工业出版社,1990.
    [28]李方泽,刘馥清,王正.工程振动测试与分析[M].北京:高等教育出版社,1992.
    [29] G.V.Tordion,R.Gouvin.Dynamic Stability of a Two-stage Gear Train under the Influence of variable Meshing Stiffness [J].ASME Journal of Engineering for Industry,l997(99):785-791.
    [30] K.Umezawa. The developed simulator and the performance diagrams for the vibration of helical gear. Proc.Inter.Conf.On Gears[J],Zhengzhou,China,1988:659-662.
    [31] F. K.Choy,Y. F.Ruan,Y.K.Tu.Modal Analysis of Multistage Gear Systems Coup1ed with Gearbox Vibration [J]. Journal of Mechanical Design,1992(114):486-497.
    [32] C. F. Beads. Damping instructure joints[J]. The Shock and Vibration Digest,1982(6).
    [33] Z. Q. Hou,Y. D.Cheng,etc. Modal parameter identification from multi-pointmeasured data[J]. Proceeding of the 2nd IMAC,Orlando,Florida,1984(2):6-9.
    [34]刘更,沈允文等.齿轮参数对斜齿轮传动振动特性的影响[J].西北工业大学学报,1992,10(1):67-73.
    [35]唐增宝,钟毅芳.直齿圆柱齿轮传动系统的振动分析[J].机械工程学报,1992,28(4).
    [36]唐增宝.提高多级齿轮传动系统动态性能的优化设计[J].机械工程学报,1994,30(5):65-75.
    [37]陶泽光,李润方,林腾蛟.齿轮系统有限元模态分析[J].机械设计与研究,2000(3):45-46.
    [38]郑光则,李润方.齿轮传动系统动态性能优化分析研究[D].重庆:重庆大学,2004.
    [39]吴富民.结构疲劳强度[M].西安:西北工业大学出版社,1985.
    [40]王学颜,宋广惠.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1992.
    [41]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981.
    [42]赵少汁,王忠保.抗疲劳设计—方法与数据[M].北京:机械工业出版社,1997.
    [43]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [44]韩鲁明.基于CAE技术的某半挂车车架疲劳寿命预估研究[D].南京:南京理工大学,2007.
    [45]阳光武.机车车辆零部件的疲劳寿命预测仿真[D].成都:西南交通大学,2005.
    [46] P.J.L.FERNANDES.Tooth Bending Fatigue Failures in Gears[J]. Engineering Failure Analysis,1996, 3(3):219-225.
    [47] P.J.L.FERNANDES. Failures in Gears Surface Contact Fatigue[J]. Engineering Failure Analysis,1997,4(2): 99-107.
    [48] M.Benedetti, V.Fontanari, B.R.Hohn. Influence of shot peening on bending tooth fatigue limit of casehardened gears[J]. International Journal of Fatigue,2002,24:1127-1136.
    [49] S.Glodez,M.Sraml,J.Kramberger. A computational model for determination of service life of gears[J]. international Journal of Fatigue,2002, 24(10):1013-1020.
    [50] J.Kramberger, M.raml, I.Potro. Numerical calculation of bending fatigue life of thin-rim spur gears[J]. Engineering Fracture Mechanics,2004, 71:647-656.
    [51] M.Guagliano , E.Riva, M.Guidetti. Contact fatigue failure analysis of shot[J]. Engineering Failure Analysis,2002, 9(2):147-158.
    [52] E. Akata, M.T. Altmbalik, Y. Can.Three point load application in single tooth bending fatigue test for evaluation of gear blank manufacturing methods[J]. International journal of Fatigue,2004, 26 (7):785-789.
    [53]臧廷杰.车辆传动系统随机载荷谱和疲劳设计研究[D].北京:北京理工大学,1999.
    [54]蒋轩,张军,郑慕侨.用断裂力学理论预估负重轮疲劳寿命[D].兵工学报,2000, 21(增),35-37.
    [55]高连华,郭金茂.车辆悬挂系统扭杆弹簧疲劳寿命的统计分析[J].装甲兵工程学院学报,1994, 8(1), 31-35.
    [56]李永东,张丙喜,贾斌.某型主战坦克扭力轴的疲劳断裂分析与寿命计算[J].机械强度,2004, 26(4):443-446.
    [57]李德建. 59坦克传动装置齿轮的疲劳分析[D].大连:大连理工大学,2007.
    [58]周长生.齿轮与滚动轴承故障诊断方法的应用研究及专家系统的建立[D].兰州:兰州理工大学,2007.
    [59]袁菲.某火炮传动系统随机载荷下齿轮疲劳寿命预测方法研究[D].西安:西北工业大学,2006.
    [60]陈东升,钟其水,陈欣.车辆变速箱齿轮弯曲疲劳寿命的估算[J].机械设计,2005(5).
    [61]符代竹.基于载荷谱的MT变速器疲劳设计及试验研究.重庆:重庆大学,2006.
    [62]朱孝录,易秉锁.齿轮的试验技术与设备[M].北京:机械工业出版,1988.
    [63]尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007.
    [64]刘德刚.车轮辐板表面应力状态及多轴疲劳寿命分析[C].中国科协第五届青年学术年会文集,2005:551-552.
    [65]刘克格,阎楚良,尚德广,张书明.多轴应力应变的一种新的计算方法[J].机械强度,2005,27(1):117-120.
    [66]尚德广.多轴疲劳损伤与寿命预测研究[D].沈阳:东北大学,1996.
    [67] M.Hoffmann,T.Seeger. Stress-Strain Analysis and Life Predictions of a Notched Shaft Under Multiaxial Loading.Multiaxial fatigue[J]. Analysis and experiments SAE Warrendale,PA 1989:81-99.
    [68] J.W.Fash,D.F.Socie,D.L.Mcdodwell. Fatigue Life Estimates for a Simple Notched Component under Biaxial Loading[J]. Multiaxial Fatigue. K.J.Miller,M.W.Brown,ed. ASME STP853,1985:497-513.
    [69] F.Eliyin. Cyclic Strain Energy Density As a Criterion for Multiaxial Fatigue Failure[J]. M.W.Brown,K.J.Millered,Biaxial and Multiaxial Fatigue,EGF Publications 3,1987:571-583.
    [70] Brown MW,Miller KJ. A theory for fatigue failure under multiaxial stress and strain conditions[J]. Proc.Inst. Mechanical Engineers,1973,187:745-755.
    [71] Hoffmann M,Seeger T. Stress-strain analysis and life predictions of a notched shaft under multiaxial loading[J]. Multiaxial Fatigue Analysis and Experiments,Ae-14,Society Engineers,Warrendale,PA,1989:81-99.
    [72]杨兰春.齿轮工程词典[M].北京:机械工业出版社,1994.
    [73]于开平,周传月,谭惠丰. Hypermesh从入门到精通[M].北京:科学技术出版社,2005.
    [74]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [75]王瑁成.有限单元法[M].北京:清华大学出版社,2003.
    [76]杜平安.有限元网格划分的基本原则[J].机械设计与制造,2000(1):34-36.
    [77]金晶,吴新跃.有限元网格划分相关问题分析研究[J].计算机辅助工程,2005(2):75-78.
    [78]陈静.轿车驱动轴等速万向节结构强度的有限元分析[D].长春:吉林大学,2005.
    [79]成思源.有限元的方法论[J].重庆大学学报, 2001, 7( 4) :61-6 3。
    [80]机械工程材料性能数据手册编委会.机械工程材料性能数据手册[M].北京:机械工业出版社,1995.
    [81]甘永立,陈晓华.机械精度设计基础.吉林:吉林人民出版社,2001.
    [82]庄茁,张帆等.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [83] (美)Hibbitt,Karlsson,Sorensen,INC著.庄茁等译.ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998.
    [84]张文元. ABAQUS动力学有限元分析指南[M].北京:中国图书出版社,2005.
    [85]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆大学出版社,1991.
    [86]李洪,曲中谦.实用轴承手册[M].沈阳:辽宁科学技术出版社,2001.
    [87]蔡春源.简明机械零件手册[M].北京:冶金工业出版社,2004.
    [88]王望予.汽车设计[M].北京:机械工业出版社,2005.
    [89]秦彦斌,陆品.机械设计(第七版)导教·导学·导考[M].西安:西北工业大学出版社,2005.
    [90]齿轮手册编委会.齿轮手册(上册)[M].北京:机械工业出版社,1990.
    [91]陈塑寰,聂毓琴等.材料力学[M].吉林:吉林科学技术出版社,2000.
    [92]王峰,曹光宇等.简明实验力学[M].北京:科学出版社,1993.
    [93]黄长艺、严晋强.机械工程测试技术基础[M].北京:机械工业出版社,2001.
    [94] (英)Dr.James Derek Smith,Marcel Dekker,INC著.吴佩江,潘家强译.齿轮振动与噪声[M].北京:中国计量出版社,1989.
    [95]张义民.机械振动力学[M].长春:吉林科学技术出版社,2000.
    [96]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [97] Nobuo Takatsu et al. Analysis and Experiment on the Vibration Transmission in a Single Stage Gearbox[J]. JSME International Conference on Motion and Power transmissions,1991,10:104-109.
    [98]李润方,韩西,林腾蛟.齿轮系统耦合振动的理论分析与试验研究[J].机械工程学报,2000,36(6):79-81.
    [99]张延超.故障齿轮传动系统动力特性分析与寿命研究[D].西安:西北工业大学,2006.
    [100]吴青凤.齿轮传动转子系统动力学特性的模态综合法[D].西安:西安科技大学,2006.
    [101]沈来荣.减少重复啮合频率对齿轮传动影响的途径探讨[J].铁道机车车辆,2004(10):33-35.
    [102]沃德.海伦,斯蒂芬.拉门兹,波尔.萨斯著.白化同,郭继忠译.屠良尧校.模态分析理论与试验[M].北京:北京理工大学出版社,2001.
    [103]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学,2000.
    [104]唐怀平.结构动力特性实验指导书[M].成都:西南交通大学,2000.
    [105]盛宏玉.结构动力学[M].合肥:合肥工业大学出版社,2005.
    [106]张延超.故障齿轮传动系统动力特性分析与寿命研究[M].西安:西北工业大学,2006.
    [107]佟晓刚.汽车齿轮失效预测的可行性研究[M].哈尔滨:哈尔滨理工大学,2006.
    [108]赵少汁,王忠保.抗疲劳设计一方法与数据[M].北京:机械工业出版社,1997.
    [109]苏志霄,刘宏昭,李鹏飞等.随机应力循环下结构疲劳寿命和可靠性的计算[M].机械强度,1999,21(2):137-140.
    [110]谢里阳,林文强,吕文阁.随机载荷下疲劳寿命估算[M].机械科学与技术,1996(11):90-93.
    [111]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991.
    [112]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究[M].成都:西南交通大学,2003.
    [113]赵九江,张少时,王春香.材料力学[M].哈尔滨:哈尔滨工业大学,1995.
    [114]顾浩.渐开线齿轮齿根断裂力学分析[D].南京:南京航空航天大学,2007.
    [115]吴胜军,徐有良.轻型汽车变速箱第一轴的疲劳分析[J].机械设计与制造,2008(5):111-112.
    [116]陶振荣.齿轮接触疲劳强度计算方法的探讨[J].机械设计与制造,2007(7):15-17.
    [117]叶华武,孟庆鑫.齿轮强度可靠性计算探讨[J].哈尔滨船舶工程学院学报,1987(3):56-63.
    [118]王国军,阎清东.齿轮弯曲疲劳寿命有限元计算方法研究[J].农业装备与车辆工程,2006(1):40-42.
    [119]章文强,盛云,于莉,吴光强.燃料电池轿车变速器齿轮接触应力分析及疲劳寿命计算[J].计算机辅助工程,2007(12):36-39.
    [120]朱孝录,易秉钱等.齿轮的试验技术与设备[M].北京:机械工业出版社,1988.
    [121]陈峰,马沛生,刘建业,雷俊良,杨瑞平,徐国良.有限元分析在齿轮失效分析中的应用[J].石油化工设备,2008(1):71-74.
    [122] S. Glodez, Z.Ren and G.fajdiga. Computational modeling of the surface teeth flanks[J]. Communications in Numerical Methods in Engineering,2001(17):529-541.
    [123]张晗亮.渗碳淬火齿轮接触疲劳强度可靠性试验[J].石油机械,1995(5):25-28.
    [124]郭婧.基于疲劳损伤累积假说的滚动轴承疲劳寿命计算[J].甘肃科技,2008(3):88-89.
    [125]高镇同.疲劳应用统计学[M].北京:国防工业出社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700