用户名: 密码: 验证码:
牵引变流器冷却系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机车电传动技术的发展,电力电子元件的散热控制已经变成非常重要而且关键的一个环节。对于牵引变流器来说,热量的产生、传递、发散与其本身的工作效率有紧密联系。冷却技术是牵引变流器核心技术之一,为了更好地消化和吸收国外先进的冷却技术,本论文选取先进的CRH2动车组牵引变流器,深入研究了其采用的冷却技术,建立HVIGBT的功率损耗模和冷却系统的仿真模,通过CFD软件对牵引变流器的损耗发热和散热情况进行了仿真分析。
     本文首先对几种常用冷却方式的形式与特点进行了详细说明和比较,其中从冷却系统组成的角度对CRH2动车组牵引变流器蒸发冷却系统进行了理论分析和研究。CRH2牵引变流器所采用的冷却方式,日方技术资料称之为沸腾冷却,它结合了热管冷却和大容器蒸发冷却的优点,传热原理与重力式热管冷却方式的传热机理相同,由于重力式热管没有吸液芯或毛细结构,这就使其具有制造工艺简单、生产成本低廉、工作可靠、传热效率高和具有较高的临界热流密度等优点。所以本文对重力式热管的相变冷却过程也给出详细的分析,并通过冷却剂选择的一般原则,从制冷剂的性能以及环境保护的角度提出了新的制冷剂THR02作为冷却介质选择的方案。
     再次,本文建立了功率元件HVIGBT的R-C等效发热模,阐述了HVIGBT的功率损耗计算公式,并通过热仿真软件将牵引变流器中的HVIGBT功率损耗计算出来,以此确定了牵引变流器中HVIGBT的发热量,为牵引变流器的热管冷却器的设计提供了热源参考值。
     最后,本论文就以重力式热管的传热机理对CRH2牵引变流冷却原理加以分析和说明,依据文中所计算得出的变流器损耗发热量,设计了满足实际运行条件的重力式热管冷却器,通过CFD软件QFIN的仿真分析得到了热管散热器在不同的冷却风速和翅片结构条件下的翅片温度分布曲线和云图,仿真结果表明所设计的重力式热管冷却器可以满足CRH2在实际运营环境下的冷却要求。
With the huge improvement of electrical driving technology for locomotive, the thermal design and control of power electronic components have became more important and more crucial. For traction converter, there is a close relationship between its efficiency and the caloric generating, thermal transferring. Cooling technology is one of the key technologies to enhance traction convector's efficiency. In order to well absorb the state of art cooling technology used by CRH2, setting up the numerical loss model of HVIGBTs for power loss analysis and the CFD simulation model for thermal analysis, are a very efficient and economic methods.
     At very first, detailed analysis of normal cooling technologies was performed in this paper, by comparing the performance and characteristics between varies cooling principles. There is also a theoretical analysis of cooling system of converter used by CRH2 electrical loco from the perspective of components of cooling system. The cooling method used in CRH2 is called Evaporative cooling techniques in Japanese technical paper. Its principle is very similar with thermosyphon heat-pipe, one kind of heat pipe. Because the thermosyphon heat-pipes have no capillary vessel structure, so they have many advantages like easy-made, cheap and high reliability with high thermal conductivity. For the reasons, the cooling principle of CRH2 converter is analyzed according to the phase cooling principle of thermosyphon heat-pipe in this paper. The phase cooling process of thermosyphon was analyzed in this paper. Based on the general principle of choosing refrigerant, the refrigerants that the CRH2 traction converter uses from the angle of refrigerants' characteristics and concern of environmental protection were analyzed. A new alternative THR02 was introduced in this paper.
     The second, this paper builds up a physical-mathematical R-C model of HVIGBT modular through experimental research for power loss analysis. The power loss of these modular was calculated according to the actual circuit and condition by using ABB's simulating software.
     At last, according the calculated power loss, a suitable heat-pipe heat exchanger is designed in this paper. By using the professional CFD software QFIN, the numerical simulations on heat exchanging process of the heat-pipe exchanger under the conditions of various velocities of cooling air and different fin shape were also performed. The simulation results indicated that the heat-pipe exchanger can fulfill on the cooling request of converter.
引文
[1]庄骏,徐通明,石寿椿.热管与热管换热器.上海:上海交通大学出版社,1988
    [2]齐永强,何雅玲,张伟等.电子设备热设计的初步研究.现代电子技术,2003(1):73-77
    [3]韩宁,等.“强迫对流散热器的优化设计”.计算机工程与科学,2001年4月;
    [4]荣智林,吴舒辞,“ICEPAK在三相PWM变流器模块散热分析中的应用”,机电产品开发与创新,1002—6673(2007)06-061-03;
    [5]杨秀杰,佟林晖,“风冷热管散热在大整流装置中的应用”,大电机技术,NO.5,2001:
    [6]B.Wiecek,"Heat pipe cooling fins for integrated circus," in Proc.Workshop Micro technol.Thermal Problems Electron.—Microtherm' 98,Zakopane,Poland,Sept.21-27,1998;
    [7]S.D.Garner,Heat Pipes for Electronics Cooling Applications:Thermacore,Inc.,1999;
    [8]Karan Tewari,Shoubhik R.Doss,Bin Chen,Alex Q.Huang,"Electro-Thermal Design of a Heat Pipe Based High Power Voltage Source Converter Using Emitter Turn-Off Thyristor",1-4244-0365-0/06/$20.00(c)2006 IEEE
    [9]三菱伊丹制作所CRH2技术文件;
    [10]陶汉中,“热管式大功率电子模块散热器的研究与开发”,南京工业大学硕士论文,2003年3月;
    [11]张舟云,徐国卿,沈祥林,“牵引逆变器散热系统的分析与设计”,同济大学学报(自然科学版),Vol.32 No.6,2004
    [12]黄炜,何人望,周瑜,“高压变频器散热系统的研究与设计”,华东交通大学学报,Vol.23 No.5,Oct.,2006
    [13]朱明善,赵晓宇,史琳,韩礼钟,“新一代长期绿色环保制冷剂THR02”,清华大学学报(自然科学版),1997年第37卷
    [14]赵晓宇,史琳,韩礼钟,朱明善,“新制冷剂THR02的应用性能试验研究”,制冷学报,4.1998
    [15]蔡静,“可控硅整流电路的蒸发冷却研究”,河北工业大学研士论文,2002年1月
    [16]谢秀刚,“大功率整流器件蒸发冷却技术的研究”,中国科学院硕士论文,2005年4月
    [17]赵辉,“高热流密度回路型重力热管散热器传热特性的理论研究”,浙江大学硕士学位论文2004年1月
    [18]孙玮,“热管电子器件散热器的数值模拟和实验研究”,浙江大学硕士学位论文,2003年1月
    [19]Bjorn Backlund,Raffael Schnell.ABB Semiconductors,May 200?
    [20]ABB technical book,Doc.No.5SYA1556-03 May 05
    [21]BEHNIA.CFD simulations of heat transfer from a heated module in An air stream:Comparisons with experiments and a parametric study[J].Thermal Mechanical Phenomena in Electronic Systems-Proof the Int Con 1998 IEEE,1998:143-151
    [22]陶汉中,“热管式大功率电子模块散热器的研究与开发”,南京工业大学,硕士研究生论文,2003.3
    [23]李劲东,李寒亭.圆管热管内部流动与传热的模化及其数值模拟[C].第5届全国热管会议论文集.无锡:1996.9:14-20;
    [24]何加仑,马同泽,张正芳.两相闭式热虹吸管内液池膨胀高度的研究
    [25]第3届全国热管会议论文集.都江堰:1991.7:50-55;
    [26]郭烈锦,陈学俊,周芳德.闭式重力热虹吸管工作极限的理论研究[C].第3届全国热管会议论文集.都江堰:1991.7:62-70;
    [27]庄骏,张红.热管技术及其工程应用[M].化学工业出版社.2000年6月第1版:
    [28]Shiraishi,M K Kiiuchi,Yamanishi T.Investigation of heat exchangerCharacteristics of two-phase closed thermosyphon[C].Proc 4th IHPC London.1981
    [29]Amir Faghri,"Heat Pipe Science & Technology ".Taylor & Francis Copyright.1995
    [30]Faghri.A,"Peorfrmanc echaracteristics of a concentric annula rheat pipe:Part2-VaPor flow and analysis",ASMEJ.Heat Transefr[J]111:851-857
    [31]Imura.H.heat transfer-Jap.Res.1979,(2):42
    [32]Kusuda.H,Imura.H," Boiling heat transefer in an open thermosyphon,Bulletin of the JSME,1973,16:1734
    [33]Dunn.P.ReayDA.Heat pipes[M]Oxofrd[Eng]Pegramon Press:1978
    [34]黄定寅.电力晶闸管热管散热器的新结构与传热试验.电力电子技术,1993(4):55-57
    [35]陶生桂,董东甫.热管散热器的特点及其在国内外的应用情况.机车电传动1999(4):3-5
    [36]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004
    [37]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2005
    [38]梁德才,简弃非.“散热器翅片结构对流体流动及换热过程影响的数值仿真研究”,电子机械工程,2007,23(1):24-27.
    [39]Thomas.Perrotin,Denis.Clodie.Thermal hydraulic CFD study in louveredfin and flat tubeheat exchangers.International Journal of Regeration,2004,27:422-432
    [40]陶文锉.数值传热学.第二版.西安:西安交通大学出版社,2001
    [41]P.J.Heggsand,P.R.Stones.The Effects of Non Uniform Heat Transfer Coefficients in The Design of Firmed Tube Air-cooled Heat Exchangers.international HeatTrans reon企renee.7th,Munehen,1982,Vol.3
    [42]]Amir Faghri,"Heat Pipe Science & Technology".Taylor & Francis Copyright.1995;
    [43]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社,2004.8
    [44]杨泽亮,宋卓睿,宋耀祖.纵向涡发生器强化换热的场协同分析.华南理工大学学报,2002.6,30(6):33-35
    [45]袁斌,“矩形平翅片热管散热器的传热分析和数值模拟”,江苏大学硕士论文,2006年12月
    [46]黄冬梅.ICEPAK在电信机柜热分析中的应用.FLUENT第一届中国用户大会
    [47]Bjorn Backlund,Rafael Schnell,"Semiconductors",ABB Switzerland Ltd,May 200?;
    [48]Yasushi Abe,Kunio Matsubara,Toshiharu Mochida,"A Novel Method for Loss Reduction in High-Voltage Inverters"0-7803-9208-6/05/$20.00(C)2005 IEEE;
    [49]M.Mori et al.,"A High Power IGBT Module for Traction Motor Drive",Proceedings of ISPSD,p287(1993);
    [50]M.Rahimo,A.Kopta,R.Schnell,U.Schlapbach,R.Zehringer,S.Linder," 2.5kV-6.5kV Industry Standard IGBT Modules Setting a New Benchmark in SOA Capability".ABB technology papers;2000
    [51]M.Rahimo,A.Kopta,E.Carroll," HiPak~(TM)high voltage IGBT modules with SPT chips setting new standards in SOA performance" ABB technology papers,1998
    [52]S.Bemet,R.Teichmann,A.Zuckerberger and P.Steimer,"Comparison of high power IGBTs and hard driven GTOs for high power inverters",Conf.Rec.ZEEE-APEC,1998,pp.71 I-718
    [53]P.A.Oahono,Y.SatO,T.Karaoke" Analysis of conduction losses in inverters" IEE Proc.-Electr.Power Appl.,Vol.142,No.4,July 1995
    [54]H.Alan Mantooth,Allen K Hefner,Jr."Electro-thermal Simulation of an IGBT PWM Inverter",0-7803-1243-0/93503.0d0 1993 IEEE
    [55]C.HuangS,P.Melcher,G.Ferguson and R Ness," IGBTAND DIODE LOSS MEASUmMENTS IN PULSED POWER OPERATING CONDITIONS",0-7803-8586-1/041$20.0002004 IEEE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700