用户名: 密码: 验证码:
噁唑酰草胺在水稻及环境中的残留动态及丙溴磷在土壤中的吸附与迁移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了高效液相色谱(HPLC)法同时测定水稻田水、土壤、水稻植株、稻米和稻壳中的噁唑酰草胺及其3种代谢物残留量的分析方法,通过两年的田间试验明确了10%噁唑酰草胺乳油在水稻生长初期使用后噁唑酰草胺及其代谢物在水稻植株、稻田土壤和田水中的残留动态、降解规律以及最终残留量,并研究了丙溴磷在不同地区三种土壤中的吸附和迁移规律,主要结论如下:
     1.建立了高效液相色谱(HPLC)法同时测定水稻及环境中噁唑酰草胺及其3种代谢物残留量的分析方法。以乙腈和水的混合液作为提取溶剂,硅胶层析柱净化,采用高效液相色谱法以乙腈-水作为流动相,梯度洗脱,紫外检测器224nm检测。结果表明噁唑酰草胺及其3种代谢物HFMPA、HPFMPA、6-CBO在0.5-20mg/L范围内,色谱峰面积与农药浓度呈良好的线性关系,相关系数达0.9993-0.9999,最小检出量分别为0.432ng、0.502ng、0.268ng、0.317ng。4种化合物在土壤、水稻植株、稻米和稻壳中的最低检测浓度均为0.1 mg/kg,在田水中的最低检测浓度为0.02 mg/kg,平均回收率在78.2-106.9%之间,变异系数为2.0-11.7%。该方法能同时提取、净化和检测噁唑酰草胺及其3种代谢物,且重现性好,方法的灵敏度、准确度均能达到农药残留分析的要求,适用于对实际样品中噁唑酰草胺及其代谢物残留量的分析与检测。
     2.研究了10%噁唑酰草胺乳油中噁唑酰草胺及其代谢物在水稻植株、稻田土壤和田水中两年的消解动态。结果表明,噁唑酰草胺在稻田水、土壤、水稻植株中的降解过程符合一级动力学方程Ct=Coe"kt。(?)噁唑酰草胺在稻田水、土壤和水稻植株中的消解半衰期分别为3.3-7.4天,9.1-14.3天和1.5-2.2天。而噁唑酰草胺的三种代谢物HFMPA、HPFMPA和6-CBO的残留量很低,并且消长的规律性不明显。
     3.根据噁唑酰草胺及其代谢物在水稻上的最终残留试验研究,在水稻生长初期以10%噁唑酰草胺乳油120-240克(有效成分)/公顷施药1次,最后一次施药距采收间隔天数为83-90天,土壤、水稻植株、稻米和稻壳样品中的噁唑酰草胺及其代谢物的残留量均小于最低检测浓度。说明10%噁唑酰草胺乳油按照推荐剂量在水稻生长初期使用,对水稻和环境是安全的。
     4.采用气相色谱法建立了丙溴磷在水和土壤中的残留分析方法。以乙腈进行振荡提取,用气相色谱FPD检测器测定。结果表明在0.2-20mg/L范围内,丙溴磷浓度与色谱峰面积呈良好的线性关系,相关系数为0.9999;丙溴磷在水和土壤中的平均回收率在87.2%-103.6%之间,变异系数为4.8%-9.9%;丙溴磷在水中的最低检测浓度为0.005mg/kg,在土壤中的最低检测浓度为0.05mg/kg,符合农药残留分析要求。
     5.采用平衡吸附法和薄层层析法研究了丙溴磷在砂土、壤土和粘土中的吸附和迁移特性。结果表明:丙溴磷在砂土、壤土和粘土中的吸附常数Kd分别为12.70、33.65和74.92,土壤对丙溴磷的吸附能力与土壤有机质含量呈正相关,而丙溴磷在3种土壤中的Rf值由大到小的顺序为砂土>壤土>粘土,与Kd值成负相关关系。丙溴磷的移动性分别表现为在砂土、壤土中不易移动,在粘土中不移动。说明了丙溴磷在3种类型土壤中的吸附性和移动性的试验结果相一致。
In this paper, it was studied that the residue analysis of Metamifop and its three major metabolites and the residue dynamics and final residues in rice plant, paddy water, and soil. Under laboratory conditions, the adsorption and mobility of profenofos in three kinds of soils were also studied using batch equilibrium technique and soil thin layer chromatography. The results could be summarized as followings:
     1. The high performance liquid chromatographic method was developed for the simultaneous determination of Metamifop and its three major metabolites in rice and environment. Residues were extracted with a mixture of acetonitrile and water, followed by cleanup with a silica gel column, and determinationed by HPLC with a linear gradient elution program of acetonitrile and water as the mobile phase and ultraviolet detection at 224 nm.The results showed that the linear range of Metamifop and its metabolites were from 0.5 to 20mg/L, the correlation coefficients were 0.9993 to 0.9999, the limit of detection were 0.432ng,0.502ng,0.268ng,0.317ng, respectively. The minimum detectable concentration of the 4 analytes in soil, rice straw,rice hulls and unpolished grain samples were all O.lmg/kg, and 0.02mg/kg in paddy water samples.Average recoveries were 78.2 to 106.9%,and the coefficient of variation ranged from 2.0 to 11.7%. Under the same operation condition, good chromatographic separation of the 4 analytes was achieved. The Sensitivity, accuracy and repeatability of the method were fitted for the requirement of pesticide residue analysis and detection, and it was easy to perform in practice.
     2. Degradation dynamic of 10% Metamifop EC and its metabolites in rice and environment was studied by a two-year field experiment. The results showed that the degradation procedure of Metamifop in paddy water, soil and rice straw all accorded with the one-level dynamic equation Ct=Coe-kt; the half-life of Metamifop in paddy water, soil and rice straw were 3.3-7.4d,9.1-14.3d and 1.5-2.2d, respectively. The degradation of its three major metabolites (HFMPA, HPFMPA and 6-CBO) was irregular.
     3. Terminal residue of Metamifop and its metabolites in rice plant and soil was studied by a two-year field experiment. The results showed that when 10% Metamifop EC was applied at 120-240g.ai/ha one time, and the interval between harvest and the last pesticide application was 83-90 days, the final residual quantities of Metamifop and its three major metabolites in soil, rice straw,rice hulls and unpolished grain samples were both lower than the minimum detectable concentration. And 10% Metamifop EC was safe at this recommended dosage in the early growth of rice.
     4. An analytical method for determining Profenofos residues in water and soil by GC was described.The samples were extracted with acetonitrile, detected by GC with FPD detector. The results showed that the linear range of Profenofos was from 0.2 to 20mg/L, the correlation coefficient was 0.9999; the minimum detectable concentration in soil and water samples were 0.05mg/kg,0.005mg/kg, respectively; average recoveries were 87.2 to 103.6%, and the coefficient of variation ranged from 4.8 to 9.9%. The results of test have met the requirement of pesticide residue analysis.
     5. The adsorption and mobility of Profenofos in three kinds of soils were studied using batch equilibrium technique and soil thin layer chromatography. The results showed that absorption constant (Kd) of Profenofos in sand,1oam and clay is 12.70, 33.65 and 74.92, respectively. The soil adsorption capacity of Profenofos is positively related with the contents of soil organic matter. The mobility of Profenofos in three soils was shown that Profenofos don't easily move in 1oam and sand, don't move in clay.
引文
[1]黄德智,岳永德,汤锋.农药残留分析的研究进展[J].安徽农业科学,2002,30(4):523-526.
    [2]仲维科,郝戬,樊耀波,等.食品农药残留分析[J].分析化学,2000,28(7):904-910.
    [3]刘春来,刘照清,胡昌弟,等.小麦及其环境中噻吩磺隆残留的分析方法研究[J].湖南农业科学,2008,3:113-115.
    [4]郑和辉,吕静.农药残留检测技术进展概况[J].农药科学与管理,1997,18(2):10-12.
    [5]樊德方.农药残留量分析与检测[M].上海:上海科技出版社,1982.
    [6]岳永德.农药残留分析[M].北京:中国农业出版社,2004:27-43.
    [7]唐俊,汤锋,操海群,等.啶酰菌胺在黄瓜和土壤中残留分析方法研究[J].安徽农业大学学报,2008,35(4):550-554.
    [8]楼小华,梁大锡.多效唑在稻谷、稻株、土壤和田水中残留分析方法研究[J].农药,1990,29(1):31-31.
    [9]郝丽丽,薛健.银杏叶中18种有机氯农药的多残留分析[J].分析化学,2006,34(2):231-234.
    [10]朱莉萍,朱涛,孙军,等.磺化法-气相色谱测定蔬菜中六六六、DDT残留量[J].农药,2007,17(11):2009-2010.
    [11]郝丽丽,薛健.菊花中18种有机氯农药的多残留分析[J].药物分析杂志,2006,26(12):1838-1840.
    [12]王小丽,王素利,陈振山.黄瓜及其栽培土壤中甲氨基阿维菌素苯甲酸盐的残留动态研究[J].农业环境科学学报,2005,24(增刊):307-310.
    [13]田金改,杜庆鹏,高天兵.HPLC法测定中药中农药灭幼脲残留量的方法研究[J].中草药,2003,31(3):179-181.
    [14]陈莉,卢发家,韦军.3种浓缩方法对莴笋中7种有机磷农药残留量的分析比较[J].广西植保,2008,21(3):18-20.
    [15]王文芝,赵玉娟,樊能廷.反相高效液相色谱法检测马铃薯中抑芽剂氯苯胺灵[J].现代科学仪器,2003,27(1):59-61.
    [16]蒋国辉,郑永权,董丰收,等.农药残留检测技术研究进展[J].农业质量标准,2005,1:32-36.
    [17]张心明,余向阳,洪晓月,等.固相萃取-气相色谱法测定农产品中嘧霉胺的残留量[J].食品科学.2007,28(11):424-427.
    [18]赖穗春,王富华,邓义才,等.国内外农药残留分析技术研究现状与发展[J].广东农业科 学,2006,1:76-77.
    [19]Hercegova A, Domotorova M, Matisova E, et al. Fast gas chromatography with solid phase extraction clean-up for ultratrace analysis of pesticide residues in baby food[J]. J. Chromatogr. A,2005,1084:46-53.
    [20]Arthur C L, Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal. Chem.,1990,62:2145.
    [21]Arthur C L, Killam L M, Buchdz K D, et al. Automation and optimization of solid-phase microextraction[J]. Anal. Chem.,1992,64:1960.
    [22]Popp P, Kalbitz K. Application of solid-phase microextraction and gas chromatography with electron-capture and mass spectrometric detection for the determination of hexachloro-cyclo haxnes in soil solutions[J]. J. Chromatogr. A,1994,687:133.
    [23]Eisert R, Levsen K, Wunsch G. Element-selective detection of pesticides by gas chromatogra-phy-atomic emission detection and solid-phase microextraction[J]. J. Chromatogr. A,1994, 683:175.
    [24]冯峰,高松亭,韩朔暌.固相微萃取-高效液相色谱法测定除草剂苯噻草胺[J].农业环境科学学报,2003,22(2):242-243.
    [25]Lopez-Avila V, Dodhiwala N S, Bockert W F. Supercritical fluid extraction and its application to environment alanalysis [J]. J. Chromatogr. Sci.,1990,28:468-476.
    [26]Roberto A, Josep M. B. Use of supercritical fluid extraction for pirimicarb determination in soil[J]. J. Agric. Food Chem.,1995,43:395-400.
    [27]杨立荣,陈安良,张兴.超临界流体萃取法测定定虫隆残留[J].农药,2003,42(11):26-28.
    [28]杨立荣,张兴,陈安良,等.小白菜中残留虫酰肼的超临界流体萃取条件的研究[J].色谱,2004,22(3):263-266.
    [29]黄琼辉.样品现代前处理技术在农药残留分析中的应用[J].农药科学与管理,2006,27(5):12-17.
    [30]叶明立,朱岩.ASE加速溶剂萃取技术在食品、农残方面的分析应用[J].现代科学仪器,2003,1:35-36.
    [31]万宇.农药残留分析样品前处理技术新进展[J].安徽化工,2006,2:19-20.
    [32]刘雯.微波萃取气相色谱法测定十壤中六六六、滴滴涕[J].环境科学与技术,2005,28(1):35-36.
    [33]Lopez-Avila V, Young R, Beckert W F. Microwave-assisted extraction of organic compounds from standard reference soils and sediments[J]. Anal. Chem.,1994,66:1097-1106.
    [34]李娟,丁曦宁.胡冠九,等.微波萃取-气相色谱/质谱法测定土壤中的有机氯农药[J].中国环境监测,2005,21(4):49-51.
    [35]刘咏梅,王志华.凝胶渗透色谱技术在农药残留分析中的应用[J].分析测试学报,2005,24(2):123-125.
    [36]吴瑛,袁守亮,任丽萍.农业环境中农药残留的快速检测法-分子印迹技[J].安徽农业科学,2007,35(17):5040-5041.
    [37]王宁,董襄朝.单嘧磺隆除草剂分子印迹聚合物的识别特性研究[J].分析测试学报,2004,23(4):13-17.
    [38]丁黎.药物色谱分析[M].北京:人民卫生出版社,2008:26-69.
    [39]赵云丰,陈建民,王绪卿.GC-MS分析法在人参有机氯农药残留检测中的应用[J].卫生研究,1999,28(1):53-54.
    [40]刘永波,贾立华,牛淑妍.气-质联用快速检测蔬菜、水果中农药多残留的分析方法[J].青岛利·技大学学报,2003,24(6):491-495.
    [41]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 19648-2006.水果和蔬菜中500种农药及相关化学品残留量的测定气相色谱-质谱法[S].北京:中国标准出版社,2006.
    [42]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T20776-2006.粮谷中372种农药及相关化学品残留量的测定液相色谱-质谱法[S].北京:中国标准出版社,2006.
    [43]陈义.毛细管电泳技术及应用[M].北京:化学工业出版社,2000:1-2.
    [44]付月.超临界流体技术及其研究进展[J]_河北农业科学,2007,11(6):112-115.
    [45]郭亚东.超临界流体色谱在药物分析中的应用[J]_天然产物研究与开发,2001,13(3):61-62.
    [46]刘永杰,张金振.酶抑制法快速检测农产品农药残留的研究与应用[J].现代农药,2004,3(2):25-27.
    [47]许艇,李季.农药免疫分析技术的发展及应用[J].农业环境与发展,2002,3:42-44.
    [48]李颖娇,张荣全,叶非.生物传感器在农药残留分析中的应用[J].农药科学与管理,2003,24(8):11-13.
    [49]曾仲武,姜雅君.新稻田除草剂Metamifop[J].农药,2004,43(7):327-328.
    [50]苏少泉ACCase特性、功能及其抑制除草剂发展与杂草抗性[J].农药研究与应用,2006,10(6):1-8.
    [51]石小清,柏亚罗.顾群.2003年BCPC植保大会介绍的农药新品种[J].现代农药,2004,3(1):36-39.
    [52]苏少泉.稻田除草剂的新发展[J].农药研究与应用,2006,10(2):8-10.
    [53]刘远雄,邹本勤,柴宝山,等.除草剂研究开发的新进展与发展趋势[J].农药,2007,46(10):649-652.
    [54]Kim D W, Chang H S, Ko Y K, et al. Preparation of Herbicidal Benzoxazolyloxyphenox-Ypropionamides:WO,2000005956[P].2000-02-10.
    [55]Cho G Y, Jang H S, Kim J S, et al. Herbicide Composition Containing Cyhalofop and Metamifop as Effective Ingredient and Method of Controlling Grassy Weeds Using Same: KR,2003071215[P].2003-09-03.
    [56]林郁.农药应用大全[M].北京:中国农业出版社,1989.
    [57]王永昌.丙溴磷液相色谱分析的研究[J].山东化工,2003,32(5):36-37.
    [58]姜欣.4种常用有机磷农药反相高效液相色谱分析[J].农药,2009,48(4):272-273.
    [59]郑春慧,杨立刚,姚志云,等.白菜中有机磷农药的电纺纳米纤维固相萃取-高效液相色谱法测定[J].分析测试学报,2009,28(8):926-930.
    [60]高晓晖,张不龙.丙溴磷的气相色谱分析[J].农药,1999,38(3):12-13.
    [61]赵文英,沈翠丽,丁宁,等.丙溴磷在棉花及土壤上的残留分析[J].青岛科技大学学报,2008,29(4):305-309.
    [62]_王海勤,郭建辉,陈丽萍.毛豆中丙溴磷残留量的测定及降解动态分析[J].中国农学通报,2006.22(7):121-124.
    [63]李志华,刘黛莉.丙溴磷残留量测定方法的研究[J].农药,1995,34(5):33-34.
    [64]陈雁君,卢映华,张娟等.西红柿、卷心菜残留丙溴磷的提取及气相色谱-火焰光度检测法分析[J].色谱,2001,]9(3):283-285.
    [65]卢英华,陈雁君,于志军,等.土壤中丙溴磷含量及降解动态研究[J].环境与健康杂志,2002,19(5):377-378.
    [66]陈雁君,卢英华,梁纪伟,等.油菜中丙溴磷残留量的测定及残留动态研究[J].中国卫生检验杂志.2002,12(1):49-50.
    [67]刘维屏,季瑾.农药在十壤-水环境中归宿的主要支配因素-吸附和脱附[J].中国环境科学,1996.16(1):25-30.
    [68]USEPA. Environmental Protection Agency[J]. Fed. Regist.,1975,40(12):2681.
    [69]蔡道基.化学农药环境安全评价试验准则[S].北京:国家环保总局,1989,1.
    [70]单止军,朱忠林,蔡道基.砒虫啉的环境行为研究[J].农药科学与管理,1998,19(4):11-15.
    [71]杨克武,安凤春,莫汉宏.单甲脒在土壤中的吸附[J].环境化学,1995,14(5):431-435.
    [72]郑巍,刘维屏.除草剂普杀特在土壤-水两相中的吸附-脱附和光解[J].中国环境科学,1998,18(5):476-480.
    [73]Arnaud B, Richard C, Michel S. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils [J].Chemosphere,2005,61(8):668-676.
    [74]吴星卫,单正军,孔德洋.2.4-二氯苯氧基乙酸在土壤中的吸附淋溶特性[J].农业环境科 学学报,2009,28(4):691-695.
    [75]张瑾,闫书军.农药在土壤中淋溶迁移影响因素研究进展[J].安徽建筑工业学院学报(自然科学版),2008,16(4):38-42.
    [76]蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1999:217-221.
    [77]刘维屏.农药环境化学[M].北京:化学工业出版社,2006,121-124.
    [78]郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性[J].环境科学,2001,22(5):117-121.
    [79]张爱云,单正军,蔡道基.甲基异柳磷等四种农药在土壤薄层板上的移动性能[J].农村生态环境学报,1994,10(2):29-32.
    [80]朱文达,涂书新,王楼明.不同剂型甲磺隆在土壤中淋洗和迁移分布的研究[J].农药,1998,37(2):20-22.
    [81]郑麟,王福钧.14C-氟乐灵在十壤中的迁移和降解[J].核农学报,1993,7(1):37-44.
    [82]Hance R J. Adsorption of Glyphosate by Soils[J]. Pestic. Sci.,1976,7:363-366.
    [83]徐瑞薇,胡钦红,靳伟等.多效唑在土壤中降解、吸附和淋溶作用[J].环境化学,1994,11(3):1-4.
    [84]陈祖义,程薇,黄世乐,等.绿磺隆在土壤中的迁移特性[J].南京农业大学学报,1994,17(3):121-127.
    [85]蔡道基,朱忠林,单正军,等.涕灭威对地下水污染敏感区的预测与区划试点[J]_环境科学进展,1995,3(1):11-37.
    [86]农业部农药检定所.农药残留量实用检测方法手册[M].北京:中国农业科技出版社,1995:28-31.
    [87]农业部农药检定所.NY/T788-2004.农药残留试验准则[S].北京:中国农业出版社,2004.
    [88]郑和辉,叶常明.环境样品中乙草胺和丁草胺的残留分析[J].中国环境科学,2001,21(3):217-220.
    [89]余向阳,骆爱兰,储瑞武,等.高效液相色谱法测定葡萄中嘧霉胺的残留量[J].江苏农业学报,2004,20(4):268-270.
    [90]陈莉,戴荣彩,陈家梅,等.四唑嘧磺隆水分散粒剂在稻田环境中的残留动态[J].农药,2006,45(3):186-188.
    [91]刁传芸,孙立荣,常有宏,等.梨中毗虫啉的高效液相色谱分析[J].江苏农业学报,2007,23(6):638-641.
    [92]Li F S, Martens D, Kettrup A. Simultaneous determination of sixteen phenylurea herbicides in water by High Performance Liquid Chromatography and Solid Phase Extraction[J]. Chin. J. Chromatogr.,2001,19(6):534-537.
    [93]陈雁君,卢英华,刘君,等.水中丙溴磷的富集及气相色谱分析[J].分析化学,2000, 28(7):887-889.
    [94]杨宏伟,贾长宽,鸟地,等.敌敌畏在土壤中吸附特性的研究[J].环境科学研究,2006,19(2):35-38.
    [95]张伟,王进军,张忠明,等.烟嘧磺隆在土壤中的吸附及土壤性质的相关性研究[J].农药学学报,2006,8(3):265-271.
    [96]莫汉宏.农药环境行为论文集[M].北京:中国科学技术出版社,1994.
    [97]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97.
    [98]Cavanna S, Garatti E, Rastelli E, et al. Adsorption and desorption of Bensulfuron-methyl on Italian paddy field soils[J]. Chemosphere,1998,37(8):1547-1555.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700