用户名: 密码: 验证码:
大型地下洞室群工程稳定性风险评估系统及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的飞速发展,与交通建设及水利、矿产资源开发等有关的地下空间工程越来越多,它们的安全性关系着国计民生,因此急需要开展隧道、地下厂房等地下空间工程的施工和运行期间稳定性及风险分析研究。相对于隧道、边坡等其他岩石工程,地下厂房类洞室群的风险分析方面的相关研究却很少。本文研究针对地下厂房类洞室群的特点,以进行地下工程,特别是地下洞室群工程风险评估研究的理论和实用方法为目标,在其基本理论体系、关键基础问题、基本评估方法等方面开展了系统的研究工作;借助系统的方法和模糊数学对工程进行了稳定性评价,继而建立适合大型地下洞室群工程的风险评价体系,这是预防地下工程事故的有效措施,也对地下工程的设计、施工和稳定性维护具有重要的指导作用。
     通过国内外大量文献研究,分析了国内外稳定性风险研究进展、现状以及风险分析在岩石地下工程中的应用,介绍了风险的基本概念,深入讨论各种分析方法,研究了稳定性及风险研究存在的问题及发展的方向,指出目前“半定量半定性”的风险分析方法仍是地下工程,特别是地下洞室群风险分析中可操作性强的办法;以此为基础,提出了本文的研究方向和研究内容。
     对地下洞室群结构进行风险识别,研究了在地下隐蔽工程中存在的大量不确定性,正是这些不确定性决定了稳定性风险分析的随机性、模糊性、动态性;对地下工程失稳事故发生的机理进行了分析,从力学理论角度,确定了会导致洞室群失稳的风险指标因素。
     系统地研究了地下工程稳定性判据,以及各类判据的应用方法。以改进的“弹塑性位移相对值”判据为主,其它判据为辅,定义了地下洞室群工程稳定性风险判别指标“SI”;根据不同的稳定性风险判别指标来划分不同的稳定等级,对洞室的稳定性进行判断。
     构造多因素多层次评价模型,将模糊数学和系统论方法应用到工程的稳定性评价中。采用层次分析法(AHP)对影响洞室稳定的因素进行权重分析,得出多级层次各因素的权重;当洞室群稳定影响因素取不同的分位值时,利用已有的数值模拟方法对在建或已建的工程进行各种工况的数值模拟分析,提取位移结果计算得到风险失稳指标“SI”,所有指标汇总值组成“模糊隶属数据库”,用确定性方法表达了岩石工程中的不确定性,解决了洞室群在进行多因素综合模糊评判时最关键的问题。今后,某个具体工程各个因素对评价集的隶属度可以直接在库中查询到,然后逐级评判,最终根据最大隶属度原则,给出洞室群的稳定性的模糊级别,对洞室的稳定性作出评价。
     在得出洞室群稳定性等级的基础上,整体研究洞室群工程的风险。建立风险评估体系,用综合模糊评判模型将风险的两大要素“概率”和“后果”联系起来,并引入“监控程度”和“重视程度”两个因素;综合考虑四大因素,建立了合理的风险评估模型、评价风险等级、各评价因素的隶属函数,将不精确的表达和处理数字化,使评估过程更趋科学化。为进行科学合理的地下工程,特别是地下洞室群风险评价提供了一种新方法,为今后新建地下洞室群的风险评估提供了借鉴。
     将前面风险分析研究应用在风险控制中,用VB语言开发了Stability RiskAssessment Analysis软件;结合沪蓉西高速公路乌池坝隧道工程施工中的突发事件紧急预案演练为例讲述了风险预警机制的建立。最后,对地下工程风险分析理论和方法进行了总结展望,明确了地下洞室群工程稳定性风险分析中存在的问题及今后努力的方向。
With the development of national economy and progress of the society, the under-ground engineering related with traffic construction, irrigation works and mineral resources etc. are paid attention to by people day by day. Their safety is contacted with the people life. So studying the stability and risk of the under-ground engineering such as tunnel and workshop is necessary assuredly. Compared with other rock engineering such as tunnel or slope, the research of risk analysis about under-ground workshop cavern group is absent. According to characteristics of underground engineering, the goal of this paper is researching the theory and practical method of underground cavern group stability and risk evaluation. The studying work on basic theory, key foundation and essential evaluating method are carried out. The stability of underground engineering is evaluated by means of system approach and fuzzy mathematics, and further risk evaluating system is founded to adapted to underground cavern group works. All these work can prevent the occurrence of underground accident effectively. It's important guidance to the design, construction and stability maintenance of underground engineering.
     Based on study of the relevant literature at home and abroad, the author analyzes the research development, results, problems, and trends in this field. The essential conception is introduced and all kinds of analyzing method are discussed. It is reasonable that the "half-qualitative half-quantitative" risk analysis method is applied on the underground works especially the cavern group engineering. Based on above analysis, the author set the research direction and content accordingly.
     The risk factors in underground caverns are identified. Much uncertainty in the underground hidden projects is studied and they induced the stochastic, fuzziness and dynamics in the stability risk. And then the mechanism of instability accident is researched. Risk index are confirmed that may introduce rock cavern to instability, from mechanics principles.
     The underground project stability criteria and a variety of criteria applied to the most intuitive are studied. Based on the most useful "relative displacement of elastic-plastic," supplemented by other criteria, the underground caverns identify indicators of risk the stability of the project "SI" is definited. Depending on the stability of the risk indicators to determine the stability of the division of the different grades of the chamber for the stability of the judge.
     Multi-factor model and multi-level evaluating model is construction. Fuzzy systems theory and methods applied to the stability of the project evaluation. Using AHP (AHP) impact on the stability of the chamber's analysis of the weight factors, composing the weight factor of secondary levels. When the factors that affect the stability of the caverns take place at a different value, the use of the numerical simulation of the works for a variety of intrinsic conditions. The results of the extraction of displacement has been calculated risk indicators of instability "SI". All computing results composed the "fuzzy membership database". By this way, uncertainty is expressed by the certainty. The most critical issues of caverns can be confirmed though the multi-factor fuzzy evaluation. In the future, a specific project on the evaluation of the various factors may be queried from the database. And then in accordance with the ultimate the largest membership principle, the stability of the caverns of the fuzzy level will be ensured.
     Subject to the findings of caverns level of stability on the basis of the totality of the caverns project risks. The establishment of a risk assessment system, using fuzzy comprehensive evaluation model will be the two major risk factors "probability" and "consequences" link. At the same time, the "degree of control" and "attention" are introduced. The four major factors establish the reasonable risk assessment model to evaluate the risk level. The evaluation of the factors will be imprecise expression and processing of digital, that leads the evaluation process more scientific. Carrying out the work on the ground floor, especially on the underground caverns, provides a new ideas and methods to the risk assessment. That also provided a reference to the risk assessment in the underground caverns.
     Based on the above research, the application of risk control are studied. VB language developed by Risk Analyze Software. Combined with emergency plan for emergency exercises of the Hurongxi expressway dam tunnel construction, warning mechanism is introduced. Finally, the conclusion and foreground of the engineering theory are summarized outlook. And the problem and researchful direction about the stability risk analysis in underground caverns engineering are indicated.
引文
[1]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩土力学与工程学报,2008,27(4):649-655.
    [2]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].科学出版社,北京,1995.
    [3]李术才,朱维申,等.裂隙岩体大型洞室群施工顺序优化研究[J].岩土工程学报,1998,20(5):1-4.
    [4]贾剑青.复杂条件下隧道支护体时效可靠性及风险管理研究[D].重庆大学.2004.
    [5]王美芹.深埋隧洞外水压力分析与研究[J].河海大学硕士论文[D],2004.
    [6]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(1):112-113.
    [7]刘宝琛.综合利用城市地面及地下空间的几个问题[J].岩石力学与工程学报,1999,18(1):109-111.
    [8]彭颖,夏才初,王文杰.地下空间在我国城市立体开发中的发展[J].地下空间,2003,23(2):216-219.
    [9]朱维申.洞室群稳定性分析与支护优化研究及工程应用.山东大学.
    [10]李术才.加锚断续节理岩体断裂损伤模型及其应用[D].中国科学院武汉岩土力学所,武汉,1996.
    [11]董小卓.抽水蓄能电站地下厂房洞室群围岩稳定性分析[D].河海大学.
    [12]马骛.地下洞室随机有限元分析和可靠度计算[D],西北工业大学.2006.
    [13]郭仲伟.风险分析与决策[M].机械工业出版社,北京,1986.
    [14]于九如.投资项目风险分析[M].机械工业出版社,北京,1997.
    [15]中国建筑学会建筑统筹管理研究会.中国网络计划技术大全[M].地震出版社,北京,1993:807-812.
    [16]黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,5(7):35-39.
    [17]姜青舫,陈方正.风险度量原理[M].同济大学出版社,上海,2000.
    [18]陈龙.盾构隧道施工风险分析与评估研究[D].同济大学,2004.
    [19]Einstein H H,Vick S Q.Geological model for tunnel cost model[J].Proc Rapid Excavation and Tunneling Conf,2nd,1974:1701-172.
    [20]黄崇福.自然灾害风险分析[M].北京师范大学出版社,2001
    [21]安忠,朱烁,李卓伟.工程项目的风险分析与管理[J].中国港口工程,1999,1(2):42-44.
    [22]蔡文如.论大型项目的风险分析与风险管理汇[J].荃建优化,1992,4(4):14-19.
    [23]Eskesen S D,Tengborg P R,Kampmann J,et al.Guidelines for tunnelling risk management:International Tunneling Association,Working Group No.2[J].Tunneling and Under-ground Space technology,2004,(19):217-237.
    [24]Kampmann J,Eskesen S D,Summers J W.Risk assessment helps select the contractor for the Copenhagen Metro System[A].Proceedings of the world tunnel congress' 98 on tunnels and metropolises[C],1998,(1):123-128.
    [25]Richard D P.Perspective on assessment in tunneling[M].ASCE Geo-Institute Conference,University of Illinois,1999.
    [26]何孝贵,牛志平,蔡雪峰.北京地铁五号线暗挖施工技术方案优选方法探讨[J].土木工程学报,2004,37(9):83-85.
    [27]Choi H H,Cho H N,Seo J W.Risk assessment methodology for underground construction projects[J].Journal of construction engineering and management,2004,130(2):258-272.
    [28]Cho H N,Choi H H,Kim Y B.A risk assessment methodology for incorporating uncertainties[J].Reliability Engineering & System safety,2002,(78):173-183.
    [29]杨庆,焦建奎,栾茂田,等.边坡可靠性与经济风险性分析及其应用[J].工程地质学报,2000,8(1):86-90.
    [30]Vrijling J K,Hengel W V,Houben R J.A frame-work for risk evaluation [J].J.Hazard.Mater.43,1995:245-261.
    [31]Bohnenblust H.Risk-based decision making in the transportation sector[M].In:R.E.Jorissen,P.J.M.Stallen(Eds.).Quantified Societal Risk and PolicyMaking,Kluwer Academic Publishers,Dordrecht,1998.
    [32]Peter J R.Risk and emergency preparedness,(Z-013rev.1),Annex C:Methodology for establishment and use of environmental risk acceptance criteria[R],1998.
    [33]卢有杰,卢家仪.项目风险管理[M].清华大学出版社,北京,1998.
    [34]邱苑华.现代项目风险管理方法与实践[M].科学出版社,北京,2003.
    [35]Elisabeth M,Pate-Comell,Peter J R.Dynamic risk management systems:Hyrid architecture and of shore platform illustration risk analysis[J],1998,18(4):485-49.
    [36]宋明哲.风险管理[M].中华企业管理发展中心,台北,1984.
    [37]姜青舫,陈方正.风险度量原理[M].同济大学出版社,上海,2000.
    [38]邱苑华.管理决策与应用摘学[M].机械工业出版社,北京,2002.
    [39]Einstein H H,Vick S G.Geological model for tunnel cost model[J].Proc Rapid Excavation and Tunneling Conf,2nd,1974:1701-1720.
    [40]Einstein H H,Chiabverio F,Koppel U.Risk analysis for Alder tunnel[J].Tunnels &Tunneling,1994,26(11):28-30.
    [41]Einstein H H,Risk and risk analysis in rock engineering[J],Tunneling & Underground Space Technology,1996:141-155.
    [42]Reilly J J,Management process for complex underground and tunneling projects[J],Tunneling & Underground Space Technology,2000:31-44.
    [43]Reilly J,Brown J.Management and control of cost and risk for tunneling and infrastructure projects[C].Proceedings of the 30th ITA-AITES World Tunnel Congress,May 22-27,2004,Singapor.
    [44]Wolff T F.Probabilistic slope stability in theory and practice.Geotechnical Special Publication,1996,58(1):419-433.
    [45]vander M,Jentsje W,de Looff,et at.Integrated approach on the safety of dikes along the Great Dutch lakes.Proceedings of the Coastal Engineering Conference,1998,3:3439-3452.
    [46]Snel A J M.Society,Tolerable and the ALARP principle[J].In:Melchers RE,Stewart MG,Editors.Probabilistic risk and hazard assessment.Netherlands:Balkema,1993:243-295.
    [47]Sharp J V,Kam J C,Birkinshaw M.Review of criteria for inspection and maintenance and artie engineering[J](OMAE 1993),1993,2:363-371.
    [48]R·Stuzk,L.Olsson,U·Uohansson,Risk and Decision Analysis for Large Underground Projects,as Applied to the Stock holm Ring Road Tuniels[J],Tunnelling and Underground Space Technology,1996,11(2):157-164
    [49]B·Nilsen,A.palmstrom,H.Stille,Quality control of a sub-sea tunnel project in complex ground conditions[J],Challenges for the 21st century,1992,137-145
    [50]Heinz D.Challenges to Tunnelling Engineers[J].Tunnelling and Underground Space Technology,1996,11(1):5-10.
    [51]Isaksson T.Model for estimation of time and cost,based on risk evaluation applied to tunnel projects[D].Division of Soil and Rock Mechanics,Royal Institute of Technology,Stock holm,2002.
    [52]赵仪娜.经济评价中概率风险分析的一种新方法[J].理论与方法研究,1998.
    [53]赵仪娜.经济评价中概率风险分析的研究[J].西安石油学院学报,1998.11:56-58.
    [54]范益群.地下工程深基坑施工过程安全性分析若干理论问题研究及其工程应用[D].大连理工大学,1998.
    [55]金丰年.围岩稳定及其支护的可靠度分析[D].同济大学,1989.
    [56]朱永全.洞室稳定可靠性研究[D].北方交通大学,1996.
    [57]刘东升.基于弹塑性随机场有限元的围岩稳定可靠度研究[D].重庆建筑大学博士论文,1996.
    [58]崇明.等越江通道工程风险分析研究总报告[R].同济大学,2003,5.
    [59]黄宏伟.隧道及地下工程建设中的风险管理研究进展[C].2005全国地铁与地下工程技术风险管理研究会论文集,2005,1:16-26.
    [60]肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报,2000,22(4):421-425.
    [61]朱维申,王平.动态规划原理在洞室群施工力学中的应用[J].岩石力学与工程学报,1992,11(4):323-331.
    [62]杨明举,常艄东.超大型地下洞室群施工开挖程序及围岩德定分析[J].西南交通大学学报,2000,35(8):32-35.
    [63]陈卫忠,李术才,朱维申,等.急倾抖层状岩体中巨型地下洞室群开挖施工理论与优化研究[J].岩石力学与工程学报,2004,23(19):3281-3287.
    [64]朱万成,唐春安.地下洞室开挖与支护有限元分析.岩土工程技术,2000(1):2-6.
    [65]邓建,古德生,李夕兵.无间柱连续采犷采场参数的多指标正交有限元设计[J].中南工业大学学报,1999,30(5):
    [66]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].科学出版社,北京,2002.
    [67]钱伯勤.单孔无限域应力函数的通式[J].江苏力学,1990(6):66-67.
    [68]范广勤,汤澄波.应用三个绝对收敛级数相乘法解非圆形洞室的外域映射函数[J].岩石力学与工程学报,1993,12(3):255-264.
    [69]吕爱钟.应用最优化技术求解任意截面形状巷道映射函数的新方法[J].岩石力学与工程学报,1995,14(3):269-274.
    [70]朱大勇,钱七虎,周早生,等.复杂形状洞室映射函数的新解法[J].岩石力学与工程学报,1999,18(3):279-282.
    [71]陈祖安,Wong R C K.泥质页岩中水和溶质的轴对称流动[J].岩石力学与工程学报,2000,6,19(S1):1023-1026.
    [72]陈海军.巨型地下洞室群围岩稳定性数值分析[D].同济大学,2005.
    [73]冯夏庭,周辉,李邵军,等.岩石力学与工程综合集成智能反馈分析方法及应用.岩石力学与工程学报[J],2007,26(9):1737-1744.
    [74]冯夏庭,杨成祥.智能岩石力学(2)—参数与模型的智能辩识[J].岩石力学与工程学报,1999,18(3):359-362.
    [75]安红刚,冯夏庭.大型洞室群稳定性与优化的进化有限元方法研究[J].岩土力学,2001,22:373-377.
    [76]安红刚,冯夏庭.大型洞室群稳定性与优化的并行进化神经网络有限元方法研究[J].岩石力学与工程学报,2003,22():1640-1645.
    [77]邓建.地下岩体工程可靠性分析与应用研究[D].中南工业大学.1999.
    [78]Hudson J A,Priest S D.Discontinuitiesan dro ckm assg eometry Int.J.RockMech.M in Sci.& Gemech[J],1979,16:339-362.
    [79]汪小刚.应用蒙特卡洛法确定节理岩体抗剪强度.岩石力学与工程学报[J],1992,11(4):345-355.
    [80]Dixit J P,Raju N M.Evaluation of the stability of back-ill faces.Proceedings of the internationalsy mposiumo nm iningw ithb ackfill,1983.
    [81]李胡生,熊文林.岩石力学参数概率分布的随机-模糊估计方法[J].固体力学学报,1993,57(4):23-26.
    [82]熊文林,李胡生.岩石样本力学参数值的随机模糊处理方法[J].岩土工程学报,1992,57(6):12-15.
    [83]柴贺军,黄润秋.粘性土边坡破坏的随机模糊可靠度分析模型[J].水文地质工程地质,1988,(3):35-38.
    [84]李文秀.岩体移动的Fuzzy概率分析[J].中国科学(B辑),1986,(9):971-980.
    [85]Kupel H J.评价岩石水力参数的原位变形测量[A].第30届国际地质大会论文集[C].地质出版社,北京,1999:270-279.
    [86]Thurner R,Schw Eiger H F.Reliability analysis for geotechnical problems via finite elements- a practical application[A].Extended Abstracts International Conference on Geotechnical and Geological Engineering[C],2000,Melbourne,Australia:1-6.
    [87]张悼元,王士天,等.工程地质分析原理[M].地质出版社,北京,1997.
    [88]谢江胜.岩溶地区大跨度公路隧道动态施工关键技术研究[D].同济大学,2007.
    [89]董宏纲.高速公路隧道围岩质量评价系统的研究[D].中国地质大学,2000.
    [90]董小卓.岩体稳定性分析理论、破坏机理与锚固方案[J],硕士论文.
    [91]徐志英.岩石力学[M].中国水利水电出版社,北京,1993.
    [92]张汝清,詹先义.非线性有限元分析[M].重庆大学出版社,重庆,1990.
    [93]于学馥.地下工程围岩稳定性分析[M].煤炭工业出版社,北京,1983.
    [94]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].科学出版社,北京,1984.
    [95]崔冠英.水利工程地质[M].中国水利水电出版社,北京,1999.
    [96]陆兆溱.工程地质学[M].中国水利水电出版社,北京,2001.
    [97]杨连生.水利水电工程地质[M].武汉大学出版社,武汉,2004.
    [98]杨为民.琅琊山抽水蓄能电站地下洞室群稳定性分析[D].山东大学,2004.
    [99]蔡美峰.岩石力学与工程.
    [100]黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[J].水文地质工程地质,1998:21-24.
    [101]蒋树屏,刘洪洲,鲜学福,等.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报,19(5):567-572.
    [102]Read R S.20 years of excavation response studies at AECL' s underground research laboratory[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:1251-1275.
    [103]陈先国.隧道结构失稳及判据研究[D].西南交通大学.
    [104]王红升.简述地下洞室围岩失稳的判据分析[J].山西建筑,2008,34(13):31-32.
    [105]潘吕实,张弥,吴鸿庆.隧道力学数值方法[M].中国铁道出版社,北京,1995.
    [106]杜丽惠,黄丽清.考虑围岩蠕变特性的轴对称有限元非线性分析[J].水利学报,2001(1):85-89.
    [107]周辉,张传庆,冯夏庭,等.隧道及地下工程围岩的屈服接近度分析[J].岩石力学与工程学报,24(17):3083-3087.
    [108]靳晓光.高地应力区山岭公路隧道围岩稳定性分析位移判据探讨[J].公路隧道会议论文集,人民交通出版社,2001.
    [109]朱维申,孙爱华,王文涛,等.大型洞室群高边墙位移预测和围岩稳定性判别方法[J].岩石力学与工程学报,2007,(9):1029-1036.
    [110]朱永全.隧道稳定性位移判据准则[J].中国铁道科学,2001,12(6):80-83.
    [111]李世煇,宋军.变形速率比值判据与猫山隧道工程验证[J].中国工程科学,2002,4(6):85-91.
    [112]蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328.
    [113]孔广亚,蔡美峰,贾立宏.岩体工程系统破坏失稳的能量突变准则[J].有色矿冶,1996,12(3):1-3.
    [114]许传华,任青文.围岩稳定分析的熵突变准则研究[J].岩土力学,2004,25(3):437-440.
    [115]蒋峰、黄笃,廖成刚.某水电站地下厂房洞室群布置[J].水电站设计,2005,21(2):5-7.
    [116]麻荣永.土石坝风险分析方法及应用[M].科学出版社.
    [117]王敏聪.高速公路软基处理方案模糊数学评价[D].中南大学,2004.
    [118]荩垆.实用模糊数学[M].科学技术文献出版社,北京,1989.
    [119]王之汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501.
    [120]刘端伶,谭国焕,李启光,等.岩石边坡稳定性和Fuzzy综合评判法[J].岩石力学与工程学报,1999,18(2):170-175.
    [121]Horn A.Doubly stochastic matrices and the diagonal of matrix,Amer.J.M.ath,1954,76:620-630.
    [122]Mirsky L.Inequalities and existence theorems in the theory of matrics,J.Math.Anal.Appl.1964,9:99-118.
    [123]van Lint J H.Note on Egoritsjevs proof of the van der Waerden Conjecture,Linear,Alg.Appl,19813,9:1-8.
    [124]唐小丽.模糊网络分析法及其在大型工程项目风险评价中的应用研究[D].南京理工大学.
    [125]肖辞源.工程模糊系统[M].北京科学技术出版社,北京,2004.
    [126]冯保成.模糊数学实用集粹[M].北京中国建筑工业出版社,北京,1991.
    [127]Shao R Q.A multi-level fuzzy synthetic evaluation on investment programs in shipping[J].Transportation Engineering,2004,144(93)..497-502.
    [128]狄建华.模糊数学理论在建筑安全综合评价中的应用[J].华南理工大学学报自然科学版,2002,33(7):87-91.
    [129]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报2004,23(11):1852-1855.
    [130]王莲芬.网络分析法(ANP)的理论与算法[J].系统工程理论与实践,2001,(3):44-50.
    [131]赵焕臣.层次分析法[M].北京:科学出版社,1986.
    [132]陈桥,胡克.正态分布函数在层次分析法判断矩阵建立中的应用[J].吉林大学学报(自然科学版),2004,34.
    [133]陈艳梅.AHP及其在大学生培养成本模型中的应用[D].东北师范大学,2007.
    [134]水利水电工程结构可靠度设计统一标准(GB50199-94)(报批稿)[S].1994.
    [135]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座—Ⅱ限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [136]栾茂田,武亚军,年延凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [137]杜亚玲.太平驿水电站地下厂房的快速施工[J].四川水力发电,1998(8):15-19.
    [138]生产安全事故报告和调查处理条例[S].北京:中国法制出版社,2007.
    [139]中华人民共和国水利部.水利水电工程等级划分及洪水标准[S].北京:中国水利水电出版社,SL252-2000.
    [140]李景龙,李术才,王刚等.泰安抽水蓄能水电站地下厂房围岩稳定性数值模拟及监测分析[J].山东大学学报(工学版)2008,38(2):325-329.
    [141]杨为民,陈卫忠,李术才等.快速拉格朗日法分析巨型地下洞室群稳定性[J].岩土工程学报,2005,27(2):230-234.
    [142]杨为民,李晓静,陈卫忠.琅琊山抽水蓄能电站地下厂房围岩稳定性分析[J],2004,12(1):14-17.
    [143]王阳雪,吴奎,郝荣国。琅琊山抽水蓄能电站地下厂房洞室支护研究[J]。岩石力学与工程学报,2004,23(S2):5042-5045
    [144]谢伟.工程施工中的风险控制和管理[J].西部探矿工程.2003,9.
    [145]黑格,贾爱霞.面向对象的分析与设计[M].机械工业出版社,北京,2003.
    [146]毕建涛.Visual Basic编程在煤矿大型地面监控系统中的应用[J].
    [147]李罡,丁莉.Visual Basic 610中文版编程实例详解[M].电子工业出版社,北京,1999.
    [148]北京博彦公司,Visual Basic编程高手[M].北京大学出版社,北京,2000.
    [149]陈喜峰,丁晓唐.VB在水电站模拟及岔管计算中的应用[J].计算机与现代化,2003,9:79-81.
    [150]李鸿吉.Visual Basic 6.0编程方法详解[M].科学出版社,北京,2001.
    [151]Steven H.Visual Basic 6[M].机械工业出版社,北京,1999.
    [152]凌志飞.建筑工程施工现场安全事故风险评价体系研究[J].华北水利水电学院,2005.
    [153]陈伟珂,黄艳敏.工程风险与工程保险[J].天津大学出版社,天津,2005.
    [154]李为为,唐祯敏.地铁运营事故分析及其对策研究[J].中国安全科学学报,2004,14(6).
    [155]李景龙,李术才,李廷春等.隧道下穿既有铁路爆破的稳定控制技术研究[J].岩石力学与工程学报.2007,26(S2):3596-3600.
    [156]程光伟.薛城电站风险分析与保险研究[D].西南财经大学,2007.
    [157]高风险岩溶隧道地质灾害控制关键技术研究[S].山东大学,2007.
    [158]刘海潮,李垣,孙爱英.战略风险管理的理论方法及其发展[J].西安交通大学学报(社会科学版),2002,22(4):33-38.
    [159]卢有杰,卢家仪.项目风险管理[M].清华大学出版社,北京,1998.
    [160]涂燕宁.水电工程投资与效益的风险分析及决策[M].武汉水利电力大学,武汉,1998.
    [161]毛儒.论工程项目的风险管理[J].都市快轨交通,2004,17(2):325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700