用户名: 密码: 验证码:
浅埋煤层开采与脆弱生态保护相互响应机理与工程实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于西部煤田浅埋深且冲沟发育、地表生态极其脆弱的特点,提出了井下保护性开采与地表生态环境防治相互响应的机理,以解决浅埋煤田大规模开采与极脆弱生态系统保护之间的矛盾。综合采用物理模拟、数值模拟、理论分析及现场实测的方法,对覆岩移动特征及裂隙发育规律、浅埋煤层保水开采机理及其技术适应性分类、地表生态采动适应性规律和生态功能圈构建理论进行了分析,并成功应用于工程实践。主要研究成果如下:
     (1)提出了浅埋煤层开采与脆弱生态保护相互响应机理,并成功应用于工程实践。
     将城市生态功能圈理念引入荒漠化矿区生态治理中,基于地表生态采动适应性规律和井下保水开采机理,以被人工调控与导向演替、林分结构优化等为技术支持,形成了以植物措施为主的外围防护圈构建技术、以采前预防、采中保水及采后修复为手段的周边常绿圈保障技术和中心美化圈园林化建设技术,实现井下开采与井上防治相互响应。
     (2)初步形成了西部矿区常规浅埋煤层开采覆岩移动型式判别体系。
     基于常规浅埋煤层条件下覆岩与关键层同步下沉且裂隙发育受控于关键层移动的典型特点,建立了关键层初次破断和周期破断时的结构力学模型;基于关键层的结构稳定性,构建出关键层破断型式的四种判别模型,依此形成了覆岩移动型式判别体系。
     (3)揭示了常规浅埋煤层保水开采机理,形成了常规浅埋煤层保水开采适应性分类体系。
     提出了隔水层采动渗漏机理,引入临界含隔比作为判别采动渗漏的关键指标;将裂隙带划分为上位裂隙带、中位裂隙带和下位裂隙带以反映采动裂隙的可闭合度;提出了基于隔水层采动保水性能演化规律的保水开采机理及技术设计体系;以隔裂位态系数为综合指标进行了常规浅埋煤层保水开采技术适应性分类。
     (4)构建出冲沟下开采坡体结构力学模型,提出了冲沟下浅埋煤层保水开采机理及其技术适应性分类方法。
     对向沟开采和背沟开采坡体结构稳定性进行了力学分析,推导出维持坡体结构稳定性的支护力计算公式;提出了向沟开采时的下向流失和顺层流动机理,以及背沟开采时的逆倾导水机理,并依此提出了冲沟下保水开采机理;以冲沟采动敏感性为指标进行了冲沟下保水开采技术适应性分类。
     该论文有图145幅,表31个,参考文献221篇。
Based on the typical conditions of western coalfield characterized by the shallow coal seam, the developed gully and the extremely fragile ecological environment, the mechanisms of the mutual response between protective underground mining and sur-face environment protection were present to reconcile the contradictions between the large-scale underground mining and the fragile environment protection. Physical simulation, numerical simulation, theoretical analysis and field observation were conducted to analyze the laws of overburden movement and fracture development, the mechanisms and the technologies of aquifer-protection mining, the applicability of surface ecological environment to underground mining and the construction of ecolo-gic functional circles. And the engineering practice was proved to be successful. The major research achievements are as follows.
     (1) The mechanisms of the mutual response between underground mining and fragile environment protection was proposed and successfully put into the engineering practice.
     The concept of city ecologic functional circle was introduced into the protection of desert coalfield. Based on the surface environment applicability to underground mining and the mechanism of aquifer-protection mining, a technology system for achieving the mutual response between underground mining and surface protection, including the construction of a peripheral guard circle which majors in the botanic measures, the safeguard of a perimeter evergreen circle by the means of pre-mining functional circle construction, in-mining aquifer protection and post-mining ecologi-cal restoration, and the afforestation of the centre beautification circle, was con-structed through the basic technologies of artificial regulation and oriented succession, the optimization of forest structure, etc.
     (2) A system for predicting the overburden movement pattern in response to un-derground mining of shallow coal seams in western coalfield was devised.
     Based on the characteristics that the overlying strata subsides synchronously with the key strata and the fracture development is controlled by the subsidence of the key strata, the structural mechanical models for the first breakage and the periodical breakage of key strata were constructed to analyze the stability of key strata. Derived from the stability analysis, four models for predicting the overburden movement in response to underground mining were developed and the predictive system was then devised.
     (3) The mechanisms of aquifer-protection mining of general shallow coal seam were revealed and an applicability classification system was constructed. The mechanism of the mining-induced seepage in the aquiclude was identified and evaluated on the basis of the key index, say the thickness ratio of aquifer to aqui-clude. The intact fractured zone was divided into the following three parts, the upper, the middle and the lower, contributing to indicating the possibility of fracture closure. Based on the analysis of aquifer-protection ability evolution of aquiclude associated with underground mining, aquifer-protection mechanisms and a technology design system were present. The position ratio of aquiclude to fractured zone was selected as a comprehensive index to classify the applicability of aquifer-protection mining tech-nology.
     (4) The structural mechanical model of the slope involved in the mining under gully was built and the applicability classification for the related aquifer-protection mining technology was conducted on basis of the aquifer protection mechanisms.
     The support capacity was formulated based on the stability analysis of slope in-volved in the gully-ward mining or gully-away mining. The aquifer-protection mechanisms related to shallow coal seam mining under gully were present according to the water loss mechanisms of running downward and bedding flow in gully-ward mining and of updip transmission in gully-away mining. The sensibility of gully slope to underground mining was developed to classify the applicability of aqui-fer-protection mining technology under gully.
     145 figures, 31 tables and 221 references are imbedded in this dissertation.
引文
[1]崔民选.中国能源发展报告[M].北京:社会科学文献出版社, 2008.
    [2]魏秉亮.神府矿区突水溃沙地质灾害研究[J].中国煤田地质, 1996, 8(2): 28-30.
    [3]范立民.神府矿区矿井溃砂灾害防治技术研究[J].中国地质灾害与防治学报, 1996, 7(4): 35-38.
    [4]傅耀军,李曦滨,孙占起,等.晋陕蒙能源基地榆神府矿区水土流失综合评价[J].水土保持通报, 2003, 23(1): 32-35.
    [5]邢大韦,张卫,王百群.神府-东胜矿区采煤对水资源影响的初步评价[J].水土保持研究, 1994, 1(4): 92-99.
    [6]中国神华能源股份有限公司神东煤炭分公司,中国矿业大学,内蒙古农业大学.神东亿吨级矿区生态环境综合治理技术[R].神木, 2006.
    [7]中国神华能源股份有限公司神东煤炭分公司,中国矿业大学.特大井田浅埋藏易自燃煤层防灭火关键技术研究[R].神木, 2006.
    [8]П.М.ЦИМБАРЕВИЧ.矿井支护[M].北京:煤炭工业出版社, 1957.
    [9]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社, 2000.
    [10] HOLLA L and BUIZEN M. The ground movement, strata fracturing and changes in permeability due to deep longwall mining[J]. International Joumal of rock mechanics, mining science, and geomechanics abstracts, 1991, 28(2-3): 207-217.
    [11] HOLLA L. Some aspects of strata movement related to mining under water bodies in New South Wales, Australia. Proceedings of the Fourth I.M.W.A. Congress. Lubljana, Australia, 1991[C]. 1991.
    [12]姜福兴,蒋国安,谭云亮.印度浅埋坚硬顶板厚煤层开采方法探讨[J].矿山压力与顶板管理, 2002(1): 57-59.
    [13]赵宏珠.印度综采长壁工作面浅部开采实践[J].中国煤炭, 1998(12): 49-51.
    [14] SINGH R P and YADAV R N. Subsidence due to coal mining in India. Proceedings of the Fifth International Symposium on Land Subsidence. Hague, 1995[C]. Hague: IAHS, 1995.
    [15]石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J].西安矿业学院学报, 1996, 16(3): 204-207.
    [16]张世凯,王永申,李钢.厚松散层薄基岩煤层矿压显现规律[J].矿山压力与顶板管理, 1998(1): 5-8.
    [17]侯忠杰.厚砂下煤层覆岩破坏机理探讨[J].矿山压力与顶板管理, 1995(1): 37-40.
    [18]侯忠杰.松散层下浅埋薄基岩煤层开采的模拟[J].陕西煤炭技术, 1994(2): 38-41.
    [19]封金权,张东升,王旭锋,等.土基型浅埋煤层矿压显现规律实测与分析[J].煤矿安全, 2008(1): 90-91.
    [20]卢鑫,张东升,范钢伟,等.厚砂层薄基岩浅埋煤层矿压显现规律研究[J].煤矿安全, 2008(9): 10-12.
    [21]侯忠杰.断裂带老顶的判别准则及在浅埋煤层中的应用[J].煤炭学报, 2003, 28(1): 8-12.
    [22]侯忠杰,张杰.厚松散层浅埋煤层覆岩破断判据及跨距计算[J].辽宁工程技术大学学报, 2004, 23(5): 577-580.
    [23]侯忠杰,吕军.浅埋煤层中的关键层组探讨[J].西安科技学院学报, 2000, 21(1): 5-8.
    [24]黄庆享,李树刚.浅埋薄基岩煤层顶板破断及控制[J].矿山压力与顶板管理, 1995(3): 55-57.
    [25]黄庆享,祈万涛,杨春林.采场老顶初次破断机理与破断形式分析[J].西安矿业学院学报, 1999(19): 3.
    [26]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报, 1999, 24(6): 581-585.
    [27]许延春,杨峰,李旭东.西部煤矿开采地表冲沟水害的预计评价[J].华北科技学院学报, 2009, 6(4): 34-38.
    [28]葛民荣.牛头嘴滑坡群特征及稳定性分析[D].太原:太原理工大学, 2005.
    [29]姜德义,朱合华,杜云贵.边坡稳定性分析与滑坡防治[M].重庆:重庆大学出版社, 2005.
    [30]何万龙.山区开采沉陷与采动损害[M].北京:中国科学技术出版社, 2003.
    [31]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社, 2001.
    [32] ITIOGEN P S. Mine access road slope failure:A case study from the Ok Tedi Mine[J]. Symposia Series-Australasian Institute of Mining and Metallurgy, 1997(10): 127-132.
    [33] KWIAKEK J. Ochrona obiektow budowlanych na terenach gorniczych[J]. Katowice GIG, 1997(6): 56-69.
    [34] SPECK R C. Large-scale slope movements and their affect on spoil-pile stability in InteriorAlaska[J]. International Journal of Surface Mining&Reclamation, 1993, 7(4): 161-166.
    [35] PENG S S and Y L. Slope stability under the influence of ground subsidence due to longwall mining[J]. Mining Science & Technology, 1989, 8(2): 89-95.
    [36] KHAIR A W, QUINN M K and CHAFFINS R D. Effect of topography on ground movement due to longwall mining[J]. Mining Engeering, 1988, 40(8): 820-822.
    [37] SINGH T N and SINGH D P. Slope behaviour in an opencast mine over old underground voids[J]. International Journal of Surface Mining & Reclamation, 1991, 5(4): 195-201.
    [38] BUCHAN I F and BAARS L F. OPENCAST COAL MINING AT KRIEL COLLIERY[J]. Journal of The South African Institute of Mining and Metallurgy, 1980, 80(1): 46-55.
    [39] ROSS-BROWN D M. Design considerations for excavated mine slopes in hard rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1975, 12(7): 99.
    [40] KOSTAK B, CHAN B and RYBAR J. Deformation trends in the Jezeri Castle massif, Krusne Hory Mts[J]. Acta Geodynamica et Geomaterialia, 2006, 3(2): 39-49.
    [41] FRANKS C A M and GEDDES J D. COMPARATIVE STUDY BY NUMERICALMODELLING OF MOVEMENTS ON SLOPING GROUND DUE TO LONGWALL MINING. Ground Movements and Structures,Proceedings of the 3rd International Conference. 1985[C]. 1985.
    [42] DRUCKER H and LE CUN Y. Improving generalization performance using double backpropagation[J]. IEEE Transactions on Neural Networks, 1992, 3(6): 991-997.
    [43] CUNDARI T R. Modeling lanthanide coordination complexes.Comparison of semiempiri- cal and classical methods[J]. Journal of Chemical Information and Computer Sciences, 1998, 38(3): 523-528.
    [44] MARTYNYUK A A. A new trend in the analysis of nonlinear systems[J]. Sverhtverdye Materialy, 1994(5-6): 3-17.
    [45] DONNELLY L J, NORTHMORE K J and SIDDLE H J. Block movements in the Pennines and South Wales and their association with landslides[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002(35): 33-39.
    [46] BEUTNER E C and GERBI G P. Catastrophic emplacement of the Heart Mountain block slide[J]. Geological Society of America Bulletin, 2005, 117724–735.
    [47] KIM K, LEE S, OH H, et al. Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS[J]. Environmental Geology, 2006, 50(8): 1183-1191.
    [48] SINGH R, MANDAL P, SINGH A, et al. Upshot of strata movement during underground mining of a thick coal seam below hilly terrain[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(1): 29-46.
    [49] WATSON B P. A rock mass rating system for evaluating slope stability on the Bushveld platinum mines[J]. Journal of The South African Institute of Mining and Metallurgy, 2004, 104(4): 229-238.
    [50] DOMANSKA D and WICHUR A. The researches on slope stability evaluation with inclinometric measurements[J]. Archives of Mining Sciences, 2006, 51(4): 503-528.
    [51]白占平,郭增涛.井工开采对边坡稳定性影响的有限元分析[J].中国矿业大学学报, 1991, 20(4): 81-86.
    [52]白占平.地质构造与井采对边坡岩移影响的试验研究[J].阜新矿业学院学报(自然科学版), 1993, 12(2): 46-49.
    [53]白占平,曹兰柱,骆中洲.矿山层状反倾边坡岩体移动规律的试验研究[J].工程地质学报, 1997, 5(1): 80-85.
    [54]韩放,谢芳,王金安.露天转地下开采岩体稳定性三维数值模拟[J].北京科技大学学报, 2006, 28(6): 509-514.
    [55]孙世国,蔡美峰,程五一.地下采动对边坡岩体稳定性的影响规律[J].勘察科学技术, 1994(4): 22-25.
    [56]孙世国,王思敬.抚顺西露天矿北帮地面长期剧烈变形原因的分析[J].勘察科学技术, 1998(5): 6-11.
    [57]孙世国,林国棋,白会人.地下工程开挖对斜坡体影响的研究[J].市政技术, 2004, 22(6):357-370.
    [58]蔡美峰,冯锦艳,王金安.露天高陡边坡三维固流耦合稳定性[J].北京科技大学学报, 2006, 28(1): 6-11.
    [59]徐成斌.露天转地下开采的边坡三维数值模拟研究[D].武汉:武汉科技大学, 2007.
    [60]康建荣,何万龙,胡海峰.山区采动地表变形及坡体稳定性分析[M].北京:中国科学技术出版社, 2002.
    [61]马超,康建荣,何万龙.山区典型地貌表土层采动滑移规律的数值模拟分析[J].太原理工大学学报, 2001, 32(3): 222-226.
    [62]马超,何万龙,康建荣.山区采动滑移向量模型中参数的多元线性回归分析[J].矿山测量, 2000(4): 32-35.
    [63]张倬元,刘汉超.地下采掘环境效应的一个特殊实例[J].地学前缘, 2001, 8(2): 285-295.
    [64]庆祖荫.韩城发电厂坡体蠕滑变形机制及工程应急治理[J].西北水电, 1998(1): 1-7.
    [65]汤伏全,梁明.地下采矿诱发山体滑坡机制的研究[J].煤矿开采, 1995(3): 34-37.
    [66]杨忠民,黄国明.地下采动诱发斜坡变形机理[J].西安矿业学院学报, 1999, 19(2): 105-109.
    [67]古迅.地下采煤引起斜坡滑动的一个实例—韩城电厂滑坡成因分析[J].地质科学, 1998(1): 81-91.
    [68]潘宏宇.采动滑坡机理与控制开采方法研究[D].西安:西安科技大学, 2005.
    [69]余学义,赵兵朝,党天虎,等.滑坡区下煤层控制开采与综合治理[J].长安大学学报, 2006, 26(1): 67-70.
    [70] FAN G W, ZHANG D S, ZHAI D Y, et al. Laws and mechanisms of slope movement due to shallowly buried coal seam mining under ground gully[J]. Journal of Coal Science and Engineering (China), 2009, 15(4): 346-350.
    [71]王旭锋.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[D].徐州:中国矿业大学, 2009.
    [72]张东升,翟德元,王旭锋.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[M].徐州:中国矿业大学出版社, 2010.
    [73]范立民.神木矿区的主要环境地质问题[J].水文地质工程地质, 1992, 19(6): 37-40.
    [74]范立民.保水采煤是神府东胜煤田开发可持续发展的关键[J].地质科技管理, 1998, 15(5): 28-29.
    [75]韩树清,范立民,杨保国.开发陕北侏罗纪煤田几个水文地质工程地质问题分析[J].中国煤田地质, 1992, 4(1): 49-52.
    [76]范立民.保水采煤是神东煤田开发可持续发展的关键[J].地质科技管理, 1998(5): 28-29.
    [77] BOOTH C J. The effects of longwall coal mining on overlying aquifers[J]. In: YOUNGER P L and ROBINS N S (eds). Mine Water Hydrogeology and Geochemistry: Geological Society, London Special Publications 198, 2002, 17-45.
    [78] SINGH M M and KENDORSKI F S. Strata disturbance prediction for mining beneath surface water and waste impoundments. Ground Control in Mining. Morgantown, 1981[C].Morgantown: 1981.
    [79] COE C J and STOWE S M. Evaluating the impact of longwall coal mining on the hydrologic balance. The impact of mining on ground water. Denver, 1984[C]. 1984.
    [80] BOOTH C. Strata-movement concepts and the hydrogeological impact of underground coal mining[J]. Ground Water, 1986, 24(4): 507-515.
    [81] TIEMAN G E and RAUCH H W. Study of dewatering effects at an underground longwall mine site in the Pittsburgh Seam of the Northern Appalachian Coalfield. Proceedings of the Bureau of Mines technology transfer seminar. Pittsburgh, 1987[C]. 1987.
    [82] BOOTH C and BERTSCH L. Groundwater geochemistry in shallow aquifers above longwall mines in Illinois, USA[J]. Hydrogeology journal, 1999, 7(6): 561-575.
    [83] BOOTH C, CURTISS A, DEMARIS P, et al. Site-specific variation in the potentiometric response to subsidence above active longwall mining[J]. Environmental and Engineering Geoscience, 2000, 6(4): 383-394.
    [84] BOOTH C and SPANDE E. Potentiometric and aquifer property changes above subsiding longwall mine panels, Illinois basin coalfield[J]. Ground Water, 1992, 30(2): 362-368.
    [85] BOOTH C J, SPANDE E D, PATTEE C T, et al. Positive and negative impacts of longwall mine subsidence on a sandstone aquifer[J]. Environmental Geology, 1998, 34(2): 223-233.
    [86] BOOTH C J. Interpretation of well and field data in a heterogeneous layered aquifer setting, Appalachian Plateau[J]. Ground Water, 1988, 26(5): 596-606.
    [87] US Dept. of the Interior, Office of Surface Mining. Aquifer response to longwall mining, Illinois[R]. 1997.
    [88] BOOTH C J, CURTISS A M, DEMARIS P J, et al. Anomalous increases in piezometric levels in advance of longwall mining subsidence[J]. Environmental and Engineering Geoscience, 1999, 5(4): 407-418.
    [89] BOOTH C J, CURTISS A M and MILLER J D. Groundwater response to longwall mining, Saline County, Illinois, USA. Proceedings of the Fifth International Mine Water Congress. NOttingham, 1994[C]. 1994.
    [90] BOOTH C J and SARIC J A. The Effects of Abandoned Underground Mines on Ground Water, Saline County, Illinois. Proceedings of the National Symposium on Mining, Hydrology, Sedimentology and Reclamation. Springfield, 1987[C]. University of Kentucky, 1987.
    [91] BOOTH C J. Groundwater as an environmental constraint of longwall coal mining[J]. Environmental Geology, 2006, 49(6): 796-803.
    [92] ASTON T R C and SINGH R N. A reappraisal of investigations into strata permeability changes associated with longwall mining[J]. Mine Water and the Environment, 1983, 2(1): 1-14.
    [93] ASTON T R C, SINGH R N and WHITTAKER B N. The effect of test cavity geology on the in situ permeability of coal measures strata associated with longwall mining[J]. MineWater and the Environment, 1983, 2(4): 19-34.
    [94] LIU J and ELSWORTH D. Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels[J]. International Joumal of Rock Mechanics and Mining Science, 1997, 34(8): 1139-1152.
    [95] WHITTAKER B N and SINGH R N. Design Aspects of Barrier Pillars Against Water-Logged Workings in Coal Mining Operations[J]. Water in Mining and Underground Works, 1984(1): 675-692.
    [96] MATETIC R and TREVITS M. Hydrologic variations due to longwall mining. Ground Control in Mining. Morgantown, 1992[C]. 1992.
    [97] ELSWORTH D and LIU J. Topographic influence of longwall mining on ground-water supplies[J]. Ground Water, 1995, 33(5): 786-793.
    [98] VAN ROOSENDAAL D J, KENDORSKI F S, DES PLAINES I L, et al. Application of Mechanical and Groundwater-Flow Models to Predict the Hydrogeologic Effects of Longwall Subsidence-A Case Study. Internation Conference of Ground Control in Mining (14th). Morgantown, 1995[C]. Dept. of Mining Engineering, College of Mineral and Energy Resources, West Virginia University, 1995.
    [99] BOOTH C J. A numerical model of groundwater flow associated with an underground coal mine in the Appalachian Plateau, Pennsylvania[D]. Central County, PA: Pennsylvania State University, 1984.
    [100] Industrial Environmental Research Laboratory, US Environmental Protection Agency. Dewatering active underground coal mines:Technical aspects and cost effectiveness[R]. Cincinati, OH, 1979.
    [101] HILL J G and PRICE D R. The impact of deep mining on an overlying aquifer in Western Pennsylvania[J]. Ground Water Monitoring Review, 1983, 3(1): 138-143.
    [102] MOEBS N N and BARTON T M. Short-term effects of longwall mining on shallow water sources. Mine subsidence control. US Dept. of the Interior, Bureau of Mines, 1985[C]. 1985.
    [103] Bureau of Mines, Pittsburgh, PA (USA). Case study of the effects of longwall mining induced subsidence on shallow ground water sources in the Northern Appalachian Coalfield[R]. 1988.
    [104] STONER J D. Probable hydrologic effects of subsurface mining[J]. ground Water Monitoring Review, 1983, 3(1): 128-137.
    [105] Kentucky Geological Survey. Effects of longwall mining on hydrology, Leslie County, Kentucky[R]. Lexington, KY, 2000.
    [106] LEAVITT B R and GIBBENS J F. Effects of longwall coal mining on rural water supplies and stress relief fracture flow systems. Third Workshop on Surface Subsidence due to Underground Mining. Morgantown, 1992[C]. 1992.
    [107] WERNER E and HEMPEL J C. Effects of coal mine subsidence on shallow ridge-top aquifers in northern West Virginia. Third Workshop on Surface Subsidence due toUnderground Mining. Morgantown, 1992[C]. 1992.
    [108] BOOTH C J. Recovery of groundwater levels after longwall mining. Mine, Water and Environment: Proceedings of the I.M.W.A. International Congress. Sevilla, Spain, 1999[C]. 1999.
    [109]侯忠杰,肖民,张杰等.陕北沙土基型覆盖层保水开采合理采高的确定[J].辽宁工程技术大学学报, 2007, 26(2): 164.
    [110]师本强,侯忠杰.陕北榆神府矿区保水采煤方法研究[J].煤炭工程, 2006(1): 63-65.
    [111]张杰,侯忠杰.榆树湾浅埋煤层保水开采三带发展规律研究[J].湖南科技大学学报(自然科学版), 2006, 21(4): 10-13.
    [112]赵兵朝,余学义.浅埋煤层保水开采识别系统研究[J].西安科技大学学报, 2008, 28(4): 623-628.
    [113]何兴巧.浅埋煤层开采对潜水的损害与控制方法研究[D].西安:西安科技大学, 2008.
    [114]范立民,蒋泽泉,牛建国,等.榆神府矿松散含水层下采煤隔水岩层组特性的研究[J].中国煤田地质, 2003, 15(4): 52-53.
    [115]范立民,蒋泽泉.榆神矿区资源赋存特征及保水采煤问题探讨[J].西部探矿工程, 2003(1): 72-73.
    [116]范立民,蒋泽泉.榆神矿区保水采煤的工程地质背景[J].煤田地质与勘探, 2004, 32(5): 32-35.
    [117]范立民,蒋泽泉,许开仓.榆神矿区强松散含水层下采煤隔水岩组特性的研究[J].中国煤田地质, 2003, 15(3): 25-30.
    [118]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报, 2010(1): 7-14.
    [119]黄庆享.浅埋煤层保水开采隔水层稳定性的模拟研究[J].岩石力学与工程学报, 2009, 28(5): 987-992.
    [120]黄庆享.浅埋煤层开采隔水层位移规律相似模拟研究[J].煤田地质与勘探, 2006, 34(5): 35-37.
    [121]胡火明.近浅埋煤层保水开采覆岩移动模拟研究与实测[D].西安:西安科技大学, 2009.
    [122]刘腾飞.浅埋煤层长壁开采隔水层破坏规律研究[D].西安:西安科技大学, 2006.
    [123]蔚保宁.浅埋煤层粘土隔水层的采动隔水性研究[D].西安:西安科技大学, 2009.
    [124]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报, 2007, 32(6): 561-564.
    [125]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报, 2008, 37(1): 1-4.
    [126]浦海.保水采煤的隔水关键层模型及力学分析与应用[D].徐州:中国矿业大学, 2007.
    [127]马立强,张东升,刘玉德.薄基岩浅埋煤层保水开采技术研究[J].湖南科技大学学报(自然科学版), 2008, 23(1): 1-5.
    [128]马立强,张东升,乔京利.浅埋煤层采动覆岩导水通道分布特征试验研究[J].辽宁工程技术大学学报:自然科学版, 2008, 27(5): 649-652.
    [129]张东升,范钢伟,刘玉德,等.浅埋煤层工作面顶板裂隙扩展特征数值分析[J].煤矿安全, 2008(7): 91-93.
    [130]张东升,马立强.特厚坚硬岩层组下保水采煤技术[J].采矿与安全工程学报, 2006, 23(1): 62-65.
    [131]马立强.沙基型浅埋煤层采动覆岩导水通道分布特征及其控制研究[D].徐州:中国矿业大学, 2007.
    [132]范立民.陕北地区采煤造成的地下水渗漏及其防治对策分析[J].矿业安全与环保, 2007, 34(5): 62-64.
    [133]范立民.论保水采煤问题[J].煤田地质与勘探, 2005, 33(5): 50-53.
    [134]李文平,叶贵钧,张莱等.陕北榆神府矿区保水采煤工程地质条件研究[J].煤炭学报, 2000, 25(5): 449-454.
    [135]叶贵钧.西北五省(区)的煤炭资源水资源及生态环境[J].煤田地质与勘探, 2000, 28(6): 39-42.
    [136]叶贵钧,张莱,李文平.陕北榆神府矿区煤炭资源开发主要水工环问题及防治对策[J].工程地质学报, 2000, 8(4): 446-455.
    [137]师本强,侯忠杰.榆神府矿区保水采煤的实验与数值模拟研究[J].矿业安全与环保, 2005, 32(4): 11-13.
    [138]缪协兴,王安,孙亚军,等.干旱半干旱矿区水资源保护性采煤基础与应用研究[J].岩石力学与工程学报, 2009, 28(2): 217-226.
    [139]刘玉德.沙基型浅埋煤层保水开采技术及其适用条件分类[D].徐州:中国矿业大学, 2008.
    [140]宋亚新.神府-东胜采煤塌陷区包气带水分运移及生态环境效应研究[D].北京:中国地质科学院, 2007.
    [141] SWANSON D A, SAVCI G and DANZIGER G. Predicting the soil-water characteristics of mine soils. Tailings and Mine Waste Colorado, USA, 1999[C]. Rotterdam: A.A. Balkema, 1999.
    [142] BUCZKO U and GERKE H H. Estimating spatial distributions of hydraulic parameters for a two-scale structured heterogeneous lignitic mine soil[J]. Journal of Hydrology, 2005, 312(1-4): 109-204.
    [143]聂振龙,张光辉,李金河.采煤塌陷作用对地表生态环境的影响——以神木大柳塔矿区为研究区[J].勘察科学技术, 1998(4): 15-20.
    [144]纪万斌.我国采煤塌陷生态环境的恢复及开发利用[J].中国地质灾害与防治学报, 1998, 9(sup.): 47-51.
    [145]李惠娣,杨琦,聂振龙,等.土壤结构变化对包气带土壤水分参数的影响及环境效应[J].水土保持学报, 2002, 16(6): 100-102, 106.
    [146]陈龙乾.矿区土地复垦与使用制度改革探讨[J].中国煤炭, 1998, 24(6): 12-15.
    [147]杜培军,张书毕.矿区土地合理开发与利用研究[J].煤矿环境保护, 1998, 12(3): 11-13.
    [148]李富平,夏冬.采矿迹地生态重建模式研究[J].化工矿物与加工, 2010(5): 25-28.
    [149]胡振琪.中国土地复垦与生态重建20年:回顾与展望[J].科技导报, 2009, 27(17): 25-29.
    [150]胡振琪,卞正富,成枢,等.土地复垦与生态重建[M].徐州:中国矿业大学出版社, 2008.
    [151]周锦华,胡振琪,高荣久.矿山土地复垦与生态重建技术研究现状与展望[J].金属矿山, 2007(10): 11-13.
    [152]夏斐.榆神府矿区基岩风化带工程地质特征[J].陕西煤炭技术, 1999(2): 44-46.
    [153]徐永圻.采矿学[M].徐州:中国矿业大学出版社, 2003.
    [154]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003.
    [155]张东升,刘玉德,王旭锋.沙基型浅埋煤层保水开采技术及适用条件分类[M].徐州:中国矿业大学, 2009.
    [156] TASANE Y W and WITHERSPOON P A. The dependence of fracture mechanical and fluid flow properties on fracure roughness and sample size[J]. Journal of Geophysical Research, 1983, 88(B3): 2359-2366.
    [157] ELSWORTH D and GOODMAN R E. Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 233-243.
    [158]钟阳,李锐,刘月梅.四边固支矩形弹性薄板的精确解析解[J].力学季刊, 2009, 30(2): 297-303.
    [159]钟阳,胡波.四边固支矩形厚板分析的有限积分变换法[J].土木建筑与环境工程, 2009, 31(3): 1-5.
    [160]吴洪洋.均布荷载作用下四边固支板的一种逼近解法[J].贵州工业大学学报, 2000, 29(1): 32-35.
    [161]赵祖武.塑性理论基础[M].北京:人民教育出版社, 1963.
    [162]余腾海.四边固支矩形板的精确解[J].内江师专学报, 1997, 12(2): 8-13.
    [163]余腾海.四边固支矩形板的极限荷载下限解[J].内江师专学报, 1990, 17(4): 62-64.
    [164]黄庆享.采场老顶初次来压的结构分析[J].岩石力学与工程学报, 1998, 17(5): 521-526.
    [165]钱鸣高,缪协兴,何富连,等.采场“砌体梁”结构的关键块分析[J].煤炭学报, 1994, 19(6): 557-562.
    [166]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社, 2000.
    [167]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报, 1995, 14(6): 97-106.
    [168]万力,曹文炳,胡伏生,等.生态水文地质学[M].北京:地质出版社, 2005.
    [169]郑丹,李卫红,陈亚鹏,等.干旱区地下水与天然植被关系研究综述[J].资源科学, 2005, 27(4): 160-167.
    [170]荣丽杉,束龙仓,王茂枚,等.合理地下水生态水位的估算方法研究[J].地下水, 2009, 30(1): 12-15,43.
    [171]杨泽元,王文科,黄金廷,等.陕北风沙滩地区生态安全地下水位埋深研究[J].西北农林科技大学学报, 2006, 34(8): 67-74.
    [172]王双明,范立民,黄庆享,等.生态脆弱矿区大型煤炭基地建设的新思路[J].科学中国人, 2009(11): 122-123.
    [173]肖长来,梁秀娟,王彪.水文地质学[M].北京:清华大学出版社, 2010.
    [174] ZHANG D S, FAN G W, LIU Y D, et al. Field trials of aquifer protection in longwall mining of shallow coal seams in China[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(6): 908-914.
    [175]夏斐.榆神府矿区基岩风化带对提高开采上限的作用[J].中国煤田地质, 1999, 11(4): 70-71.
    [176]涂敏,桂和荣,李明好,等.厚松散层及超薄覆岩厚煤层防水煤柱开采试验研究[J].岩石力学与工程学报, 2004, 23(20): 3494-3497.
    [177]宣以琼,武强,杨本水,等.岩石的风化损伤特征与缩小防护煤柱机理[J].中国矿业大学学报, 2004, 33(6): 678-682.
    [178]杨伟峰.薄基岩采动破断及其诱发水砂混合流运移特性研究[D].徐州:中国矿业大学, 2009.
    [179]王飞,仇文革,高新强.黏土不透水层确定及水压力分布规律试验研究[J].岩土力学, 2006, 27(supp): 189-192.
    [180]周健,姚志雄,张刚.管涌发生发展过程的细观试验研究[J].地下空间与工程学报, 2007, 3(5): 842-848.
    [181]吴吉春,薛禹群.地下水动力学[M].北京:中国水利水电出版社, 2009.
    [182] ARULANANDAN K, LOGANATHAN P and KRONE R B. Pore and Eroding Fluid Influences on Surface Erosion of Soil[J]. Journal of Geotechnical Engineering Division, 1975, 100(GT1): 51-66.
    [183] KHILAR K C, FOLGER H S and GRAY D H. Model for piping plugging in earthen structure[J]. Geotechnology Engeering, 1985, 111(7): 833-846.
    [184] LEONARD J and RICHARD G. Estimation of runoff critical shear stress for soil erosion from soil shear strength[J]. Catena, 2004, 57(3): 233-249.
    [185]康永华.采煤方法变革对导水裂缝带发育规律的影响[J].煤炭学报, 1998, 23(3): 262-266.
    [186]缪协兴,王安,孙亚军等.干旱半干旱矿区水资源保护性采煤基础与应用研究[J].岩石力学与工程学报, 2009, 28(2): 217-226.
    [187]王旭锋,张东升,卢鑫,等.浅埋煤层沙土质冲沟坡体下开采矿压显现特征[J].煤炭科学技术, 2010(6): 24-28.
    [188] SALAMON M D G. Mechanism of caving in longwall coal mining. Rock mechanics Contributions and Challenges. Golden, Colorado, USA, 1990[C]. A A Balkema Publishers, 1990.
    [189] PENG S S. Coal mine ground control (3rd Edition)[M]. Morgantown: Published by Syd. S. Peng, 2008.
    [190]臧荫桐,汪季,丁国栋,等.采煤沉陷后风沙土理化性质变化及其评价研究[J].土壤学报, 2010, 47(2): 262-269.
    [191]何金军,魏江生,贺晓,等.采煤塌陷对黄土丘陵区土壤物理特性的影响[J].煤炭科学技术, 2007, 35(12): 92-96.
    [192]王健,武飞,高永,等.风沙土机械组成、容重和孔隙度对采煤塌陷的响应[J].内蒙古农业大学学报, 2006, 27(4): 37-41.
    [193]齐智鑫.神东矿区草地植物根系生长动态及其影响因子的研究[D].呼和浩特:内蒙古农业大学, 2007.
    [194]吕晶洁,胡春元,贺晓.采煤塌陷对固定沙丘土壤水分动态的影响研究[J].干旱区资源与环境, 2005, 19(7): 152-156.
    [195]魏江生,何金军,高永,等.黄土丘陵区土壤水分时空变化特征对采煤沉陷的响应[J].水土保持通报, 2008, 28(5): 66-69,103.
    [196]魏江生,贺晓,胡春元,等.干旱半干旱地区采煤塌陷对沙质土壤水分特性的影响[J].干旱区资源与环境, 2006, 20(5): 84-88.
    [197]臧荫桐,汪季,白彤,等.采煤塌陷后风沙区土壤水分的环境变异性研究*[J].干旱区资源与环境, 2009, 23(6): 151-156.
    [198]张发旺,候新伟,韩占涛,等.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学, 2003, 19(3): 67-70.
    [199]赵红梅.采煤塌陷条件下包气带土壤水分与动态变化特征研究[D].北京:中国地质科学院, 2006.
    [200]迟琳琳.神东采煤塌陷区造林技术研究[D].呼和浩特:内蒙古农业大学, 2009.
    [201]周瑞平.鄂尔多斯地区采煤塌陷对风沙土壤性质的影响[D].呼和浩特:内蒙古农业大学, 2008.
    [202]周莹,贺晓,徐军,等.半干旱区采煤沉陷对地表植被组成及多样性的影响[J].生态学报, 2009, 29(8): 4517-4525.
    [203]周莹.半干旱区采煤沉陷对地表植被组成及多样性的影响[D].呼和浩特:内蒙古农业大学, 2005.
    [204]张喜武.神东矿区可持续发展战略及其保障系统研究[D].阜新:辽宁工程技术大学, 2003.
    [205]张利权,陈小华,王海珍.厦门市生态城市建设的空间形态战略规划[J].复旦学报(自然科学版), 2004, 43(6): 995-1000, 1009.
    [206]魏晓东.宁夏六盘山区域经济生态圈布局构想[J].中共银川市委党校学报, 2005, 7(5): 46, 47.
    [207]杨鹏辉,李让乐,贾宝全,等.基于多样性生态圈建设的宝鸡城市森林规划[J].中国城市林业, 2009, 7(2): 33-35,45.
    [208]梁曾飞.柳州城市林业生态圈总体布局研究[J].四川林勘设计, 2009(1): 5-9.
    [209]王辉彭郭.浅谈城市生态圈建设[J].山东林业科技, 2005(1): 69-70.
    [210]孟江红.神东煤炭开采生态环境问题及综合防治措施[J].煤田地质与勘探, 2008, 36(3):45-51.
    [211]王安.神东矿区生态环境综合防治体系构建及其效果[J].中国水土保持科学, 2007, 5(5): 83-87.
    [212]许超,田晓龙,高广来.神东矿区生态修复途径与技术研究[OL].中国科技论文在线. http://www.paper.edu.cn/index.php/default/releasepaper/content/201007-473.
    [213]王子玲,霍晓梅,符亚儒,等.神府东胜沙地矿区植被建设技术研究[J].西北林学院学报, 2007, 22(6): 1-6.
    [214]刘慧辉,胡春元,杨茂,等.神东矿区人工林施肥试验效果研究[J].内蒙古农业大学学报, 2008, 29(4): 102-109.
    [215]戴力彬.神东矿区土壤特性调查与绿化土壤培肥效果试验研究[D].呼和浩特:内蒙古农业大学, 2009.
    [216]任余艳,胡春元,贺晓,等.毛乌素沙地巴图塔沙柳沙障对植被恢复作用的研究[J].水土保持研究, 2007, 14(2): 13-15.
    [217]中国神华能源股份有限公司神东煤炭分公司,内蒙古农业大学,中国矿业大学.神东矿区采煤塌陷区生态恢复技术试验与示范研究[R].神木, 2006.
    [218]雷少刚.荒漠矿区关键环境要素的监测与采动影响规律研究[D].徐州:中国矿业大学, 2009.
    [219]陈朝晖,朱江,徐兴奎.利用归一化植被指数研究植被分类、面积估算和不确定性分析的进展[J].气候与环境研究, 2004, 9(4): 687-696.
    [220] GUTMAN G and IGNATOV A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Joumal of Remote sensing, 1998, 19(8): 1533-1543.
    [221]吴立新,马保东,刘善军.基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析[J].煤炭学报, 2009, 34(9): 1217-1222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700