用户名: 密码: 验证码:
木质纤维氰乙基化、苄基化及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球能源和资源日益紧缺、环境不断恶化的压力下,生物质材料由于环保性和功能性,其开发应用越来越受到高度关注。将可再生资源转化为新材料以代替部分石油产品已成为一种重要的发展趋势。木质纤维材料可以通过酯化、醚化等手段进行改性,经过改性之后的木质纤维材料具有了热塑性,可用普通塑料加工成型的方法进行加工,制成各种高性能的功能性材料或复合材料,用以代替部分石油产品,或用于无胶人造板等的制造。这一方面有望部分缓解我们对石油产品的依赖,另一方面也是为木材在加工过程中产生的锯末、刨花等废料以及森林资源中大量劣等材和森林采伐剩余物的充分利用寻求新的途径。
     论文以木质纤维材料的氰乙基化和苄基化为研究方向,在前人工作基础上,通过系统研究温度、时间等因素对材料苄基化、氰乙基化的影响,确立纤维素苄基化和氰乙基化反应的动力学特性,揭示木质纤维苄基化和氰乙基化产物结构和性能间的关系,研究不同预处理条件对苄基化和氰乙基化的影响,探索苄基化、氰乙基化产物的应用途径,以便为我国废材进行资源化利用,为获得石油产品的替代物提供理论支持。
     丙烯腈的分子较小,反应活性高,可以在较低的温度下、较短的反应时间内取得较高的取代度。当反应在45℃以下进行时,温度越高纤维素氰乙基化反应速度越快,但反应温度超过50℃以上,反应物温度会急剧升高,反应过程不易控制。纤维素氰乙基化反应在开始阶段取代度会随着反应时间的延长而迅速增加,取代度超过2.6以后增加的趋势放缓,超过2.8以后基本不再增加,此时继续延长反应时间,由于副反应发生,取代度反而略有下降。和氰乙基化相比,苄基化反应需要更高的反应温度和更长的反应时间。在本文试验设定的反应温度和反应时间范围内,纸浆纤维素苄基化产物的取代度随反应温度的升高和反应时间的延长而增加。但液相反应中反应温度受反应混合物沸点的限制。
     纤维素的氰乙基化和苄基化反应均属于准一级反应。对于纤维素的氰乙基化反应,四个不同反应温度45℃、40℃、35℃、30℃下的反应速度常数分别为2.26、1.94、1.61、1.30,氰乙基化反应的表观活化能为29.8kJ/mol;对于纤维素的苄基化反应,在110℃、105℃、100℃、95℃下,反应速度常数分别为0.123、0.108、0.090、0.075,反应的表观活化能为36.95kJ/mol。
     微晶纤维素、纸浆、脱脂棉三种原料在同样条件下进行氰乙基化反应,反应后微晶纤维素的取代度略高于其它两种,脱脂棉最低,但三者间差别不显著。杨木(Populus)纤维和杨木刨花的氰乙基化反应产物增重率差别也不显著,杨木刨花略高。但上述三种纤维素类原料和两种木材类原料相比较,反应时间较长(如3h)时纤维素类原料氰乙基化后的增重率明显高于木材类原料。不同的纤维类原料同样条件下和氯化苄进行苄基化的反应后取代度有较大的差异,也是微晶纤维素最高,纸浆其次,脱脂棉最低。木纤维、木刨花等由于含有更易进行苄基化反应的木质素,所以同样条件下反应后的增重率高于纸浆和脱脂棉纤维。
     冷冻润胀、微波预处理等可以增加纤维素在碱性水溶液中的溶解性,溶解性的提高改善了纤维素的分散性,使氯化苄对纤维素的可及度增加,因而可以提高同等条件下所得产物的取代度或增重率。采用粉碎等方式降低原料的粒度对原料的苄基化也有促进作用。氰乙基化反应中,丙烯腈和羟基亲核取代反应速度较快,产物的溶解能够比较及时,丙烯腈向原料内部的渗透也比氯化苄容易,所以反应前原料的分散性或粒度对氰乙基化反应产物取代度或增重率影响很小。这样就导致了可以提高原料溶解性进而提高原料分散性的各种预处理手段如冷冻润胀、超声波预处理、微波预处理等对氰乙基化反应未表现出有利影响。
     X4熔点测定显微镜、维卡软化点、热变形测定仪、差示扫描量热仪的测试结果表明木质纤维原料经过氰乙基化或苄基化后所得的产物均可在一定温度下软化和熔融,具有热塑性,热塑性强弱和取代程度有关。氰乙基化产物软化点和熔融温度先随取代度的升高而下降,而后随取代度的升高而升高。纤维素氰乙基化产物拐点处的取代度为1.43。苄基化产物软化点和熔融温度都随其取代度的增加而下降。
     取代度较高的苄基化产物以及取代度适中的氰乙基化产物可以代替传统的胶粘剂用于胶合板生产,或者按比例和木纤维、秸秆混合后生产无胶纤维板、秸秆刨花板。上述人造板主要力学性能都能达到相应的国家标准,其甲醛释放量和原料木材本身的甲醛释放量相当。
Under the pressure of the increasing scarcity of global energy and resources, the exploitation and application of biomass materials have received more and more attention,predominantly owing to the needs of environmental protection and substitutes of petroleum. Wood fiber materials is the richest renewable resource in the world and can be modified by esterification, etherification or some other means. After the modification, the materials show thermoplastic properties and can be processed by the method of ordinary plastic processing and molding, and then be made into various kinds of high-performance functional or composite materials which can be used to replace some petroleum products or to manufacture non-gel based panels, etc. On the one hand, this can be expected to ease our dependence on oil products; on the other, it finds a new way of making full use of the sawdust, wood shavings and other wastes as well as a large number of low-grade timbers and logging slash of the forest resources.
     The central research direction of this paper is the cyanoethylation and benzylation of wood fiber materials. Based on the studies of predecessors, and by the systematic research of the influence of temperature, time and other factors on cyanoethylation and benzylation, the dissertation establishes the dynamic characteristics of the cellulose cyanoethylation and benzylation, reveals the relationships between the structures and the functions of the products of cyanoethylation and benzylation, studies the influences of different pre-treatment conditions on cyanoethylation and benzylation and provides theoretical supports for the comprehensive utilization of waste wood fiber materials, and the substitute for petroleum products.
     Molecules of acrylontrile are small, but have higher reaction activity and can obtain higher degree of substitution at lower temperature and in shorter reaction time during cellulose cyanoethylation. When the reaction is carried out at below 45℃, the higher the temperature, the faster the reaction of cellulose cyanoethylation will be. However, when the temperature of the reaction is over 50℃, the temperature of reactants increases rapidly, and the reaction becomes difficult to control. The degree of substitution of the cellulose cyanoethylation reaction increase rapidly with the reaction time at the beginning,, but when the degree is over 2.6, the tendency of the increase slows down, and it will no longer increase when the degree is over 2.8. At this time, due to the occurrence of side reactions, the degree will decrease slightly with the time. Compared to cyanoethylation, benzylation reaction requires higher temperature and longer time. In the range of the reaction temperature and time set in the test of this paper, the substitute degree of the products of benzyl cellulose pulp increases with the increasing of the temperature and time. However, in the liquid phase reaction, the reaction temperature is restricted by the boiling point of the mixture of reaction products.
     The cellulose cyanoethylation and benzylation reactions both belong to the quasi-first order reaction. Under four different reaction temperatures, say, 45℃, 40℃, 35℃, and 30℃, the reaction rate constants are 2.26, 1.94, 1.61, and 1.30, respectively. Cyanoethylation reaction’s apparent activation energy is 29.8kg/mol. As for cellulose benzylation reaction, under four different reaction temperatures, say, 110℃, 105℃, 100℃, and 95℃, the reaction rate constants are 0.123, 0.108, 0.090, and 0.075, and the reaction’s apparent activation energy is 36.9 kg/mol.
     When microcrystalline cellulose, pulp and absorbent cotton these three kinds of materials are taking cyanoethylation under the same condition respectively, the result will be that the degree of substitution of microcrystalline cellulose will be slightly higher than the other two, with the absorbent cotton lowest, but the distinction is not so obvious. The WPG of the poplar fiber and poplar parings after the cyanoethylation also makes little difference, with the poplar parings slightly higher. However, when the reaction takes longer time, for example, 3 hours, the WPG of fiber material is obviously higher than that of timber. When various fiber materials are taking benzylation with benzylchloride under the same condition, the degree of substitution will make a sharp distinction: microcrystalline cellulose the highest, and then pulp, the absorbent cotton lowest. Fiber and chips contain lignin that is more likely to take benzylation, so under the same condition the WPG is distinctively higher than pulp and absorbent cotton.
     Refrigeration swelling and microwave processing can improve the solubility of cellulose in the alkaline, which will enhance the disparity of cellulose and the accessibility of benzyl chloride to cellulose, thus the WPG or the degree of substitution will be increased. Lowering the granularity of material by grinding can also improve the benzylation. In cyanoethylation, acrylonitrile and hydroxy have nucleophilic substitution reaction more quickly, and the product can dissolve easily. Compared with benzyl chloride, acrylonitrile is more likely to permeate into the interior of material; therefore, in cyanoethylation the disparity and granularity of material before reaction have little influence on the degree of substitution and WPG of the product. As a result, all means such as refrigeration swelling, ultrasonic process and microwave process adopted in order to improve the solubility of the material and thus increase the disparity of material show no positive effect on cyanoethylation.
     The results of X4 melting point testing microscope, Vicat softening point, heat distortion analyzer, and differential scanning calorimeter, show that the products of wood fiber material after cyanoethylation and benzylation can be softened and melted at a certain temperature, and that means they have a thermoplastic, whose strength relates to the degree of substitution. The points of softening and melting of the products of cyanoethylation first decline with the increasing of the degree of substitution, and then increase with the increasing of the degree. The degree of substitution of the products of cellulose at the inflection point is 1.43. The points of softening and melting of the benzylation products both decline with the increasing of the degree of substitution.
     Benzylation products with a higher degree of substitution and cyanoethylation products with a moderate degree of substitution, can replace the traditional adhesive products for plywood production, or mix pro rata with wood fiber and straw to produce self-bonded fiber productions and straw particleboards. The main mechanical characteristics of the above mentioned wood-based boards all reach or exceed the corresponding national standards, and their formaldehyde emission amount is equal to the raw materials.
引文
贝拉米(Bellamy, L. J.).复杂分子的红外光谱[M].北京:科学出版社. 1975. 150-200
    陈浩凡,潘仕荣,胡瑜等.胶体滴定法测定羧甲基壳聚糖的取代度.分析测试学报, 2003, 22(6):70-73
    杜卫平.竹浆纤维的基本形态结构分析.上海纺织科技, 2006, 34(6): 7-11
    傅献彩,沈文霞,姚天扬等.物理化学(第5版)下册.北京:高等教育出版社, 2005, 221-289
    高洁,汤烈贵.纤维素科学[M].北京:科学出版社.1996:64-115.
    郭明,王鹏,李铭慧等.三甲基硅羟乙基纤维素醚的合成、表征及性能.浙江林学院学报,2008, 25(1): 1-6
    郭立颖史铁钧段衍鹏.氯化1-烯丙基-3-乙基一咪唑盐的合成及其对微晶纤维素的微波溶解[J].应用化学, 2009, 26 (9):1005-1010
    胡艳英,王述洋,曹玉昆.基于灰色系统理论对黑龙江省林业生物质产量的预测[J].东北林业大学学报. 2008, 36(8): 70-72
    晋勇,孙小松,薛屺. X射线衍射分析技术.北京:国防工业出版社, 2008, 111-190
    金永安,张曙光,常克平.苎麻纤维的氰乙基化改性初探[J].毛纺科技. 2004, (5): 14-16
    梁学海,徐越华,徐剑雯.木质纤维素在球磨过程中的相变行为.中国造纸学报, 1990, 5(1): 19-25
    李润卿.有机结构波谱分析[M].天津:天津大学出版社. 2002: 1-221
    李余增.热分析.北京:清华大学出版社. 1987, 111-390
    李运波.苄基化木材及其复合材料的制备、结构与性能[M].华侨大学. 2006: 1-121
    刘伟,刘晓洪,殷肖海等.热处理对苎麻纤维结晶度的影响.纺织科技进展, 2009, 31(4):50-51
    吕昂、张俐娜.纤维素溶剂研究进展[J].高分子学报. 2007, 2007(10):937-944
    卢殉.全植物纤维复合材料的制备、结构与性能[D].中山大学博士学位论文. 2001, 32-40.
    卢珣,石光,章明秋,等.植物纤维增强塑化天然纤维复合材料的制备与性能研究[M].合肥:中国科学技术大学出版社,2000:115—119
    戚昌盛,高保娇,庄儒彬.乙酸苄酯合成中接枝型三相相转移催化剂的活性及催化反应动力学.化学研究与应用, 2008, 20 (9): 1115-1120
    容敏智,卢珣,章明秋.剑麻增强氰乙基化木复合材料的研究[J].中山大学学报:自然科学版. 2007,46(1): 52-56.
    邵自强.天然纤维素醚化技术及其技术革新浅谈. http://china-celluether.com/Article_Class.asp 2010-3-27
    石雷,孙庆丰,邓疆.人工幼龄印度黄檀木材解剖性质和结晶度的径向变异及预测模型.林业科学研究, 2009, 22(4):553-558
    师少飞,王兆梅,郭祀远.纤维素溶解的研究现状.纤维素科学与技术. 2007, 15(3):74-78
    滕莉丽,王科军,郭国瑞.微波作用下木材苄基化改性研究[J].林产化工通讯, 2004, 38(1):21-24
    万东北,尹波,罗序中.微波辐射作用下氰乙基化木材的制备[J].生物质化学工程, 2006, 40(1):5-8
    万东北,郭国瑞,罗序中.微波辐射作用下木材氰乙基化改性研究[J].赣南师范学院学报, 2003, (6):32-34
    万东北,罗序中,黄桂萍等.甘蔗渣苯甲基化改性研究.林业科技[J]. 2005,30 (3):57-59
    王东山,黄勇,沈家瑞.二醋酸纤维素一聚乙二醇接枝共聚物的核磁共振表征[J].分析测试学报. 2001,20(4): 16-18
    王怀芳,朱平挑,张传杰.氢氧化钠/尿素/硫脲溶剂体系对纤维素溶解性能研究[J].合成纤维, 2008, 37(7): 28-32
    翁诗甫.傅里叶变换红外光谱仪.北京:化学工业出版社, 2005, 1-200.
    熊犍,冯凌凌,叶君.微波辐射对大豆浓缩蛋白溶解性的影响[J].食品与发酵工业. 2006, (32)1:
    107-110
    杨桂成,曾汉民,李家驹等.剑麻纤维的改性与抗拉性能关系的研究[J].中山大学学报(自然科学版).1996,35( 4):53-570
    杨莉燕,柴淑玲,谭惠民.二醋酸纤维素接枝聚己内酯的核磁共振表征[J].功能高分子学报. 2004,17(1): 135-138
    袁清,董炎明.甲壳素类液晶高分子的研究Ⅲ.取代度和分子量对氰乙基壳聚糖液晶性的影响.高分子学报. 2000, 2000(1): 5-8
    余权英,谭向华.木材氰乙基化改性研究(Ⅱ) [J].林产化学与工业, 1995, 15(4): 31-38
    余权英,李国亮.氰乙基化木材的制备及其热塑性研究[J].纤维素科学与技术, 1994, 4(1): 47-53.
    余权英,蔡宏斌.苄基化木材的制备及其热塑性研究[J].林产化学与工业, 1998, 18(1): 23-29.
    谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社. 1987, 69-319
    章毅鹏,廖建和,桂红星.剑麻纤维及其复合材料的研究进展[J].热带农业科学.2007, 27(5):53-57,63
    张占军,杨小生,朱文适,等.土党参化学成分研究.中草药. 2005, 36(8): 1144-1146
    赵殊,张菲,张雯雯.丙烯酸纤维素的合成与表征.化学与黏合, 2007, 29(3):193-196
    周程安.使用显微熔点测定仪测定有机配合剂的熔点.轮胎研究与开发. 1994, 20(3): 48-50
    周刚,黄关葆,汪少朋.超声波处理纤维素的结构变化及其在多聚磷酸中的溶解[J].应用化工. 2008,37(6):677-679.
    周兴平,解孝林, Li R. K. Y. PP/PMMA接枝剑麻纤维复合材料——(Ⅱ)SF表面处理对PP/SF复
    合材料结构和性能的影响[J].高分子材料科学与工程. 2004,20(4): 138-141,145
    周遗品,赵永金,张延金. Arrhenius公式与活化能.石河子大学学报(自然科学版), 1995, 13(4): 281-286
    赵艳涛,孙永强,康保安.月桂酸甲酯烷氧基化反应动力学研究.日用化学工业. 2009, 39(5):297-300
    朱平,赵晓霞,王敏等.水溶性改性细菌纤维素的制备及表征.合成纤维. 2009, 38(4):30-33
    Arni P C,Gray J D,Scougall R K.Chemical modification of wood 2: use of trifluorocetic acid as a catalyst for the acetylation of Wood[J].J.App1.Chem. 1961, 11: 163
    Baird B R.Dimensionol stabilization of wood by vapour phase chemical treatments[J].Wood and Fiber. 1969, 1(1);54
    Behbood Mohebby , Aisona Talaii, Saeid Kazemi Najafi. Influence of acetylation on fire resistance of beech plywood[J]. Materials Letters. 2007,61:359– 362.
    Brelid P Larsson, Simonson R. Bergman O, et al. Resistance of acetylated wood to biological degradation[J]. Holz Rohund Werksto. 2000,58: 331–337.
    Brelid P Larsson. The influence of post-treatments on acetyl content for removal of chemicals after acetylation[J]. Holz Roh- und Werksto, 2002, 60: 92–95.
    Chang H T, & Chang S T. Improvements in dimensional stability and lightfastness of wood by butyrylation using microwave heating[J]. Journal of Wood Science. 2003, 49: 455–460.
    Chang, S T; Chang, H T. Comparisons of the photostability of esterified wood[J]. Polymer Degradation and Stability. 2001, 71(2): 261-266.
    Cho T S, Doh G H, Park S B, et al. Conversion of chemically modified wood to thermoplastic material (I) Chemical treatments for thermoplasticization[J]. Research Reports of the Forestry Research Institute Seoul. 1993, 47: 77-85.
    Clermon L P, Bender F.The effect of swelling agent and catalysts on acetylation of Wood[J].Forest Products J.1957, 7(5): 167
    Evans P D, Owen N L, Schmidc S et al. Weathering and photostability of benzoylated wood[J]. Polymer Degradation and Stability. 2002,76 :291–303.
    Evans P D, Wallis F A, Owen N L. Weathering of chemically modified wood surfaces-Natural weathering of Scots pine acetylated to di?erent weight gains[J]. Wood Science and Technology. 2000, 34: 151–165.
    Funakoshi H, Shiraishi N, Norimoto M, et al. Studies on thermoplasticisation of wood[J]. Holzforschung. 1979,33, 159–166.
    Gardea-Hernández G, Ibarra-Gómez R, Flores-Gallardo S G,et al. Fast wood fiber esterification. I:Reaction with oxalic acid and cetyl alcohol[J]. Carbohydrate Polymers, 2008, 71(1): 1-8.
    Goldstein J S,Jeroski E B. Acetylation of wood in lumber thickness[J]. Forest Products J. 1961,11(8): 363
    Gowdra K. Prakash, Kittappa M. Mahadevan. Enhancing the properties of wood through chemical modification with palmitoyl chloride[J]. Applied Surface Science. 2008, 254(6):1751-1756.
    Hill C A S, Jones D. The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides: The effect of chain length[J]. Holzforschung. 1996, 50(5):457–62.
    Hill C A S, Jones D. Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides[J]. Holzforschung, 1999, 53(3):267–71.
    Hill C A S, Forster S C, Farahani M R M, et al. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood[J]. International Biodeterioration & Biodegradation. 2005, 55:69–76.
    Hirai N, Morita M, Suzuki Y. Electrical properties of cyanoethylated wood meal and cyanoethylated cellulose[J]. Mokuzai Gakkaishi. 1993, 39(5): 603-609.
    Hon David N S; Ou Nian Hua. Thermoplasticization of wood. I. Benzylation of wood[J]. Journal of Polymer Science Part A: Polymer Chemistry. 1989, 27(7):2457- 2482.
    Honma S, Okumura K, Yoshioka M, et al. Mechanical and thermal properties of benzylated wood[C]. Rotorua, New Zealan: International symp on chemical modification of lignocellulosics. 1992,176: 140-146.
    Isogai A, Atalla R H. Dissolution of cellulose in aqueous NaOH solutions. Cellulose. l998, 5:309~319
    Iwamoto Y, Itoh T. Vapor phase reaction of wood with maleic anhydride (I): Dimensional stability and durability of treated wood[J]. Journal of Wood Science. 2005, 51: 595–600.
    Iwamoto Y, Itoh T, Minato K. Vapor phase reaction of wood with maleic anhydride (II): Mechanism of dimensional stabilisation[J]. Journal of Wood Science. 2005, 51:601–606.
    Kamide K, Okajima K, Matsui T, et al. Study on the solubility of cellulose in aqueous alkali solution [J]. Polymer J. 1984,16(12):857—866
    Kiguchi M. Chemical modification of wood surfaces by etherification I. Manufacture of surface hot-melted wood by etherification[J]. Journal of the Japan Wood Research Society. 1990, 36(8): 651-658.
    Kiguchi M. Chemical modification of wood surfaces by etherification II-Weathering ability of hot-melted wood surfaces and manufacture of self hot-melt bonded particleboard[J]. Journal of the Japan Wood Research Society. 1990, 36: 10, 867-875.
    Kiguchi M. Chemical modification of wood surfaces by etherificationⅢ-Some properties of self-bonded benzylated particleboard[J]. Journal of the Japan Wood Research Society. 1992, 38(2): 150-158
    Kiguchi M. Chemical modification of wood surfaces by etherificationⅣ-Benzylation with solvent-dilution and vapor-phase methods. [J] Journal of the Japan. Wood Research Society. 1993, 39(1): 80-85
    Klinga L O, Tarkow H.Dimensional stabilization of hardboard by acetylation[J].TAPPI,1996, 49(1) : 23 Kumar S. Chemical modification of wood[J]. Wood Fiber Sci, 1994, 26(2):270–80.
    Kumar S,Agarwal S C.Biological degradation resistance of wood acetylated with thioacetic acid[J]. International Research Group on wood Preservation IRG/W P/3223, 1983
    Kuo Y N,Hong J.Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym.Adv Technol,2005.16(5):425—428
    Larason Pia,Tillman A M.Acetylation of ligoncellulosic materials.paper prepared for the 20th[C]. annual meeting congress center.Lappsenranta,Finland 22- 26 May, 1989, IRG /WP/3516
    Li J Z, Furuno T, Katoh S. Chemical modification of wood by anhydrides without solvents or catalysts[J]. Journal of Wood Science. 2000,46: 215–221.
    Li J Z, Furuno T, Katoh S, et al. Chemical modification of wood by anhydrides without solvents or catalysts[J]. Journal of Wood Science. 2000, 46: 215–221.
    Maria Cristina Timar, Maria Daniela Mihai, Kevin Maher, et al. Preparation of Wood with Thermoplastic Properties Part 1. Classical Synthesis[J]. Holzforschung. 2000, 54:71–76.
    Maria Gr?ndahl, Anita Teleman, Paul Gatenholm. Effect of acetylation on the material properties of glucuronoxylan from aspen wood[J]. Carbohydrate Polymers. 2003,52 :359–366.
    Matsuda H, Kagawa-ken. Preparation and utilization of esterified woods bearing carboxyl groups[J]. Wood Science and Technology. 1987,21:75-88.
    Mohamed Jebrane, Gilles Sèbe. A novel simple route to wood acetylation by transesterification with vinyl acetate[J]. Holzforschung. 2007, 61(2):143–147.
    Mohammadi-Rovshandeh J. Plasticization of poplar wood by benzylation and acetylation[J], J. Sci. Tech. 2003, 27: 353-358.
    Morita M, Koga T, M. Shigematsu, et al. Functional materials derived from cyanoethylated wood and pulp[J]. Wood processing and utilization. 1989, 293-298.
    Morita M, Sakata I. Chemical conversion of wood to thermoplastic material[J]. Journal of Applied Polymer Science. 1986, 31: 3, 831-840.
    Morita M, Sakata I. Development of the thermoplasticity and the solubility of cyanoethylated woods and barks of various species[J]. Mokuzai Gakkaishi Journal of the Japan Wood Research Society. 1988, 34: 11, 917-922.
    Nakano T. Mechanism of thermoplasticity for chemically-modified wood[J]. Holzforschung. 1994,48(4): 318-324.
    Ogawa T, Ohkoshi M. Properties of medium density fiberboards produced from thermoplasticized wood fibers by allylation without adhesives[J]. Journal of the Japan Wood Research Society. 1997, 43(1): 61-67.
    Ohkoshi M. Bonding of wood by thermoplasticizing the surfaces II-Possible cross-linking of wood by the graft-copolymerizing of styrene onto allylated surfaces[J]. Journal of the Japan Wood Research Society. 1991, 37(10): 917-923
    Ohkoshi M, Hayashi N, Ishihara M. Bonding of wood by thermoplasticizing the surfacesⅢ-Mechanism of Thermoplasticization of wood by Allylation[J]. Journal of the Japan Wood Research Society. 1992, 38(9): 854-861
    Ohkoshi M. FTIR-PAS study of light-induced changes in the surface of acetylated or polyethylene glycol-impregnated wood[J]. Journal of Wood Science. 2002, 48: 394–401.
    Ohkoshi M, Kato A, Suzuki K. et al. Characterization of acetylated wood decayed by brown-rot and white-rot fungi[J]. Journal of Wood Science. 1999, 45(1): 69-75.
    Prakash G K, Pandey K K, Ram R K D, et al. Dimensional stability and photostability of octanoylated wood[J]. Holzforschung. 2006,60: 539–542.
    Rowell R M. Acetylation of wood: Journey from analytical technique to commercial reality[J]. Forest Products Journal. 2006,56(9), 4–12.
    Rowell R M, Norimoto M. Dimensional stability of bamboo particleboards made from acetylated particles[J]. Mokuzai Gakkaishi Journal of the Japan Wood Research Society. 1988, 34: 7, 627-629.
    Rowell R M, Imamura Y, Kawai S et al. Dimensional stability, decay resistance, and mechanical properties of veneer-faced low-density particleboards made from acetylated wood[J]. Wood and Fiber Science. 1989, 21: 1, 67-79.
    Rowell R M, Lichtenberg R S, Larsson P. Stability of acetylated wood to environmental changes[J]. Wood and fiber science : journal of the Society of Wood Science and Technology (USA). 1993,25(4): 359-364.
    Rowell R M,Richard H S,Wang,Hyatt J A.Flakeboards made from aspen and southern pine wood flakes reacted with gaeeous ketene[J].J.of.wood Chemistry and Technology, 1986, 6(3): 449-471
    Rowell R M,Tillman A M, Simonson R.A simplified procedure for the acetyhtion of hard wood and softwood flakes for flakeboard production[J].J.Wood chem. Tech. 1989,6(3): 427- 448
    Rowell R M.刘正添等译.实木化学[M].北京:中国林业出版牡,1988,10-28
    Roy C,Budtova T,Navard P,et al.Structure of cellulose-soda solutions at low temperatures. Biomaemmolecules,200l,2:687-693
    Roy C,Budtova T,Navard P.Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules. 2003, 4:259-264
    Rusu G, Teaca C A. The chemical modification of wood. V. The carboxyethylation reaction[J]. Revista De Chime. 2002, 53(5): 380-382.
    Sarkar A, Pillay S A, Sailaja R R N et al. Thermoplastic composites from cyanoethylated wood and high density polyethylene[J]. Journal of Polymer Materials. 2001, 18(4): 399-407.
    Singh S P,Kumar L D.Chemical modification of wood 2.vapour phase acetylation with acetic chloride[J]. Inter.J. of Wood Preservation, 1981, 1(4): 199- 171
    Singh S P, Kumar L D.Chemical modification of wood.vapour phase acetylation with thioacetic acid [J].Wood Science, 1979, 11(4): 268—270
    Simonson R, Rowell R. A new process for the continuous acetylation of lignocellulosic fiber[C]. In Proceedings of the 5th Pacific Rim bio-based composites symposium. Canberra: Department of Forestry, The Australian National University. 2000: 190–196.
    Shiraishi N. Plasticization of wood and its application[J]. Abstracts of Papers of the American Chemical Society. 1988,195:121-125.
    Shiraishi N, Matsunaga T, Yokota T. Thermal softening and melting of esterified wood prepared in an N2O4 –DMF cellulose solvent medium[J]. J. Appl. Polymer Sci. 1979, 24, 2361–2368.
    Soo Jin Son,Yung Mok Lee, Seung Soon Im. Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulose. Journal of Materials Science[J]. 2000, 35: 5767-5778.
    Suzuki M, Iwagiri S. Physical properties of hardboard produced by benzylated Asplund pulp[J]. Bulletin of the Experiment Forests, Tokyo University of Agriculture and Technology. 1986, 22: 25-31
    Takatani M, Ito H, Ohsugi,etc S. Effect of Lignocellulosic Materials on the Properties of Thermoplastic Polymer/Wood Composites[J]. Holzforschung. 2000,54 : 197–200.
    Tarkow H.Acetylation of wood with ketene.Office Report, Forest products Laboratory UBDA Forest Service. 1945
    Tarkow H, Stamm A J.Acetylated wood.Forest Products Laboratory USDA Forest Service Report 1593, 1959
    Thiebaud S, Borredon M E, Baziard G et al. Properties of Wood Esterified by Fatty-acid Chlorides[J]. Bioresource Technology. 1997,59: 103-107.
    Thiebaud S, Borredon M E. Solvent-free Wood Esterification with Fatty acid Chlorides[J]. Bioresource Technology. 1995,52:169-173.
    Tserki V, Zafeiropoulos N E, Simon F et al. A study of the effect of acetylation and propionylation surface treatments on natural fibres[J]. Composites: Part A. 2005,36(8): 1110–1118.
    Vick C B, Larsson P C, Mahlberg R L et al. Structural bonding of acetylated Scandinavian softwoods for exterior lumber laminates[J]. International Journal of Adhesion and Adhesives. 1993, 13(3):139-149.
    Wu J H, Hsieh T Y, Lin H Y. Properties of wood plasticization with octanoyl chloride in a solvent-free system[J]. Wood Science and Technology. 2004, 37(5) :363-372.
    Yamawaki T, Morita M, Sakata I. Production of Thermally Auto-adhered Medium Density Fiberboard from Cyaanoethylated Wood Fibers[J]. Mokuzai Gakkaishi. 1991, 37(5): 449-455.
    Yamawaki T, Morita M, Sakata I. Mechanical and dielectric properties of cyanoethylated wood[J]. Journal of applied polymer science (USA). 1990, 40(9/10):1757-1769.
    Yoshioka M, Uehori Y, Toyosaki H et al. Thermoplasticization of wood and its application. Rotorua[C], New Zealan: International symp on chemical modification of lignocellulosics. 1992,176: 155-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700