用户名: 密码: 验证码:
红松人工林碳贮量和碳分配的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红松(Pinus koraiensis)为我国东北东部地区地带性顶极群落建群种,但经过历史上长期破坏该树种数量明显减少。为恢复以该树种为主的地带性顶极群落,建国后在东北东部山地营造了大量红松人工林,其中有一部分已和天然侵入的树种形成人工天然混交林。为了解红松人工林生态系统的固碳能力,本研究在长白山北部张广才岭西坡的东北林业大学帽儿山实验林场老山人工林实验站,选择20年和42年生的红松(Pinus koraiensis)人工纯林、白桦(betula platyphylla)红松人天混交林、蒙古栎(Quercus mongolica)红松人天混交林三种类型试验林分,采用径级标准木法,样方收获法测定林分的叶、枝、干、果和根等器官生物量和碳贮量,同时测定土壤呼吸和碳贮量、凋落物碳贮量和分解速率,并计算碳输入和输出平衡,结果如下:
     (1)20年生红松人工纯林总碳贮量为134.10Mg·hm-2,其中生物量碳库占20.82%,土壤碳库占78.75%,凋落物碳库占0.43%;42年生红松人工纯林总碳贮量为323.34Mg·hm-2,其中生物量碳库占25.95%,土壤碳库占73.50%,凋落物碳库占0.55%。20年生白桦红松人天混交林总碳贮量为141.39Mg·hm-2,其中生物量碳库占19.91%,土壤碳库占79.60%,凋落物碳库占0.49%;42年生碳贮量为351.12Mg·hm-2,其中生物量碳库占24.93%,土壤碳库占74.31%,凋落物碳库占0.76%。20年生蒙古栎红松人天混交林碳贮量为193.23Mg·hm-2,其中生物量碳库占17.95%,土壤碳库占81.69%,凋落物碳库占0.36%;42年生碳贮量为377.23Mg·hm-2,其中生物量碳库占25.42%,土壤碳库占73.87%,凋落物碳库占0.71%。三种林分类型总碳贮量相比以蒙古栎红松混交林贮量最多,白桦红松混交林次之,红松纯林最低。在三种红松林生态系统内,土壤碳库、生物量碳库、凋落量碳库的大小排序为:土壤碳库>生物量碳库>凋落物碳库。
     (2)土壤碳库贮量占红松林贮碳总量的绝大部分,42年林分约占73.5%-74.31%而20年生林分占的比例更大。红松人工林土壤碳库L层(未分解层)碳库占4.29%,F层(半分解层)碳库占5.56%,H层(腐殖质层)碳库占13.96%,B层(矿质层)碳库占76.19%。土壤中碳含量随土层垂直深度加深而降低,呈指数曲线相关。土壤中的碳贮量与土壤容重、土层深度、碳含量密切相关。
     (3)凋落量碳库由凋落的叶、枝、皮、果等碳库组成,其中叶碳库占36.65%,枝碳库占27.31%,皮碳库占10.28%,果碳库占22.64%,粪便占2.74%,虫卵占0.38%。
     不同林分类型凋落物分解释放碳不同,红松纯林碳释放率43.33%,其中第一年碳释放率为24.25%,第二年为19.08%;白桦红松混交林两年分解失重率为50.19%,其中第一年释放率为30.72%,第二年为19.47%;蒙古栎红松混交林两年碳释放率为52.83%,第一年为32.42%,第二年为20.41%。三种林分相比以蒙古栎红松混交林碳释放率最高,白桦红松混交林次之,红纯林最低。
     (4)红松纯林土壤呼吸速率月平均为3.44μmol·m-2·s-1,白桦红松混交林为4.00μmol·m-2s-1,蒙古栎红松林为4.13μmol·m-2·s-1。三种林分类型比较以蒙古栎红松林土壤呼吸速率最高,白桦红松混交林次之,红纯林最低。而且土壤呼吸速率随季节的变化而有规律的变化。三种类型的呼吸速率第一年最大值出现在8月份,第二年出现在6、8两个月,而生长开始的5月份和生长停止的10月份呼吸速率最低。三种林分类型的土壤呼吸速率均与气温、地温、土壤含水量相关密切。充分说明,这些环境因子明显地影响了土壤呼吸速率。
     (5)红松人工林生态系统每年生物固碳量(包括生物量现存量和凋落物碳归还量)与该林分类型土壤呼吸量之差为新增碳贮量。红松纯林新增贮存量为1.30Mg·hm-2·a-1,白桦红松混交林为1.54Mg·hm-2·a-1,蒙古栎红松混交林为1.89Mg·hm-2·a-1。与其它研究结果相比,本研究的红松人工林新增碳贮量略低,可能因本研究的红松林年龄偏小所致。
Pinus koraiensis is top communication species in eastern part of Northeast forest, but the quantities decreased for many years. Korean pine plantation was cultivated after our country rebuilt, and a part of them have been mixed with natural invaded vegetations,which formed as natural mixed forest. For better understanding of Korean pine planation in carbon storage, pinus koaiensis with 20 and 42 years, Betula platyphlla-pine mixed forest, Quercus mongolica-pine mixed forest were selected in Lao Shan experiment station of Northeast Forestry University. Methods of diameter-class standard tree and plot harvest were used to measure the biomass of leaves,branches, woods,fruits and roots, as well as carbon storage. Soil respiration and soil respiration, litter carbon storage and decomposition rate were measured, and thus carbon input and output of these studied ecosystems were calculated, results showed that:
     1) Total carbon storage of Korean pine plantation with 20 years was 134.10Mg·hm-2, of which biomass carbon storage accounted 20.82%, soil carbon storage 78.75%, litter carbon storage 0.43%. For 42 years Korean pine planation, total carbon storage was 323.34Mg·hm-2, of which biomass carbon storage accounted 25.95%, soil carbon storage 73.5%, litter carbon storage 0.55%. Total carbon storage of Betula platyphlla-pine mixed forest with 20 years was 141.39Mg·hm-2, of which biomass carbon storage accounted 19.91%, soil carbon storage 79.60%,, litter carbon storage 0.49%. For 42 years Betula platyphlla-pine mixed forest, total carbon storage was 351.12Mg·hm-2, of which biomass carbon storage accounted 24.93%, soil carbon storage 74.31%, litter carbon storage 0.76%. Total carbon storage of Quercus mongolica-pine mixed forest with 20 years was 193.23 Mg·hm-2, of which biomass carbon storage accounted 17.95%, soil carbon storage 81.69%,, litter carbon storage 0.36%. For 42 years Quercus mongolica-pine mixed forest, total carbon storage was 377.23Mg·hm-2, of which biomass carbon storage accounted 25.42%, soil carbon storage 73.87%, litter carbon storage 0.71%. Compared thses three kinds of forest carbon storage, carbon storage in mongolica-pine mixed forest was highest, then in betula platyphlla-pine mixed forest, korean pine planation the lowest. Compared carbon storage in soil, biomass and litterfall in these three pine mixed ecosystems, soil carbon storage>biomass carbon storage)litterfall carbon storage.
     2) Soil carbon storage was accounted for large part of total carbon storage in pine forest, with 73.5%-74.31% for 42 years pine forest, and 20 years planation accounted more. Layer L(not decomposed layer) accounted for 4.29%, layer F(half-decomposed layer) 5.56%, layer H(humus layer) 13.96%, layer B(mineral layer) 76.19%. Soil carbon content increased with soil depth, and had an exponential relationship with its depth. Soil carbon sotrage had a closely relationship with soil density, soil depth and soil carbon content.
     3) Litterfall carbon storage was composed of litter leaves, branches and fruits, etc. Leave carbon storage accounted for 36.65%, branch 27.31%, fruit 22.64%, etc.
     Carbon decomposition rate was different for its forest types, carbon releasion rate in pure pine planation was 43.33%, for first year about 24.25%, the second 19.08%. Weight losing rate in betula platyphlla-pine mixed forest was 50.19%, for 30.72% the first year,19.47% the second. Weight losing rate in mongolica-pine mixed forest was 52.83%, for 32.49% the first year,20.41% the second. Compared thses three kinds of forest carbon release rate, mongolica-pine mixed forest was the highest, then in betula platyphlla-pine mixed forest, koreain pine planation the lowest.
     4) Soil respiration rate was 3.44μmol·m-2·s-1in koreain pine planation,4.00μmol·m-2·s-1 in betula platyphlla-pine mixed forest,4.13μmol·m-2·s-1 in mongolica-pine mixed forest. Soil respiration in mongolica-pine mixed forest was highest, then in betula platyphlla-pine mixed forest, pine planation the lowest. Soil repiration changed with seasonal trends. The highest value of soil respiration occurred in august for the first year, and june and august for the second. The lowest soil respiration occurred in the beginning of the growing season and october. Soil respiration in the three forest types was related with air temperature, soil temperature, and soil water content, which clearly explained that environmental factors effected, soil respiration rate.
     5) Differences between the biomass carbon storage and soil respiration in these three pine planation was new add carbon storage. New carbon storage was 1.30Mg·hm-2·a-1 for pure pine forest,1.54Mg·hm-2·a-1 for betula platyphlla-pine mixed forest,1.89Mg·hm-2·a-1 for mongolica-pine mixed forest. Compared to other published results, new add carbon storage in our study was a little lower, which maybe ascribed to low age reason.
引文
[1]潘辉,黄石德,洪伟,朱洪如,张志鸿,林捷.3种相思人工林生态系统碳贮量及分配.福建林学院学报,2009,29(1):28-32
    [2]何宗明,李丽红,王义祥,邹双全,岳永杰,王小国.33年生福建柏人工林碳库与碳吸存.山地学报,2006,21(3):298-303
    [3]张琼.按树工业原料林生态系统生物量和碳贮量初步研究.福建农林大学硕士学位论文.2005
    [4]白雪爽,胡亚林,曾德慧,蒋志荣.半干旱沙区退耕还林对碳储量和分配格局的影响.生态学杂志.2008,27(10):1647-1652
    [5]曹永康.不同采伐剩余物处理方式对二代杉木人工林生态系统碳储量的影响.福建农林大学硕士学位论文.2008
    [6]尉海东,马祥庆.不同发育阶段楠木人工林生态系统碳贮量研究.烟台师范学院学报(自然科学版),2006,22(2):130-133
    [7]Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils.Global Biogeochemal Cycle,1995,9:23-26
    [8]Lankreijer H, Janssens N,Buchmann B,et al.Measurement of soil respiration.In R Valentini ed.Fluxes of Carbon,water and energy of European Forests.Berlin Heidelberg: Springer-Verlag.2003,37-54
    [9]康冰,刘世荣,张广军,广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征[J]生态学报,2006,26(5):1320-1329
    [10]张国庆.不同经营措施对马尾松人工林生态系统碳储量的影响.四川农业大学硕士学位论文.2008
    [11]陈乐蓓.不同经营模式杨树人工林生态系统生物量与碳储量的研究.南京林业大学研究生学位论文.2008
    [12]方晰,田大伦,项文化,蔡宝玉.不同密度湿地松人工林中碳的积累与分配.浙江林学院学报,2003,20(4):374-379
    [13]周玉荣,于振良,赵士洞.中国主要森林生态系统的碳贮量与碳平衡[J].植物生态学报.2000,24(5):518-522.
    [14]Dixon R K Brown S, Hougnton Ret al.Carbon pools and flux of global forest ecosystems [J].Science,1994,263:185-190
    [15]Horwath W R. Pregitzer K S,Paul E A.14 Callocation in tree-soil systems.Tree Physiology, 1994,14:1163-1176
    [16]Gulledge J,Schimel J P.Controls on Soil Carbon Dioxide and Methane Fluxes in Variety of Taiga Forest Stands in Interior Alaska.Ecosystems,2000,3:269-282
    [17]易明波.大沟流域主要植被土壤有机碳贮量及其影响因素研究.西南大学硕士学位论文.2008
    [18]Vose J M,Elliott K J,Johnson D W,et al.Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (Pinus ponderosa Doug. ex Laws.).Plant and Soil,1997,190:19-28
    [19]Law B E,Ryan M G, Anthoni P M.Seasonal and annual respiration of a Ponderosa pine ecosystem.Global Change Biology,1999,5:169-182
    [20]Wang W.Methods for the determination of CO2 flux from non-photosynthetic organs of trees and their influences on the results. Acta Ecologica Sinica,2004,24:2056-2067
    [21]Wang W. Methods for the determination of CO2 flux from non-photosynthetic organs of trees and their influences on the results. Acta Ecologica Sinica,2004,24:2056-2067
    [22]盛浩,中亚热带常绿阔叶林碳储量和地下碳平衡[D].福建师范大学硕士学位论文。2007
    [23]周振宝.大兴安岭主要可燃物类型生物量与碳储量的研究.东北林业大学硕士学位论文,2006
    [24]王君.滇西北不同土地利用方式下的土壤呼吸研究.中国科学院研究生院硕士学位论文,2007
    [25]杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报,2005,25(11),2875-2882
    [26]袁渭阳.短轮伐期巨按人工林土壤碳转移研究.四川农业大学硕士学位论文,2008
    [27]罗云建,张小全.多代连栽人工林碳贮量的变化.林业科学研究,2006,19(6):791-798
    [28]Shi F,Chen X,Wang W,et al.Introduction to the larch-dominant site for CO2 flux in a forest of the Laoshan Experimental Station in Northeast China.Proceed.Asia Flux Net 2001a,1:87-91
    [29]Wang H M,Saigusa N,Zu Y G,et al.Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in Northeast China.Submission to Journal of Forestry Research,2001b,3:27-49
    [30]Koike T,Hojyo H,Naniwa A,et al.Basic data for CO2 flux monitoring of a young larch plantation current status of a mature, mixed conifer-broadleaf forest stang.Eurasian J.Forest Research,2001,2:65-79
    [31]Londo A J,Messina M G,Schoenholtz S H.Forest harvesting effects on soil temperature,moisture,and respiration in a Bottomland hardwood.Soil Science of America Journal,1999,63:637-644
    [32]梁爱珍,张晓平,杨学明,C.F.Drury.耕作方式对耕层黑土有机碳库储量的短期影响.中国农业科学,2006,39(6):1287-1293
    [33]葛全胜,戴君虎,何凡能,潘嫄,王梦麦.过去300年中国土地利用、土地覆被变化 与碳循环研究.中国科学D辑:地球科学,2008,38(2):197-210
    [34]张慧东.寒温带兴安落叶松林土壤二氧化碳释放特征研究.内蒙古农业大学硕士学位论文,2007
    [35]Peng Y,Thomas S C.Soil CO2 efflux in uneven-aged managed forests:temporal patterns following harvest and effects of edaphic heterogeneity.Plant Soil,2006,289:253-264
    [36]Davidson E A,Janssens I A.Temperrature sensitivity of soil carbon decomposition and feedbacks to climate change.Nature,2006,440:165-173
    [37]Schulze E D,Mollicone D,Achard F,et al.Making deforestation pay under the Kyoto protocol.Science,2003,299:1669
    [38]Lee M,Nakane K,Nakatsubo T,et al.Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest.Ecological Research,2002,17:401-409
    [39]焦秀梅.湖南省森林植被碳贮量及地理分布规律.中南林学院硕士学位论文,2005
    [40]陈遐林.华北主要森林类型的碳汇功能研究.北京林业大学博士学位论文,2003
    [41]顾伟,李志安,邹碧,谭万能,丁永祯.华南热带人工林土壤有机碳含量及其稳定性特征.热带亚热带植物学报,2007,15(5):369-376
    [42]贺亮.黄土高原和秦岭地区几种人工林有机碳储量及植被对环境影响的初步研究.西北农林科技大学硕士学位论文,2007
    [43]贾宇平.黄土丘陵小流域土壤碳库空间变异与储量研究-以河曲砖窑沟流域为例.山西大学硕士研究生学位论文,2003
    [44]Davis T D,Haissig B E.Biology of Adventitious Root Formation.New York.Plenum Press.1994,275-280
    [45]Giardina C P,Ryan M G.Evidence that decomposition rates of organic carbon inmineral soil do not vary with temperature. Nature,2002,404:858-861
    [46]Bowden R D,Nadelhoffer K J,Boone R D,et al.Contribution of above ground litter,below ground litter,and root respiration to total soil respiration in a temperate mixed hardwood forest.Canadian Journal of Forest research.1993,23:1402-1407
    [47]Rey A E,Pegoraro V,Tedeschi I,et al.Annual variaation in soil respiration and its components in a coppice oak forest in Central Italy.Global Change Biology.2002,8:851-866
    [48]Martin J L,Gower S T,Plaut J,et al.Carbon pools in a boreal mixed wood logging chronosequence.Global Change Biology,2005,11:1883-1894
    [49]孟凡乔,关桂红,张庆忠,等.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26(6):992-999
    [50]周存宇,周国逸,王迎红.鼎湖山针阔叶混交林土壤呼吸的研究.北京林业大学学报,2005,27(4):23-27
    [51]易志刚,蚁伟民,周国逸.鼎湖山三种主要植被类型土壤碳释放研究.生态学 报,2003,23(8):1673-1678
    [52]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学,2001,43(9):967-973
    [53]Raich J W,Potter C S.Global patterns of carbon dioxide emissions from soils.Global Biochemical Cycle,1995,9:23-36
    [54]Midwood A J,Boutton T W.Soil carbonate decomposition by acid has little effect on delta 13C of organic matter.Soil Biology and Biochemistry,1998,30:1301-1307
    [55]钟羡芳.连栽对衫木人工林破贮量及土壤易变破的影响.福建师范大学硕士学位论文,2007
    [56]杨玉盛,陈光水,王义祥.格氏拷人工林和衫木人工林碳库及分配.林业科学.2006,42(10):43-47
    [57]钟羡芳,陈光水,高人.杉木多代连栽地营造杉阔混交林碳库与碳吸存.福建师范大学学报(自然科学版).2006,22(2):99-03.
    [58]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报.2000,24(5):518-522.
    [59]钟羡芳.连栽对衫木人工林破贮量及土壤易变破的影响.福建师范大学硕士学位论文,2007
    [60]Wang C,Bond-Lamberty B,Gower S T.Soil surface CO2 flux in a boreal black spruce fire chronosequence.Journal of Geophysical Research,2002,108(D3):art.no.8224
    [61]Rozhkov V A,Wagner V Betal.soil carbon estimates and soil carbon map for Russia.Ⅱ ASA workpaper,1996,WR96-60,1-44
    [62]Bond-Lamberty B,Wang C,Gower ST.A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology,2004,10:1756-1766
    [63]Raich J W,Tufekcioglu A.Vegettation and Soil Respiration:Correlations and Controls.Biogeochemistry,2000,48:71-90
    [64]方晰,田大伦.杉木人工林C库与C吸存的动态研究.广西植物.2006,26(5):516-522
    [65]蔡琼,丁贵杰.黔中地区连栽马尾松林对土壤微生物的影响.南京林业大学学报(自然科学版).2006,30(3):131-133
    [66]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报2004,28(5):692-703
    [67]王春权,孟宪民,张晓光,夏丹丹.陆地生态系统碳收支/碳平衡研究进展.资源开发与市场,2009,25(2)
    [68]周广胜,王玉辉,蒋延玲,杨利民.陆地生态系统类型转变与碳循环.植物生态学报,2002,26(2):250-254
    [69]杨玉盛,谢锦华,盛浩.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报,2007,62(11):1123-1131
    [70]沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大 学,2006,28(2):312-317
    [71]陶波,葛全胜,李克让,等.陆地生态系统碳循环研究进展[J].地理研究,2001,20(5):564-575
    [72]宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-62
    [73]项文化,黄志宏,闫文德,等.森林生态系统碳氮循环功能耦合研究综述[J].生态学报,2006,26:2365-2372
    [74]Fang C,Moncrieff J B.Amodel for soil CO2 production and transport1:Model development.Agricultural and Forest Meteorology,1999,95:255-236
    [75]Priess J A,Koning G H,Veldkamp A.Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador.Agriculture Ecosystems & Environment,2001,85:268-279
    [76]Frank A B,Liebig M A,Hanson J D.Soil Carbon Dioxide Fluxes in Northern Semiarid Grasslands.Soil Biology and Biochemistry,2002,34:1235-1241
    [77]陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):189-204
    [78]周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734
    [79]徐小锋,田汉勤,万事强.气候变化对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188
    [80]任书杰,曹明奎,陶波,等.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地理科学进展,2006,25(4):58-67
    [81]吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应[J].植物生态学报,2007,31(2):205-218
    [82]宋燕燕,王敬国,齐鑫,等.陆地碳循环模型的比较分析[J].甘肃农业,2006,(5):291-292
    [83]毛留喜,孙艳玲,延晓冬.陆地生态系统碳循环模型研究概述球[J].应用生态学报,2006,17(11):2189-2195
    [84]Xu M,Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology,2001,7:667-677
    [85]Kang SY, Doh S, Lee D,et al. Topographic and Climatic Controls on Soil Respiration in Six Temperate Mixed-Hardwood Forest Slopes, Korea. Global Change Biology, 2003,9:142-1437
    [86]Chapman S J, Thurlow M.The influence of climate on CO2 and CH4 emission from organic soils.Agricultural and Forest Meteorology,1996,79:205-217
    [87]Burke M K,Raynald D J. Fine root growth phenology, production,and turnover in northern hardwood forest ecosystems.Plant and Soil,1994,162:135-14
    [88]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳失汇[J].植物 生态学报,2001,25(5):594-602
    [89]崔骁勇,陈四清,陈佐忠.大针茅典型草原土壤CO2排放规律的研究[J].应用生态学报,2000,11(3):390-394
    [90]Post W M.Organic carbon in soil land the global carbon cycle.In:Heimann M ed.The Global carbon cycle.Berlin:Springer-verlag Heidelber,1993,277-302
    [91]夏鑫.马尾松人工林的老龄林生态系统生物量和碳贮量研究.福建农林大学硕士学位论文,2008
    [92]陈遐林.华北主要森林类型的碳汇功能研究[D].北京林业大学博士论文.2003
    [93]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522
    [94]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[[J].植物生态学报,2001,25(5):594-602
    [95]王效科,冯宗炜.森林生态系统中生物量和碳贮量的研究历史[A].:王如松主编.现代生态学热点[C].北京:中国科学与技术出版社,1995,335-347
    [96]耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展,2000,19(4):297-306
    [97]吴仲民,曾庆波,李意德.尖峰岭热带森林土壤C贮量及CO2排放量的初步研究[J].植物生态学报,1997,21(5):416-423
    [98]吴仲民,李意德,曾庆波.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4):341-344
    [99]赵士洞,汪业助,于振良,.中国森林生态系统碳循环研究,生态学的新纪元-可持续发展的理论与实践.见:中国生态学会编.中国生态学会通讯特刊.2000,50-52
    [100]王绍强,周成虎,刘纪远.东北地区陆地碳循环平衡模拟分析[J].地理学报,2001,56(4)390-400.
    [101]王绍强,周成虎,李克让.中国土壤有机碳库及空间分布特征分析[J].地理科学进展,1999,18(3):238-244
    [102]Laurent A, Carlo B,Piers R F,et al. Eight glacial cycles from an antarctic ice core[J].Nature,2004,429:623
    [103]Schimel D S,Enting I G,Heimann M,et al.CO2 and the carbon cycle[C]Houghton J T.Climate change,1994.Cambridge, UK:Cambridge University Press,1995:35-71
    [104]Sedjo R A.The carbon cycle and global forest ecosystem[J].Water, Air and Soil Population,1993,70:295
    [105]Schimel D S,House J I, Hibbard K A,et al.Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J].Nature,2001,414:169
    [106]王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16
    [107]方晰,田大伦,项文化.不同经营方式对杉木林采伐迹地土壤C储量的影响[J].中南 林学院学报,2004,24(1):1-5
    [108]马钦彦,陈遐林,王娟.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100
    [109]秦建华,姜志林.森林在大气碳平衡中的作用[[J].世界林业研究.1997,10(4):18-25.
    [110]郑帷婕,包维楷,辜彬.陆生高等植物碳含量及其特点[[J].生态学杂志,2007,26(3):307-313.
    [111]方晰,田大伦.速生阶段杉木人工林碳素密度、储量和分布[J].林业科学,2002,38(3):14-19
    [112]方运霆,莫江明,黄忠良.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(1):47-52
    [113]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和储量的研究[J].广西植物,2002,22(41)305-310
    [114]Kovel CGF de,Mierlo AJEM van,Wilms YJO,et al.Carbon and nitrogen in soil and vegetation at sites differing in successional age[J].Plant Ecology,2000,149:43
    [115]Dixon R K,Brown S,Houghton R A,et al.Carbon pool and flux of global forest ecosystems[J].Science,1994,263:185
    [116]Lindroth A A, Grelle A C,Moren A S. Long term measurements of boreal forest carbon balance reveal large temperature sensitivity[J].Global Change Biology,1998,4(5):443-450
    [117]Goulden M L,Wofsy S C,Harden J W,et al.Sensitivity of boreal forest carbon balance to soil thaw.Science,1998,279:214-217
    [118]Kasischke E S,Stocks B J.Fire,Climate Change,and Carbon Cycling in the Boreal Forest.New York:Springer,2000,1-29
    [119]Melillo J M,Steudler P A,Aber J D,et al.Soil warming and carbon-cycle feedbacks to the climate system.Science,2002,298:2173-2176
    [120]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究.浙江大学博士学位论文,2006
    [121]方精云,陈安平.中国森林植被碳库的动态变化及意义[[J].植物学报,2001,43(9):967-973.
    [122]Yamamoto S,Murayama S,Saigusa N,et al.Seasonal and inter-annual variation of CO2 flux between a temprate forest and the atmosphere in Japan.Tellus.1999,51B:401-413
    [123]Smith W N.A comparison of the performance of nice soil organic matter models using data sets from seven long-term experi-ments[J]. Geoderma,1997,81:153-225
    [124]Vandenbygaart A J,Yang X M,Kay B D,et al.Variability in carbon sequestration potential in no-till soil landscapes of southern Ontario[J].Soil & Tillage Research,2000,65:231-241
    [125]De Jong E,Kochanoski R G.The importance of erosion in the carbon balance of prairie soils[J].Canadian Journal of Soil Science,1998,68:111-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700