用户名: 密码: 验证码:
中国林木生物质发电原料供应与产业化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上个世纪九十年代以来,我国经济实现了跨越式发展,经济总量和增长率都保持了较高的水平,年平均经济增长速度保持在8%以上。然而,同期我国能源消费也呈现飞速增长,能源供需形势经历了一个由生产与消费基本平衡的自给自足状态到能源进口的过程。随着我国人口增长和工业化进程的加快,能源危机与环境污染成为制约社会经济可持续化发展的关键问题。在这种形势下,积极开发包括林木生物质能源在内的可再生能源,实现对能源资源的高效化、清洁化利用,促进能源结构从单一性向多元化转变,成为当前解决能源-经济-环境问题的重要举措之一。
     生物质发电是一种高效的林木生物质能源开发利用方式。近年来,北美和欧洲的一些发达国家在林木生物质发电的原料资源获取途径、电能转化技术和电力市场推广方面已经取得了很大的进步。在我国,丰富的林木生物质能源资源和大量的宜林荒山荒沙地成为发展林木生物质发电产业提供了重要的资源基础。同时,我国发展林木生物质发电产业具有以下优点:(1)资源具有可再生性,耐旱、耐贫瘠;(2)不与粮食生产争地;(3)改善生态环境;(4)提供新的就业机会;(5)带动新农村建设等。目前,一些中小规模的林木生物质发电项目正在兴起,并且得到了我国政府越来越多的重视与相关政策的支持。2007年,我国《可再生能源中长期发展规划》中提出,到2020年农林生物质发电总装机容量达到2400万千瓦的目标,并通过颁布系列优惠政策来促进该产业的发展。
     林木生物质发电作为一种十分重要和有效的生物质能源利用方式,在我国的发展时机已经日趋成熟。但是,如何合理开发林木生物质能源资源并将其用于生物质发电,在我国还缺乏成功的案例或项目经验。相对滞后的原料供应系统、不成熟的原料要素市场以及不断攀升的原料供应价格严重制约了林木生物质发电在我国的形成与发展。本文从能源发展战略的角度,结合产业发展规律和资源配置的原理,对我国林木生物质发电产业化形成以及原料资源供应问题展开了研究。
     研究中主要得出的结论如下:(1)我国已经基本上具备了林木生物质发电产业兴起的技术、经济、资源和市场等基础条件,其产业化的形成与发展过程表现为零星生产、项目推广和产业化发展三个阶段。(2)我国森林资源总量丰富,在满足森林系统基本功能的同时,仍有大量的林木生物质剩余物产出且堆积在相对集中的林地,成为林木生物质发电的主要原料来源,这部分原料资源现阶段以灌木平茬剩余物、商品林采伐剩余物和薪炭林采伐物为主,专门能源林被列入未来原料供应的重要方向,通过估算我国各省区的原料资源量,得出我国林木生物质发电原料资源地区分布差异较大。(3)原料供应系统的构建包括原料生产技术路线和供应模式的合理设计及组合,文中根据对削片地点的选择提出了“林地削片”、“收购点削片”和“电厂削片”三种生产技术路线;并根据原料收购方式和组织者的不同,提出了“直接收购”、“设置收购点”和“能源林直供”三种基本的原料供应模式。(4)关于原料供应经济性分析,文中采取工程经济估计法,从原料资源的生产和成本方面着手,选取“边际成本”为核心要素,构建原料供应成本模型,进而讨论了供应规模和成本的关系;另外,对成本项的分解反映了技术水平、原料类型或来源以及地理交通等因素引起的原料供应经济性的差异。(5)针对(3)和(4)中形成的原料供应系统及经济性研究理论,文中选定内蒙古奈曼旗和阿尔山两个地区的林木生物质发电项目案例的原料供应问题进行了实证研究和比较分析。(6)林木生物质发电的项目经济性研究表明,林木生物质发电项目的整体经济性较差,发电成本远远高于传统火力发电的经济成本,产业初期国家政策的大力扶持成为该类项目获得经济收益并且得以持续经营的必要条件。(7)我国林木生物质发电产业布局和优先区域的选择以地区原料资源条件、劳动力、地理交通和市场需求等作为区位因子,对以上各项指标进行综合评价和排序,并将我国各省区划分为四个等级,其中内蒙古、四川和云南省区被列入Ⅰ级优先区域,成为开展林木生物质发电项目的优先考虑区域。
Since 1990s, economic development of China has made great progress covering a relatively high GDP (Gross Domestic Product) and growth rate with an average economic growth rate of over 8% per year. However, energy consumption was also increasing rapidly during the corresponding time, coupled with energy supply state from the balanced to relying on import and serious environmental pollution, as well as the population growth aggravating the status. All above has hindered the social-economic development in China. Under the current status, renewable energy with low emisions, including forest biomass energy will play an important role in the energy structure transforming from a single set to the diversity.
     Bioenergy power generation is a high-efficiency way of forest biomass utilization. As far as the wood biomass supply logistics, power conversion technology and electricity marketing, it has made a lot of achievements in some developed countries of North America and Europe. There are many advantages of developing forest bioenergy power in China as follows:(1) the biomass fuel is renewable and from the plantation species of drought and barren tolerance; (2) it will not complicate with agriculture in land using; (3) it can improve the ecological environment; (4) it can offer employment opportunities; and (5) it can bring along the development of the poor countriside etc. As well, China is abundant in forest biomass energy resource and suitable land for energy plantation, which is the most important resource base for the developing forest biomass power generation. Progress is being made with the establishment of several small-scale projects under the relevant policy support and China's central government predicts its power-generating capacity using agricultural and forest bioenergy will be some 24 GW by 2020.
     The relevant study has shown that now it is the time to develop the forest power generation in China. However, there are few successful cases or project experience in China on forest biomass using for power generation. The industrialization and development of the forest biomass power has been restricted largely because of behindhand feedstock, immatural forest fuel market and high cost of forest biomass supply. The study is carried out on the form of the forest biomass power generation and its feedstock which is based on the whole energy strategy of China and principal theories on industy development and resource allocation.
     The main conclusions of the study are involved as follows:(1) The required conditions of the forest biomass power generation has been satisfied basically in China, including the technology, economic, resource and market conditions. And the development process will experience three periods such as small-scale phase, project-promotion phase and industrial development phase. (2) China is abundant in forest resource gross and after it plays the forest necessary function there are still a lot of wood residues left in forest land, which will be the main raw material source of the forest biomass power generation. The resource consists of brances of shrub coppicing, logging residuces of commercial forest and fuelwood forest, as well as the special energy forest plantation in the future. Distribution of the forest biomass resource for bioenergy varies greatly in different places of China, which is proved by the estimation results from all provinces. (3) Raw material supply system is constructed in the study including the production line and supply logistics, which brings forward three production lines according the chipping location, such as'forest chipping',' ollection site chipping' nd'power plant chipping', as well, three supply models'direct purchase','collection site set' ard'energy plantation'are also coming based on the acquisition mode and the orgazation. (4) Economic analysis of the forest biomass supply for power generation are carried out by the'engineering economic approach'. Marginal cost is as the key element and the cost mode of raw material supply is constructed in this part, which indicates the relationship between the supply scale and the cost. And the cost structure also shows the varieties of equipments applied, wood fuel types and geography and transportation conditions. (5) And based on the theoratical conclusions derived in above (3) and (4), two-case study is carried out in Naimanqi and Arxan of Inner mongolia, China. (6) Economic feasibility of forest biomass power generation project indicates that the overall economic of the project is in a low level and that the forest biomass power cost is than that from fossil fuel. So the government support will be very necessary in early stage. And (7) analysis on industrial distribution and prioritization areas selection is based on distribution of forest resource available for bioenegy power generation, as well as local labor, transportation and electricity demand factors, and the evaluation results elicit that there are four classes of areas in China and Inner mongolia, Sichuan and Yunan province are list into the first class as optimun areas for forest biomass power generation.
引文
[1]成其谦.投资项目评价[M].中国人民大学出版社.2003
    [2]邓南圣.王小兵著.生命周期评价[M].化学工业出版社.2003
    [3]顾树华.能源利用与农业可持续发展[M].北京:北京出版社.2001.:42-45
    [4]郝海德.董玉平.刘岗.第三方物流对于我国生物质能资源可供性的战略意义[J].可再生能源.2006(3):86-88
    [5]黄锦涛,王新雷,徐彤.生物质直燃发电经济性及影响因素分析[J].可再生能源.2008,26(2):95-99
    [6]黄锦涛,王新雷,徐彤.我国农林生物质发电相关问题研究[J].沈阳工程学院学报(自然科学版),2008(1)
    [7]黄雷,张彩虹,秦琴.环境成本与林木生物质发电[J].电力需求侧管理.2007(9):77-80
    [8]季昆森.安徽省发展生态经济实施可持续发展战略的思考与对策[J].生态经济,2001(4)
    [9]简德三.投资项目评估[M].上海财经大学出版社.2004
    [10]李梁杰,杨伯元.生物质能直燃发电项目的环境影响经济损益分析[J].工业技术经济.2009(12)
    [11]李怒云.中国林业碳汇[M].北京:中国林业出版社.2007
    [12]厉以宁,吴易风等.西方福利经济学述评[M].商务印书馆.1984
    [13]林琳,赵黛青,李莉.基于生命周期评价的生物质发电系统环境影响分析[J].太阳能学报.2008(29),5:618-623
    [14]林永明.生物质直燃发电厂燃料组织关键问题分析[J].广西电力2009,32(2):5-10
    [15]刘刚,沈镭.中国生物质能源的定量评价及其地理分布[J].自然资源学报,2007(22)1:9-19
    [16]刘尚余等.生物质直燃发电CDM项目开发关键问题分析与研究[J].太阳能学报,2008(3):379-382
    [17]刘志强,孙学峰.25MW生物质直燃发电项目及其效益分析评价[J].应用能源技术.2009(6):32-34.
    [18]刘志迎.现代产业经济学教程[M].北京:科学出版社.2007
    [19]鲁明中等.生态经济学概论[M].乌鲁木齐:新疆科技卫生出版社,1992
    [20]吕文,张彩虹等.林木生物质原料发电供热技术路线初步研究[J].中国林业产业,2006,(4):39-44.
    [21]吕文,王春峰,王国胜等.中国林木生物质能源发展潜力研究[J].中国能源.2005,27(11):21-26
    [22]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003:221
    [23]穆献中,刘炳义等.新能源和可再生能源发展与产业化研究[M].北京:石油工业出版社,2009
    [24]曲格平.能源环境可持续发展研究[M].中国环境科学出版社.2003
    [25]任东明,曹静.论中国可再生能源发展机制[J].中国人口·资源与环境.2003,(5):16-19
    [26]万威武,刘新梅,孙卫.可行性研究与项目评价[M].西安交通大学出版社.2007
    [27]王东杰.论生态经济学与环境经济学的区别与联系[M].生态经济,1999(4)
    [28]王立国.李东阳等.投资项目评估学[M].东北财经大学出版社.1994
    [29]王连茂.江西林木生物质能源产业化研究[D],博士论文,2009,5
    [30]王书化.区域生态经济——理论、方法与实践[M].北京:中国发展出版社,2008
    [31]韦保仁.中国能源需求与二氧化碳排放的情景分析[M].中国环境科学出版社.2007
    [32]魏克.考虑环境成本的火电投资项目风险经济评价[D].西北工业大学,2006
    [33]魏学好,周浩.中国火力发电行业减排污染物的环境价值标准估算[J].环境科学研究,2003(1)
    [34]吴鸣颖,楼台芳.环境影响经济评价及其价值评估法在电厂建设中的应用研究[J].环境与开发.1999(14)
    [35]夏景涛,姚贵宝,庞传洪.伐区剩余物的生产与综合利用[J].森林工程,2001,17,(5):18-19.
    [36]小宫山宏.迫田章义.松村幸彦.(日)日本生物质综合战略[M].北京:中国环境科学出版社.2005:73-86,121-127.
    [37]谢勇,柳华.产业经济学[M].武汉:华中科技大学出版社.2008
    [38]徐剑琦,张彩虹等.林木生物质能源树种生物量数量分析[J].北京林业大学学报,2006(6):98-102
    [39]许汝文,田雁冰.发电厂的环境成本分析[J].内蒙古环境保护.2004(12):24-27
    [40]徐瑜青.环境成本计算方法研究[J].会计研究.2002(3):49-52
    [41]梁志鹏.可再生能源发展的必经过程和我国的政策取向[J].中国能源,2002(5):28-32
    [42]姚向君,王革华,田宜水.国外生物质能源的政策与实践[J].北京:化学工业出版社.2006
    [43]姚志勇等.环境经济学[M].北京:中国发展出版社.2002
    [44]尹天佑等.生物质能源技术开发利用与产业化[M].吉林:吉林大学出版社,2005:284,304-311.
    [45]袁振宏.我国的生物质能源发展方向与对策.中国新能源网2003-12-29.
    [46]袁振宏,李学凤,蔺国芬.我国生物质能技术产业化基础的研究[J].中国新能源,2003-11-26.
    [47]臧旭恒,徐向艺,杨蕙馨.产业经济学[M].经济科学出版社.2007,P58
    [48]曾麟,顾树华.发展能源农业和能源林业,立足国内保障石油安全[J].科技与经济.2005,9:79-83
    [49]曾贤刚.环境影响经济评价[M].化学工业出版社.2003
    [50]张包钊,郭凤华.面向21世纪的美国生物质能源[J].能源工程,1999,(2):9-11.
    [51]张彩虹,张大红等.中国林木生物质能源发展经济分析与可行性研究[J].中国林业产业,2006,(1):35-45.
    [52]张坤民,潘家华,崔大鹏.低碳经济论[M].北京:中国环境科学出版社.2008
    [53]张广英.山区能源林建设及技术措施[J].河北林业科技,1999,(1):44-46.
    [54]张瑞芹,王炎昌,丁小会.农村生物质再生资源利用的构思[J].可再生能源,2004,(117):47-50.
    [55]张巍.生物质直燃发电项目上网电价测算与分析[J].电力建设.2008,29(2):72-74
    [56]张文忠.经济区位论[M].科学出版社.2000
    [57]张无敌,字尚斌,周长平.生物质能——未来能源的希望[J].能源研究与利用,1995,(4):3-6.
    [58]张雪元,雷振天.中国生物质能源概况[J].林产化工通讯,1997,(4):20-22.
    [59]张希良,吕文等.中国森林能源[M].北京:中国农业出版社,2008.
    [60]张正敏,李宝山.清洁能源促进政策应用与分析[M].北京:中国环境科学出版社,2005.
    [61]赵静,钱桦,袁湘月等.林木生物质收获机械发展现状[J].林业机械和木工设备.2006,36(5):10-12
    [62]郑海水,何克军,黄世能等.短轮伐期薪材林用材林培育技术[M].北京:中国林业出版社,1990.
    [63]郑玉歆.应用福利经学[M].经济管理出版社.2004
    [64]中国国家发展改革委员会.国际可再生能源现状与展望[M].北京:中国环境科学出版社,2007
    [65]中国林木生物质能源发展潜力研究课题组.中国林木生物质能源发展潜力研究报告[J].中国林业产业.2006(6):5-11
    [66]中华人民共和国国家发展计划委员会基础产业发展司编.:中国新能源与可再生能源1999白皮书[M].中国计划出版社.2000
    [67]周篁.可再生能源发电政策智能模拟方法的研究[D].中国电力科学研究院博士学位论文,2003.
    [68]祝学范,杨克美.木质能源的地位及开发利用前景[J].农村能源,2001,100,(6):30-32.
    [69]J·A·迪克逊,L·F·斯库拉等,(何雪炀,周国梅等译).环境影响的经济分析[M].中国环境科学出版社.2001
    [70]Allen, J., Brownr, M., Hunter, A., Boyd, J. and Palmer, H. Logistics management and costs of biomass fuel supply. International Journal of Physical Distribution & Logistics Management.1998.28 (6):463-477.
    [71]Anssi Ahtikoskia. Economic viability of utilizing biomass energy from young Stands—the case of Finland [J]. Biomass and bioenergy.
    [72]Arxan Government. Arxan Green and Clear Industry Development and Planning.2007. http://travel.sohu.com/20071123/n253443352.shtml.
    [73]Asia Alternative Energy (Astae), The World Bank. Scoping Study of Biomass Energy Development in Inner Mongolia, China.2005.77pp.
    [74]Berndes, G., M. Hoogwijk and R. van den Broek.The contribution of biomass in the future global energy supply:a review of 17 studies. Biomass and Bioenergy.2003.Vol.25 (1), pp 1-28
    [75]Bernd, Per S. Nielsen. Analysing transport costs of Danish forest wood chip resources by means of continuous cost surfaces [J]. Biomass and Bioenergy 31 (2007):291-298
    [76]Bjornstad, E. An engineering economics approach to the estimation of forest fuel supply in North-Tr(?)ndelag county, Norway. Journal of Forest Economics.2005.10 (4):161-188.
    [77]Clark B. Pine beetle crosses rockies. Vancouver Sun,8 November 2005. p. A1-A2.
    [78]Cosranza R. What is ecological economics. Ecological Economics,1989.1.
    [79]Dao, R. D. L. Study on biological characteristics of shrub Caragana intermedia and measures of its industrilization. Inner Mongolia Forestry Investigation and Design.2008.31 (3):93-95.
    [80]Domac, J., Richards, K. and Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy.2005.28:97-106.
    [81]Easterly, J.L. and Burnham, M. Overview of biomass and waste fuel resources for power production. Biomass Bioenergy.1996.10 (2/3):79-92.
    [82]Evaluation of the earlier stage for the RPS in Texas. Wiserr, Langnisso, USA.2002
    [83]Faaij, A., Meuleman, B., Turkenburg, W., Wijk Van, A., Bauen, A., Rosillo-calle, F and Hall, D. Externalities of biomass based electricity production compared with power generation from coal in the Netherlands. Biomass Bioenergy.1998.14 (2):125-147.
    [84]FAO.Global fibre supply model. United Nations Food Agricultural Organisation, Rome, Italy. 1998b
    [85]FAO. Options For dendro-power in Asia:report the expert consultation. FAO Regional Wood Energy Development Programme in Asia, Bangkok, Thailand.2000.184pp.
    [86]Fischer G, Schrattenholzer L.Global bioenergy potentials through 2050. Biomass Bioenergy. 2001.20:151-159
    [87]Fujino J, Yamaji K, Yamamoto H.Biomass-balance table for evaluating bioenergy resources. Appl Energy.1999.63(2):75-89
    [88]Gan, J. and Smith, C.T. A comparative analysis of woody biomass and coal for electricity generation under various CO2 emission reductions and taxes. Biomass Bioenergy.2006.30(4): 296-303.
    [89]Gingras, J:F. Harvesting small trees and forest residues. Biomass Bioenergy.1995.9(1/5): 153-160.
    [90]Gronalt, M. and Rauch, P. Designing a regional forest fuel supply network. Biomass Bioenergy 2007.31 (6):393-402.
    [91]Hall Do Biomass energy in industrialized countries. Aview of the future. For Ecol Manag.1997,91 (1):17-45.
    [92]Hall Do, Rosillo-Calle F, Williams RJ, Woods J. Biomass for energy:supply prospects. In: Johansson TB, Kelly H, Reddy AKN, Williams RH (eds) Renewable energy:sources for fuels and electricity. Island Press, Washington, District of Columbia, USA,.1993.pp 593-651
    [93]Hoogwijk M.On the global and regional potential of renewable energy sources. PhD thesis, Utrecht University, Utrecht, The Netherlands,.2004.p 256
    [94]Hoogwijk M, Faaij A, Van den Broek R, Berndes G, Gielen D,Turkenburg W.Exploration of the ranges of the global potential of biomass forenergy. Biomass Bioenergy.2003.25 (2):119-133
    [95]IEA Energy Statistics Division. Renewables Information 2003.International Energy Agency 2003
    [96]IPCC (2000) Special report on emissions scenarios. Intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, UK
    [97]Junginger, M., Faaij, A., van den Broek, R., Koopmans, A. and Hulscher, W. Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in North-eastern Thailand. Biomass Bioenergy.2001.21 (4):259-275.
    [98]K. Riahi, R.A.Roehrl (2000) Energy Technology Strategies for Carbon Dioxide Mitigation and Sustainable Development, Environment Economics and Policy Studies, [J]. Vol.3, No2,2000, Tokyo
    [99]Kathryn Fernholz. Steve Bratkonich. Jim Bowyer. Alison Lindburg. (2009) Energy from woody biomass:a review of harvesting guidelines and a discussion of related challenges. Dovetail Partners, Inc. www.dovetailinc.org.
    [100]Kumar, A., Cameron, J.B. and Flynn, P.C. Biomass power cost and optimum plant size in western Canada. Biomass Bioenergy.2003.24 (6):445-464.
    [101]Kumar, A., Flynn, P. and Sokhansanj, S. Bio power generation from mountain pine infested wood in Canada:An economical opportunity for greenhouse gas mitigation. Renewable Energy 2008.33 (6): 1354-1363.
    [102]Lashof DA, Tirpak DA.Policy options for stabilizing global climate. United States Environmental Protection Agency, Hemisphere, New York, USA.1990.
    [103]M. Parikka, Global biomass fuel resources, Biomass and Bioenergy 27.2004:613-620
    [104]Marie E. Walsh. U.S. Bioenergy crop economic analyses:status and needs. Biomass and Bioenergy.1998.Vol.14. No.4. pp.341-350.
    [105]Overend, R.P. The average haul distance and transportation work factors for biomass delivered to a central plant. Biomss.1982.2:75-79.
    [106]Rogner HH. Energy Resources. World Energy Assessment. J. Goldemberg, UNPD, Washington, District of Columbia, USA,2000.pp 135-171
    [107]Rosillo-Calle, Frank; de Groot, Peter; Hemstock, Sarah L Biomass Assessment Handbook-Bioenergy for a Sustainable Environment. Woods, Jeremy (?) 2007 Earthscan
    [108]Smeets E and Faaij A. Bioenergy potentials from forestry in 2050 Anassessment of the drivers that determine the potential. Climatic Change,2007,81:353-390
    [109]Smith, W.B., P.D. Miles, J.S. Vissage, and S.A.Pugh.. Forest Resources of the United States2002. USDA Forest Service Gen. Tech. Rep. NC-241,St. Paul, Minnesota.2004.137 pp.
    [110]The share of renewable energy in the EU. Comission of the European communities,2004
    [111]Van Belle, Jf., Temmerman, M. and Schenkel, Y. Three level procurement of forest residues for power plant. Biomass Bioenergy.2003.24 (4/5):401-409.
    [112]Varela, M., Lechon, Y. and Saez, R..Environmental and socioeconomic aspects in the strategic analysis of a biomass power plant integration. Biomass Bioenergy 1999.17 (5):405-413.
    [113]WEC New renewable energy sources.A guide to the future. World Energy Council/Kogan Page Limited, London, UK.1994
    [114]Willeb rand E, Ledin S. Verwijst T. Willow coppice systems in short rotation forestry. Biomass and Bioenergy,1993,4:323-331.
    [115]Wiltsee G. Lessons learned from existing biomass power plants. National Renewable Energy. Laboratory Report no. NREL/SR-570-26946,2000
    [116]Woodwell GM, Whittaker RH, Reiners WA, et al.1978. The biota and the world carbon budge. Science,199:141-146.
    [117]Yoshioka, T., Aruga, K., Nitami, T., Sakai, H. and Kobayashi, H. A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan. Biomass Bioenergy.2006.30 (4):342-348.
    [118]Yoshioka, T., Aruga, K., Nitami, T., Sakai, H. and Kobayashi, H. and Nitani, T. Cost, energy and carbon dioxide (CO2) effectiveness of a harvesting and transporting system for residual forest biomass. Japanese Forestry Society 2002.7 (3):157-163.
    [119]Young,H.E. Biomass utilization and management implications. In Weyerhaeuser Science Symposium 3, Forest-to-Mill Challenges of the Future.1980:65-80.
    [120]Zhida Zhang et al. China Green Energy, China Economics Press, Jan 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700