用户名: 密码: 验证码:
水热法垃圾焚烧飞灰重金属稳定化处理及同步去除废水中重金属
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用水热法来处理垃圾焚烧飞灰和重金属废水,实验研究了水热法稳定重金属的机理,水热条件对于稳定化效果的影响。利用XRD分析仪、SEM-EDS、ICP-MS和BET氮吸附仪等仪器对等水热反应后飞灰与废水的特性,如元素含量、表面形态、比表面积、重金属浓度、渗滤毒性进行实验研究。
     利用能谱仪SEM-EDS和XRD分析了典型生活垃圾焚烧厂和医疗废物焚烧厂的垃圾焚烧飞灰的元素组成特性,表面形态和晶相结构特性,并利用国家环保部制定实行的固体颗粒物重金属渗滤毒性测试标准研究了飞灰的重金属浸出特性,实验中各种重金属的浸出浓度各异,Zn的浸出浓度最大,而作为毒性较大的重金属Pb和Cd的浸出值超出了标准值。
     飞灰水热稳定化处理实验中,发现Al,Si元素含量、反应温度和反应时间的提高对重金属稳定化效果起促进作用,最终趋于平稳;而液固比、碱性物质添加量、废水初始重金属浓度对于重金属稳定化效果的影响具有波动性,通过实验研究得出,水热反应时液固比和碳酸钠投加量对处理效果和二次污染均有较大的影响。结果表明,液固比为10/1,碳酸钠投加量(以20g干灰质量计)为4-5 g较为合理。
     飞灰与废水重金属同步去除稳定化处理实验中,在水热过程中,NaOH的添加有助于硅铝酸盐的形成,并且提高反应温度有助于硅铝酸盐结晶率的提高。MWI飞灰对重金属的去除效果受到反应温度,NaOH添加量与初始重金属浓度的影响。去除效率随着反应温度和初始浓度的升高而升高,但是过量添加NaOH会导致Zn(Ⅱ)和Pb(Ⅱ)去除效率的急剧下降。
     在水热过程中,重金属不但从废水中去除,而且进一步转化为稳定的矿物结构稳定于飞灰中。渗滤毒性测试结果显示,水热处理后飞灰渗滤毒性大大降低。而反应后飞灰的渗滤毒性也受到反应条件的影响。较高的反应温度以及合理的NaOH添加量,适中的重金属废水浓度可以使反应后飞灰重金属渗滤毒性以及出水重金属浓度处于极低的水平。
     在水热过程中同时伴随着二噁英类有机污染物的脱氯效应,在重金属稳定化的同时,飞灰中二嗯英浓度也得到大大降低。
     通过本文的研究,形成了垃圾焚烧飞灰与废水中重金属以及飞灰中二噁英类有机污染物的较为经济有效处理工艺,为实现城市生活垃圾及医疗废物焚烧法的污染“零排放”技术做了有效的补充。
In this context, the hydrothermal process has been applied to deal with heavy metals from both waste incineration fly ash and waste water. Experimental studies of the hydrothermal synthesis and stabilization mechanism of heavy metals, and the stabilization effect of hydrothermal conditions have been determined. XRD analyzer, SEM-EDS, ICP-MS, the BET nitrogen adsorption instrument and other equipment applied to discover the effects of hydrothermal treatments on treated fly ash and wastewater characteristics, such as the element content, surface morphology, specific surface area, and heavy metal concentration of leachate.
     Fly ash used in experiments from municipal solid waste incineration and medical waste incineration was investigated experimentally, using the SEM-EDS and XRD to analyze the characteristics of their elemental composition, surface morphology and crystalline structure characteristics, and take advantage of solid particulate matter standards for heavy metals leaching toxicity formulated and implemented by the State Environmental Protection Department to identify the heavy metal leaching characteristics of fly ash. Among various concentrations of different heavy metals, Zn leaching concentration is the greatest, but as a highly toxic heavy metals, Pb and Cd leaching concentration have exceed the standard value.
     The increasing Al, Si element contents, reaction temperature and reaction time have been found play a positive role Fly ash treatment hydrothermal stability experiments and found that, increase the effects of heavy metals in stabilization and eventually stabilized. While the effects of liquid-solid ratio, dosage of alkaline substances, and initial concentrations of heavy metals in wastewater for the stabilization of heavy metals are volatile. Emerging from the study through experiments, liquid-solid ratio and dosage of sodium carbonate treatment have a greater impact on stabilized effect and secondary pollution. The results showed that, liquid-solid ratio of 10/1, sodium carbonate dosage (to 20 g dry mass of ash) for 4-5 g is more reasonable.
     In heavy metals co-disposal hydrothermal process, NaOH additions contribute to the formation of aluminosilicate, and the increasing reaction temperature helps to increase the crystals rate of aluminosilicate. The heavy metals removal efficiency of MWI fly ash affects by the reaction temperature, NaOH dosage and the initial heavy metal concentration. Removal efficiency increased with the reaction temperature and higher initial concentration, but too much addition of NaOH will lead to Zn (II) and Pb (II) removal efficiency dropped drastically.
     In the hydrothermal process, heavy metals were not only removed from the wastewater, and further transformed into a stable mineral structure and stability in the fly ash. Leaching toxicity test results showed that heavy metals leachability of fly ash greatly reduced as the effect of hydrothermal reaction. The reaction conditions have also affect heavy metals leachability of treated fly ash. Higher reaction temperature and a reasonable amount of NaOH addition, moderate concentrations of heavy metals in waste water can make lower heavy metals leachability of treated fly ash.
     Via the study of this paper, a relatively cost-effective treatment process for dealing with the waste incineration fly ash, heavy metals containing waste water and dioxins in fly ash, and has done an effective supplement for the realization of municipal solid waste and medical waste incineration pollution "zero emission" technology.
引文
[1]Klein H. and Hoffmann A. Plasma-treatment of toxic residues, IT3 Conference, Incineration and Thermal Treatment Technology,1991, Knoxville, Texas.
    [2]Abanades S., Flamant G., Gagnepain B., et al. Fate of heavy metals during municipal solid waste incineration. Waste Management and Research,2002,20, 55-68.
    [3]Aho M., Silvennoinen J. Preventing chlorine deposition on heat transfer surface with aluminium-silicon rich biomass residue and additive. Fuel,2004,83, 1299-1305.
    [4]Verhulst D., Buekens A., Spencer P., et al. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces, Environ. Sci. Technol.,1996,30,50-56.
    [5]Katsuura H., Inoue T., Hiraoka M., et al. Full-scale plant study on fly ash treatment by the acid extraction process, Waste Management,1996,16(56), 491-499.
    [6]Lebrun F., Oberlin C., Pasquini P. et al. The electric arc:a solution for the future to stabilize toxic wastes, High Temperature Material processes,2001,5(3),291-300.
    [7]Haugsten K.E., and Gustavson B. Environmental properties of vitrified fly ash from hazardous and municipal waste incineration, Waste Management,2000, 20(23),167-176.
    [8]Europlasma. Presentation du procede de vitrification par torch a plasma,2003, Report, French.
    [9]Nishida K., Nagayoshi Y., Ota H., et al. Melting and stone production using MSW incinerated ash, Waste Management,2001,21(5),443-449.
    [10]Jing Z.Z., Jin F. M., Yamasaki N., et al. Hydrothermal Synthesis of a Novel Tobermorite-Based Porous Material from Municipal Incineration Bottom Ash Ind. Eng. Chem. Res.,2007,46 (8),2657-2660.
    [11]Poole C., Prijatama H., Rice N. M. Ion Exchange at the Millennium,Proc. IEX 2000, Ed. J. A. Greig, Imperial College Press,2000, London,150.
    [12]Nishikawa Y., Murayama N., Yamamoto H., et al., Sigen-to-Sozai,1999,115, 971, Japanese.
    [13]Pool C.and Bayat O. Leeds Univ. Mining Assoc. J., Ed. P. A.Dowd, Leeds Univ. Press, Leeds,1992, p.121.
    [14]Kolousek D., Kusa H., Svetlik I., et al. Progress in Ion Exchange:Advance and Applications,Proc. Ion-Ex'95, Royal Soc. of Chem., Cambridge,1997, p.48.
    [15]Wang S.B., Soudi M., Li L., et al. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials,2006, B133,243-251.
    [16]Hong J.K., Ho Y.J., Yun S.T. Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions. Journal of Hazardous Materials,2009,164,235-246.
    [17]Hitoshi M., Yokata K., Kenichi A., et al. Alkali Hydrothermal Synthesis of Zeolites from Coal Fly Ash and Their Uptake Properties of Cesium Ion, Journal of NUCLEAR SCIENCE and TECHNOLOGY,2001,38(9),766-772.
    [18]Hong K.J., Tokunaga S., Kajiuchi T. Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater,2000, B75,57-73.
    [19]Janos P., Wildnerova M., Loucka T. Leaching of metals from fly ashes in the presence of complexing agents. Waste Manage,2002,22,783-789.
    [20]Vohra M.S. and Davis A.P. Adsorption of Pb, NTA and Pb-NTA onto TiO2. J Colloid Interface Sci.,1997,794,59-67.
    [21]Howard J.L. and Shu J. Sequential extraction analysis of heavy metals using chelating agent (NTA) to counteract resorption. Environ Pollut.,1996,91,89-96.
    [22]Vohra M.S., Davis A.P. Adsorption of Pb, NTA and Pb-NTA onto TiO2. J Colloid Interface Sci,1997,794,59-67.
    [23]Zhang FS, Itoh H. Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. J Hazard Mater,2006, B136,663-670.
    [24]Kinoshita T, Yamaguchi K, Akita S, et al. Hydrometallurgical recovery of zinc from ashes of automobile tire wastes. Chemosphere,2005,59:1105-1111.
    [25]胡雨燕,陈德珍.水热条件下磷酸盐稳定垃圾焚烧飞灰的研究.建筑材料学报,2008,11(1),121-126.
    [26]胡雨燕,陈德珍,Christensen TH.水热条件下绿矾稳定垃圾焚烧飞灰的研究.环境污染与防治,2006,9(8),4-8.
    [27]Bayuseno AP, Schmahl WW, Mullejans Th. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. J Hazard Mater, 2009, ARTICLE IN PRESS.
    [28]Tanaka M., Kaneko N., Takahara N., et al. Sustainable health care waste management in Japan. Proceedings of International Solid Waste Association (ISWA) Congress, Rome,Italy,2004.
    [29]Sukandar S., Kenji Y., Masaru T., et al. Metals leachability from medical waste incinerator fly ash:a case study on particle size comparison. Environmental Pollution,2006,144:726-735.
    [30]陆胜勇,李晓东,严建华,等.异重介质循环流化床焚烧炉多环芳烃排放特性的测定.中国电机工程学报,2002,22(10):130-135.
    [31]李建新,严建华,池涌,等.异重流化床垃圾与煤混烧重金属的排放特性.中国电机工程学报,2003,23(12):179-183.
    [32]Jung C.H., Matsuto T., Tanaka N., et al. Metal distribution in incineration residues of municipal solid waste(MSW) in Japan. Waste Management,2004,24: 381-391.
    [33]Kuo H.W, Shu S.L., Wu C.C., et al. Characteristics of medical waste in Taiwan. Water Air and Solid Pollution,1999,114:413-421.
    [34]Matsui M., Kashima Y., Kawano M., et al. Dioxin-like potencies and extractable organohalogens(EOX) in medical, municipal and domestic waste incinerator ashes in Japan. Chemosphere,2003,53:971-621.
    [35]Ole H. Disposal strategies for municipal solid waste incineration residues. Journal of Hazardous Materials,1996,47:345-368.
    [36]Rincon J.M.A., Romero M., Boccaccini A.R., Microstructural characterisation of a glass and a glass-ceramic obtained frommunicipal incinerator fly ash, J. Mater. Sci.,1999,34,4413-4423.
    [37]Eighmy T.T., Crannell B.S., Krzanowski J.E., et al. Characterization and phosphate stabilization of dusts from the vitrification of MSW combustion residues. Waste Management,1998,18,513-524.
    [38]Lin C.F., Lo S.S., Lin H.Y., et al. Stabilization of cadmium contaminated soils using synthesized zeolite. J. Hazard. Mater.,1998,60,217-226.
    [39]Edwards R., Rebedea I., Lepp N. W., et al. An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environ. Geochem. Health,1999,21,157-173.
    [40]Cama J., Querol X., Ganor J., et al. Properties of fly ash synthetic zeolite NaP1 for soil remediation. Geochim. Cosmochim. Acta,2002,66(15A),116-118.
    [41]Oste L. A., Lexmond T. M., Van R. W. H. Metal immobilization in soils using synthetic zeolites. J. Environ. Qual.,2002,31(3),813-821.
    [42]Jing Z.Z., Jin F. M., Yamasaki N., et al. Hydrothermal Synthesis of a Novel Tobermorite-Based Porous Material from Municipal Incineration Bottom Ash Ind. Eng. Chem. Res.,2007,46 (8),2657-2660.
    [43]Kumar P., Mal N., Oumi Y., et al. Mesoporous aluminosilicates from coal fly ash. Studies in Surface Science and Catalysis,2002,141,159-166.
    [44]Tuel A. Layered Intermediates in Zeolite Synthesis:Are Structures Related? Chem. Mater.,1999,11,1865-1875.
    [45]Wang K. S., Chiang K. Y., Lin K. L., et al. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy,2001,62(2),73-81.
    [46]Van J. J. G. S., Van D. J. S. J., Lorenzen L. The potential use of geopolymeric materials to immobilize toxic metals:Part I. Theory and applications. Miner. Eng., 1997,10(7),659-669.
    [47]Fermo P., Cariati F., Pozzi A., et al. The analytical characterisation of municipal solid waste incinerator fly ash:methods and preliminary results. Fresenius'J. Anal. Chem.,1999,365,666-673.
    [48]Kloprogge J. T., Komarneni S., Amonette J. E. Synthesis of smectite clay minerals:a critical review. Clay Clay Miner.,1999,47,529-554.
    [49]Martinez C. E., McBride M. B. Aging of coprecipitated Cu in alumina:Changes in structural location, chemical form, and solubility. Geochim. Cosmochim. Acta, 2000,64(10),1729-1736.
    [50]Martinez C. E., Jacobson A., McBride M. B. Thermally induced changes in metal solubility of contaminated soils is linked to mineral recrystallization and organic matter transformations. Environ. Sci. Technol.,2001,35,908-916.
    [51]Sorensen M. A., Stackpoole M. M., Frenkel A. I., et al. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding. Environ. Sci. Technol.,2000,34,3991-4000.
    [52]Hsin C. H., Ting Y. L. Synthesis kinetics of zeolite A. Ind. Eng. Chem. Res., 1990,29(5),749-754.
    [53]Luis A. V., Paul S. W., Ivor B., et al. The Location and Ordering of Fluoride Ions in Pure Silica Zeolites with Framework Types IFR and STF:Implications for the Mechanism of Zeolite Synthesis in Fluoride Media. J. Am. Chem. Soc.,2001,123, 8797-8805.
    [54]Ramstedt M. Chemical processes at the water-manganite (-MnOOH) interface, Ph.D. Thesis, Umea University, Sweden,2004,74.
    [55]Masih D., Izumi I., Aika K., et al. Optimization of an Iron intercalated montmorillonite preparation for the removal of arsenic at low concentrations. Eng.Life Sci.,2007,7(1),52-60.
    [56]Burleson D.J., Penn R.L. Two-step growth of goethite from ferrihydrite. Langmuir,2006,22,402-409.
    [57]Esaki M., Kawakami I., Sumitomo M. Immobilization of fly ash with cement solidification and chemical treatment. In:Japan Society of Waste Management Experts 6th Annual Conference. Kyoto:JSWME,1995,432-434.
    [58]Romero M., Rawlings R.D., Rincon J.M. Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration. J Eur Ceram Soc,1999,19,2049-2058.
    [59]Gutman R. Recycling of municipal solid waste incinerator ash by thermal separation and vitrification. In:R'95 Conf on Recovery, Recycling and Reintegrating. Switzerland:EMPA,1995. Ⅳ,9-11.
    [60]Barbieri L., Karamanov A., Corradi A., et al. Structure, chemical durability and crystallization behavior of incinerator-based glassy systems. Non-Cryst Solids, 2008,354,521-528.
    [61]潭中欣,廖华勇,谢建军等.医疗垃圾焚烧炉飞灰的重金属浸出特性及其稳定化处理研究.环境科学,2008,29(4),1124-1132.
    [62]叶墩显,王伟,高兴保等.我国垃圾焚烧飞灰性质及其重金属浸出特性分析.环境科学,2007,28(11),2646-2650.
    [63]Jegadeesan G., Souhail R.A.A., Patricio P. Influence of trace metal distribution on its leachability from coal fly ash. Fuel,2008,87,1887-1893.
    [64]薛军,王伟,汪群慧.传统酸浸和微波酸浸处理飞灰重金属的效果及重金属的形态变化特征.环境科学,2008,29(2),535-539.
    [65]许鑫,蒋建国,陈懋喆等.加速碳酸化技术对城市垃圾焚烧飞灰重金属稳定性影响研究.环境科学,2007,28(7),1644-1648.
    [66]Martinez C.E., Jacobson A., Mcbride M.B. Thermally Induced Changes in Metal Solubility of Contaminated Soils Is Linked to Mineral Recrystallization and Organic Matter Transformations. Environ Sci Technol,2001,35,908-916.
    [67]Kantam M.L., Rao B.P.C., Choudary B.M., et al. Synthesis of nanocrystalline zeolite beta in supercritical fluids:characterization and catalytic activity. J Mol Catal A-Chem,2006,252,76-84.
    [68]Coleman N.J., Brassington D.S. Synthesis of Al~substituted 11A tobermorite from newsprint recycling residue:a feasibility study. Mater Res Bull,2003, 38,485-497.
    [69]Yao Z., Tamura C., Matsuda M., et al. Resource recovery waste incineration fly ash:synthesis of tobermorite as ion exchanger. J Mater Res,1999,14,4437-4442.
    [70]胡雨燕,陈德珍.水热条件下磷酸盐稳定垃圾焚烧飞灰的研究.建筑材料学报,2008,11(1),121-126.
    [71]胡雨燕,陈德珍,Christensen T.H.水热条件下绿矾稳定垃圾焚烧飞灰的研究. 环境污染与防治,2006,9(8),4-8.
    [72]Bayuseno A.P., Schmahl W.W., Mullejans T.h. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. J Hazard Mater,2009, ARTICLE IN PRESS.
    [73]Zhang F.S., Itoh H. Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. J Hazard Mater,2006, B136,663-670.
    [74]Kinoshita T., Yamaguchi K., Akita S., et al. Hydrometallurgical recovery of zinc from ashes of automobile tire wastes. Chemosphere,2005,59,1105-111.
    [75]Hashimoto S., Watanabe K., Nose K., et al. Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere,2004,54,89-6.
    [76]Kersch C., Geert F.W., Geert J.W. Supercritical Fluid extraction of heavy metals from fly Ash. Ind Eng Chem Res,2004,43,190-196.
    [77]Van J.J.G.S; Van D.J.S.J., Scwartzman A. The potential use of geopolymeric materials to immobilize toxic metals:Part II Material and leaching characteristics. Miner Eng,1999,12(1),75-91.
    [78]Farmer V.C., McHardy W.J., Palmieri F., et al. Synthetic allophanes formed in calcareous environments:nature, conditions of formation, and transformations. Soil Sci Soc Am J,1991,55,1162-1166.
    [79]Kloprogge J.T., Komarneni S., Amonette J.E. Synthesis of smectite clay minerals: a critical review. Clay Clay Miner,1999,47,529-554.
    [80]Martinez C.E., McBride M.B. Aging of coprecipitated Cu in alumina:Changes in structural location, chemical form, and solubility. Geochim Cosmochim Acta,2000, 64(10),1729-1736.
    [81]Bigham J.M., Schwertmann U., Traina S.J., et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta,1996, 60(12),2111-2121.
    [82]Sorensen M.A., Stackpoole M.M., Frenkel A.I., et al. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding. Environ Sci Technol,2000, 34,3991-4000.
    [83]Mizutani S., Yoshida T., Sakai S.I., et al. Release of metals from MSWI fly ash and availability in alkali conditions. Waste Manage,1996,16,537-544.
    [84]Park Y.J., Heo J. Vitrification of fly ash form municipal solid waste incinerator, J. Hazard. Mat.,2002, B91,83-93.
    [85]Esaki M., Kawakami I., Sumitomo M. Immobilization of fly ash with cement solidification and chemical treatment, in:Proc. of 6th Annu. Conf. of Japan Society of Waste Management Experts,1995,432-434.
    [86]Romero M., Rawlings R.D., Rincon J.M. Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration, J. Eur. Ceram. Soc.,1999,19,2049-2058.
    [87]Gutman R. Recycling of municipal solid waste incinerator ash by thermal separation and vitrification, in:Proc. of R'95 Conf. on Recovery, Recycling and Reintegrating, EMPA, Switzerland; IV,1995,9-11.
    [88]Barbieri L., Karamanov A., Corradi A., et al. Structure, chemical durability and crystallization behavior of incinerator-based glassy systems, J. Non-Cryst. Solids, 2008,354,521-528.
    [89]Tayler H. F. W. Cement Chemistry, Academic Press, London,1990,386-387.
    [90]Zhang Y. M., Sun W., Yan H.D. Hydration of high-volume fly ash cement pastes, Cement Concrete Composites,2000,22,445-452.
    [91]Zhang F.S., Itoh H. Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. J Hazard Mater,2006, B136,663-670.
    [92]Kinoshita T, Yamaguchi K, Akita S, et al. Hydrometallurgical recovery of zinc from ashes of automobile tire wastes. Chemosphere,2005,59,1105-1111.
    [93]Hashimoto S, Watanabe K, Nose K, et al. Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere,2004,54,89-96.
    [94]金剑,李晓东,池涌等,水热-碳酸钠法稳定化医疗废物焚烧炉飞灰中重金属的研究,环境科学,录用.
    [95]胡雨燕,陈德珍.水热条件下磷酸盐稳定垃圾焚烧飞灰的研究.建筑材料学报,2008,11(1),121-126.
    [96]胡雨燕,陈德珍,Christensen T.H.水热条件下绿矾稳定垃圾焚烧飞灰的研究.环境污染与防治,2006,9(8),4-8.
    [97]Bayuseno A.P., Schmahl W.W., Mullejans T.h. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. J Hazard Mater,2009, ARTICLE IN PRESS.
    [98]Karidakis T., Agatzini-Leonardou S., Neou-Syngouna P. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy,2005, 76,105-114.
    [99]Keane M. A. The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers. Physicochemical and Engineering Aspects,1997,138, 11-20.
    [100]Buerge-Weirich D., Hari R., Xue H., et al. Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands, Environ. Sci. Technol., 2002,36,328-336.
    [101]Kalyani S., Rao P. S., Krishnaiah A. Removal of nickel (Ⅱ) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere,2004,57, 1225-1229.
    [102]Belgin B. Comparative study of adsorption properties of Turkish fly ashes Ⅰ: The case of nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ) Journal of Hazardous Materials,2002, B95,251-273.
    [103]Belgin B. Comparative study of adsorption properties of Turkish fly ashes II: The case of chromium (Ⅵ) and cadmium (Ⅱ). Journal of Hazardous Materials, 2002, B95,275-290.
    [104]Hequet V., Ricou P., Lecuyer I., et al. Removal of Cu2+ and Zn2+ in aqueous solutions by sorption onto mixed fly ash. Fuel,2001,80,851-856.
    [105]方明中,孙水裕,陈华林.飞灰吸附处理电镀废水中Cu2+的研究.材料保护,2007,40(8),76-78.
    [106]Heechan C., Dalyoung O., Kwanho K. A study on removal characteristics of heavy metals from aqueous solution by fly ash. Journal of Hazardous Materials, 2005, B127,187-195.
    [107]Barbora D., Lucie F., Tomas G., et al., Modified aluminosilicates as low-cost sorbents of As(Ⅲ) from anoxic groundwater. Journal of Hazardous Materials,2009, 165,134-140.
    [108]Wang S. B., Mehdi S., Li L., et al. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials,2006, B133,243-251.
    [109]Hong J.K., Young H.J., Yun S.T. Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions. Journal of Hazardous Materials,2009,164,235-246.
    [110]Martinez C. E. and Mcbride M. B. Aging of coprecipitated Cu in alumina: Changes in structural location, chemical form, and solubility Geochimica et Cosmochimica Acta,2000,64(10),1729-1736.
    [111]Khan M.S. and Rogak S.N. Solubility of Na2SO4, Na2C03 and their mixture in supercritical water, The Journal of Supercritical Fluids,2004,30 (3),359-373.
    [112]Rogak S.N. and Teshima P. Deposition of sodium sulfate in a heated flow of supercritical water, AIChE Journal,1999,45 (2),240.
    [113]Chrastil J. Solubility of solids and liquids in supercritical gases, Journal of Physical Chemistry,1982,86 (15),3016-3021.
    [114]Armellini F.J. and Tester J.W. Solubility of sodium chloride and sulfate in sub-and supercritical water vapor from 450-550℃ and 100-250 bar, Fluid Phase Equilibria,1993,84,123-142.
    [115]Yokoyama C., Iwabuchi A., Takahashi S. K. Solubility of PbO in supercritical water, Fluid Phase Equilibria,1993,82,323-331.
    [116]Sue K., Hakuta Y, Smith R.L., et al.Solubility of lead(II) oxide and copper(II) oxide in subcritical and supercritical water, Journal of Chemical and Engineering Data,1999,44 (6),1422-1426.
    [117]Susak N. J. and Crerar D. A. Spectra and coordination changes of transition metals in hydrothermal solutions:implications for ore genesis. Geochim. Cosmochim. Acta,1985,49,555-564.
    [118]Mesmer R.E., Marshall W.L., Palmer D.A., et al. Thermodynamics of aqueous association and ionization reactions at high-temperatures and pressures, Journal of Solution Chemistry,1988,17 (8),699-718.
    [119]Yokoyama C., Iwabuchi A., Takahashi S., et al. Solubility of PbO in supercritical water, Fluid Phase Equilibria,1993,82,323-331.
    [120]Sue K., Hakuta Y., Smith R.L., Adschiri T., et al. Solubility of lead(Ⅱ) oxide and copper(Ⅱ) oxide in subcritical and supercritical water, Journal of Chemical and Engineering Data,1999,44 (6),1422-1426.
    [121]Yamaguchi H., Shibuya E., Kanamaru Y., et al. Hydrothermal Decomposition of PCDDs/PCDFs in MSWI fly ash. Chemosphere,1996,32(1),203-208.
    [122]Yu J., Savage P. E. Catalyst activity, stability, and transformations during oxidation in supercritical water. Applied Catalysis B:Environmental,2001,31, 123-132.
    [123]Michael D., Morrish R., Anthony J. M. Kinetics and Mechanism for the Reaction of Hexafluoroacetylacetone with CuO in Supercritical Carbon Dioxide. J. Am. Chem. Soc.,2008,130 (49),16659-16668.
    [124]Vasilenko G. V., Zarembo V.I., Slobodov A. A. Fundamental aspects of deposition of copper compounds in supercritical pressure power unit turbine. Russian J. Appl. Chem.,1997,70,1498-1500.
    [125]Mohapatra R., Rao J. R. Some aspects of characterization, utilization, and environmental effects of fly ash. J.Chem.Technol. Biotechnol.,2001,76,9-26.
    [126]Van J. J. G. S., Van D. J. S. J., Lorenzen, L. The potential use of geopolymeric materials to immobilize toxic metals:Part Ⅰ. Theory and applications. Miner. Eng., 1997,10(7),659-669.
    [127]Van J. J. G. S., Van D. J. S. J., Schwartzman, A. The potential use of geopolymeric materials to immobilize toxic metals:Part Ⅱ. Material and leaching characteristics. Miner. Eng.,1999,12(1),75-91.
    [128]Farmer V. C., McHardy W. J., Palmieri F., et al. Synthetic allophanes formed in calcareous environments:nature, conditions of formation, and transformations. Soil Sci. Soc. Am. J.,1991,55,1162-1166.
    [129]Kloprogge J. T., Komarneni S., Amonette J. E. Synthesis of smectite clay minerals:a critical review. Clay Clay Miner.,1999,47,529-554.
    [130]Martinez C. E., McBride M. B. Aging of coprecipitated Cu in alumina:Changes in structural location, chemical form, and solubility. Geochim. Cosmochim. Acta, 2000,64(10),1729-1736.
    [131]Martinez C. E., Jacobson A., McBride M. B. Thermally induced changes in metal solubility of contaminated soils is linked to mineral recrystallization and organic matter transformations. Environ. Sci. Technol.,35,2001,908-916.
    [132]Sorensen M. A., Stackpoole M. M., Frenkel A. I., et al. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding. Environ. Sci. Technol.,2000,34,3991-4000.
    [133]Hsin C. H., Ting Y. L. Synthesis kinetics of zeolite A. Ind. Eng. Chem. Res., 1990,29(5),749-754.
    [134]Nascimento M., Soares P. S. M., Vicente P. S. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel,2009, ARTICLE IN PRESS.
    [135]Wang S. B., Li L., Zhu Z. H. Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. J. Hazar. Mater.,2007, B139, 254-259.
    [136]Mizutani S, Yoshida T, Sakai SI, et al. Release of metals from MSWI fly ash and availability in alkali conditions. Waste Manage,1996,16:537-544.
    [137]Molina A, Poole C. A comparative study using two methods to produce zeolites from fly ash. Miner Eng,2004,17,167-173.
    [138]Hui K.S., Chao C.Y.H. Synthesis of MCM-41 from coal fly ash by a green approach:influence od synthesis pH. J Hazard Mater,2006, B137,1135-48.
    [139]Penilla R.P., Bustos A.G., Elizalde S.G. Immobilization of Cs, Cd, Pb, Cr by synthetic zeolites from spanish low-calcium coal fly ash. Fuel,2006,85,823-832.
    [140]Hui K.S., Chao C.Y.H., Kot S.C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater,2005, B127,89-101.
    [141]Wang S., Li L., Zhu Z.H. Solid-state conversion of fly ash to effective adsorvents for Cu removal from wastewater. J Hazard Mater,2007, B139,254-259.
    [142]Wang S., Soudi M., Li L., Zhu Z.H. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. J Hazard Mater, 2006, B133,243-251.
    [143]Zamzow M.J., Murphy J.E. Removal of metal cations from water using zeolites. Sep Sci Technol,1992,27(14),1969-1984.
    [144]Montgomery D., Calado V. Planejamento de experimentos usando o Statistica. Rio de Janeiro:e-papers,2003.
    [145]Hogg R.V., Ledolter J. Engineering statistics 2. New York:Macmillan Publishing Company,1987.
    [146]Colella C., Gennaro M., Langella A., Pansini M. Evaluation of natural philipsite and chabazite as cation exchangers for copper and zinc. Sep Sci Technol,1998, 33(4),467-481.
    [147]Oren A., Kaya A. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. J Hazard Mater,2006,131(1-3),59-65.
    [148]Weng C, Huang C.P. Adsorption characteristics of Zn(Ⅱ) from dilute aqueous solution by fly ash. Colloid Surface A,2004,247,137-143.
    [149]Bayat B. Comparativestudy of adsorption properties of Turkish fly ashes I. The case of nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ). J Hazard Mater,2002, B95,251-273.
    [150]Huang W. J., Chu S. C. A study on the cementlike properties of municipal waste incineration ashes. Cement and Concrete Research,2003,33,1795-1799.
    [151]Collivignarelli C., Sorlini S. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures. Waste Management,2002,22,909-912.
    [152]Remond S., Bentz D.P., Pimienta P. Effects of the incorporation of municipal solid waste incineration fly ash in cement pastes and mortars Ⅱ:modeling. Cement and Concrete Research,2002,32,565-576.
    [153]Gao X. B., Wang W., Ye T., et al. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. Journal of Environmental Management,2008,88,293-299.
    [154]Yamaguchi H., Shibuya E., Kanamaru Y., et al. Hydrothermal Decomposition of PCDDs/PCDFs in MSWI fly ash, Chemosphere,1996,32 (1),203-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700