用户名: 密码: 验证码:
示波分析新理论、仪器及重叠切口解析方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
示波分析是高鸿教授在我国创立的一个电分析化学研究领域。本论文围绕示波分析在理论、仪器以及重叠切口解析等方面存在的问题,推导了脉冲示波计时电位理论公式和小示波图的端点电位公式,构建了基于LabVIEW的虚拟示波计时电位分析系统,提出了两种重叠切口解析的新方法。该研究对于进一步完善示波分析的理论、发展示波分析仪器、解决示波图上重叠切口解析问题,扩大示波分析的应用范围,进而丰富电分析化学的研究内容具有重要意义。全文共分五章,主要贡献如下:
     1、推导了脉冲示波计时电位公式。利用该公式能解释当施加于电解池的脉冲波交流电流的占空比变化时,示波图的阴极支与阳极支的长度比就会发生变化,使阴极支或阳极支上由去极剂产生的法拉第电流与充电电流的比值也随之发生变化,从而影响阴极支或阳极支上切口灵敏度的现象。
     与合作者一起提出了Hg-R_1和R_2-K两种类型小示波图,推导了小示波图的端点电位公式考察了R_2-K型小示波图的调节方法,并建立了基于小示波图的示波计时电位法。研究结果表明,将小示波图用于示波测定具有以下特点:①由于示波图的电位窗口较小,图形稳定性较好、共存物质的干扰较小。②由于小示波图所需的交流电流较小,使测定的灵敏度更高。③小示波图的i_0/i_1比值随小示波图类型变化。对于R_2-K小示波图,i_0/|i_1|更小;对于Hg-R_1小示波图,i_0/|i_1|更大,突显出直流电流在示波计时电位法中的作用,从而改变了大交流小直流是交流示波计时电位法的一个特征的说法,完善了示波法的理论。
     2、基于虚拟仪器技术,构建了基于LabVIEW的虚拟示波计时电位分析系统,并以高低频示波分析和神经递质多巴胺和肾上腺素的示波行为研究为例检验了该系统的性能。研究表明,该系统具有实时在线分析计算功能、可控信号显示及回放、数据的频谱分析和数据海量存储等功能。该系统的研制使高低频示波计时电位法等示波方法成为实际有用的分析方法。
     3、将小波变换与Fourier变换结合用于对频域信号的处理,提出了用频域小波变换获得的模糊项作为线性函数的Fourier自去卷积法(FWTL-FSD)和用频域小波变换获得的不同模糊项替代原始信号并作为线性函数的Fourier去卷积法(FWTLD-FSD),并用于示波分析中重叠切口和色谱重叠峰分辨。研究表明,经两种方法处理后的dE/dt-t曲线重叠切口深度均明显增加,可以明显改善多组分示波测定的下限和灵敏度;处理后的色谱重叠峰可完全实现基线分离。研究还表明,用FWTLD-FSD能对信噪比大于5的含噪信号进行分辨,但其分辨能力略逊于FWTL-FSD法。与传统的Fourier自去卷积方法相比较,两种新方法均具有不用选择线性函数和较好的重叠峰分辨效果等优点。
     4、将化学计量学中偏最小二乘(PLS)、主成分回归(PCR)及径向基神经网络(RBAN)分别用于示波重叠切口和色谱电化学重叠峰的解析,进行了示波重叠切口和色谱电化学重叠峰信号解析方法的比较研究。研究表明,无论对于示波计时电位(OCP)重叠切口还是高低频-示波计时电位(HL-OCP)重叠切口,RBAN均表现出了比PLS和PCR更好的分辨能力;而对于色谱电化学重叠峰,PLS和PCR解析效果要优于RBAN。可见,对于具有线性映射特性的重叠色谱电化学信号(浓度、峰面积)更适合用PLS、PCR等线性映射能力较强的解析方法来解析;而对于更多呈现的是非线性映射关系的示波重叠切口,需采用具有非线性映射能力的RBAN等解析方法,才能获得较好的解析效果。
     作者在攻读博士学位期间完成和发表论文13篇。
Oscillographic analysis is an electro analytical chemistry field founded by Pro. Gao. This thesis is concerned with the problems that oscillographic analysis maintained in theory, instrument, resolving overlapped incisions and some other aspects. In this study, the theory formula of pulse current oscillographic chronopotentiometry and that of endpoint potential of small oscillogram were deduced. A virtual oscillographic chronopotentiometry analysis system based on LabVIEW was constructed and a new method for resolving overlapped incisions was presented. This study was significant in perfecting ocsillographic theory and instrument, resolving overlapped incisions of ocsillogram, enlarging the application of ocsillographic analysis, and further enriching the study content of electroanalytical chemistry. The thesis is divided into five chapters and the main work of author was described as follows,
     1. The theory formula of pulse current oscillographic chronopotentiometry was deduced. When the duty ratio of pulse alternate current applied over the cell has changed, the length ratio of cathodic branch of oscillogram to anodic one would be altered, which lead to the change of the ratio of the Faraday current to charging current and also the sensitivity of the incisions on the cathodic or anodic branch. Using the theory formula, the phenomena above can be explained.
     The author with his coworkers proposed two types of small oscillogram, Hg-R_1 and R_2-K. The adjustment method of the R_2-K. type small oscillogram was investigated and oscillographic chronopotentiometry based on small oscillogram was established. The research results showed that when the small oscillogram was used to oscillographic detection, three features would be obtained. Firstly, at the smaller potential window oscillogram, better oscillogram stability and smaller interference caused by coexisted substances can be acquired. Secondly, the determination at the small oscillogram would be more sensitive than the classic oscillogram for the fact that smaller alternate current was needed. Finally, the i_0/i_1 ratio of small ocsillogram changed along with the alteration of the type of small ocsillogram. The i_0/|i_1| of R_2-K type small ocsillogram is smaller than the classic one while the i_0/|i_1| of Hg-R_1 type small ocsillogram is bigger than the classic one, so the effect of direct current in oscillographic chronopotentiometry is manifested. Thus, the theory of the oscillographic analysis is developed.
     2. Based on virtual instrument technique, a virtual oscillographic analysis system was constructed using Labview software. The performance of the system was tested by the oscillographic chronopotentiometry with high and low frequency current and ocsillographic behavior of dopamine and adrenaline. The study indicate that this system have the ability of real-time analysis and computation, controlled data collection and wave display, magnanimity data storage, etc. Studies of this system make oscillographic chronopotentiometry with high and low frequency current (HL-OCP) and other oscillogaphic methods real applicable analysis method.
     3. Wavelet transform and Fourier transform were combined in processing frequency domain signals. Fourier deconvolution method (FWTL-FSD) of approximations obtained from frequency domain wavelet transform as linear function and that (FWTLD-FSD) of different approximations obtained from frequency domain wavelet transform as devoiced signals and linear function were presented and used in processing overlapped incisions and overlapped chromatographic peak signals. It shows that the overlapped incision depth of dE/dt-t curve increased obviously after resolution. Which indicates the methods can improve the determination limit and sensitivity of ascillographic muticomponent analysis. The result of resolving the overlapped HPLC peaks show all the signal peaks can achieve baseline separation. FWTLD-FSD method can be applied in resolving noisy signals with signal-to-noise ratio higher than 5, but a little inferior to FWTL-FSD method in sensitivity. Compared with classical FSD, the two novel method both exhibits some advantages such as good overlapped peak resolution, simple operation without selection procedure of the linear function.
     4. The resolution of overlapped incisions and overlapped chromatographic peak signals were processed by means of chemometric methods include partial least squares (PLS), principal component regression (PCR) and Radial basis function networks (RBFN). The comparing research of multivariate calibration of ocsillographic and chromatographic electrochemical signals was carried out contemporarily. From the research, it can be indicated that RBAN model exhibits much better resolution ability than PLS and PCR in resolving overlapped OCP incisions as well as overlapped HL-OCP incisions; but to chromatographic electrochemical overlapped peak signals, PLS and PCR model have better effects. It can be draw out that resolution method with linear mapping ablitiy such as PLS, PCR is more adequate for resolving chromatographic electrochemical overlapped peak signals (concentration, area) with linear mapping characteristics; For oscillographic overlapped incisions of two components study system presenting nonlinear mapping relation mainly, resolution method with nonlinear mapping ability, such as RBAN, can carry out good results.
     During the study of doctor's candidate, author has completed and published 13 papers.
引文
[1] Zuman P, Kolthoff IM, Progress in polarography, Wiley, New York, 2:449-486
    [2] 高鸿,示波极谱滴定,江苏科学出版社,南京,1985
    [3] 高鸿,示波极定,南京大学出版社,南京,1990
    [4] 高鸿,示波药物分析,四川教育出版社,四川,1992
    [5] 宋俊峰,于科岐,过玮,示波分析在中国的发展Ⅰ.示波分析法,分析化学,1998,26(6):627-632
    [6] 毕树平,示波分析在中国的发展Ⅱ.示波分析的基础理论,分析化学,1998,26(6):633-640
    [7] 郑建斌,战永复,示波分析在中国的发展Ⅲ.示波滴定在药物分析中的应用,分析化学,1998,26(6):641-648
    [8] 史生华,于书平,王仲文,示波分析在中国的发展Ⅳ.示波滴定在无机分析中的应用,分析化学,1998,26(6):649-657
    [9] 郑建斌,傅业伟,高敏,张红权,示波分析在中国的发展Ⅴ.示波测定,分析化学, 1998 26(6):657-664
    [10] 郑建斌,毕树平,高鸿,微分倒数示波计时电位滴定,高等学校化学学报,1992,13(12):1536-1538
    [11] 郑建斌,刘鹏,史生华,示波流动注射分析,高等学校化学学报,1995,16(7):1016-1019
    [12] 郑建斌,高鸿,示波测定中示波图的调节,西北大学学报(自然科学版),1995,25(4):309-314
    [13] Zheng JB, Zhang XQ, Zhang HQ, Gao H, Wavelet frequency spectrum analysis of oscillograms, The Analyst, 1999, 124:893-896
    [14] Bi SP, Du SD, Gao H, Fourier spectrum of A.C. cyclic oscillochronopotentiometry response, Journal of Electroanalysis Chemistry, 1995, 390:1-9
    [15] 郑建斌,傅业伟,高鸿,傅里叶变换技术在交流示波计时电位法中的应用,西北大学学报(自然科学版),1998,28(3):209-214
    [16] 郑建斌,高鸿,朱俊杰,胡娟,双电解池正反馈示波计时电位法研究,高等学校化学学报,1994,15(4):509-511
    [17] 郑建斌,赵明仁,朱小虹,苏玉祥,用脉冲波交流电流作为极化电流的微分简易示波伏安法,高等学校化学学报,1995,16(8):1209-1211
    [18] 田敏,郑建斌,于科岐,祁洪,高鸿,程控电流示波计时电位法,分析实验室,1998,17(4):37-39
    [19] Zheng JB Gao H, Investigation on simple oscillochronopotentiometry responses, Chinese Chemical Letters, 1994, 5(12): 1041-1042
    [20] 朱俊杰,郑建斌,胡娟,高鸿,慢扫速示波计时电位法的研究,高等学校化学学报,1994,15(7):994-996
    [21] 朱俊杰,郑建斌,沈岚,高鸿,倒数示波计时电位法研究-新线路的研制及应用,化学学报,1993,51(10):999-1004
    [22] 郑建斌,毕树平,高鸿,电流反馈倒数示波计时电位滴定法,应用化学,1992,9(6):77-80
    [23] Gao H, Zhang HF, Zhou YZ, Zheng XH, Zheng JB, Progress in oscillographic chronopotentiometry, Science in China ,Ser.B, 2005, 48(Supp): 1-8
    [24] 阎丽,王小宁,徐萍,示波分析数字化测试系统,西北大学学报(自然科学版),2002,32(4):363-366
    [25] 郑建斌,苏玉祥,高鸿,多功能交流示波计时电位仪的研制,西北大学学报(自然科学版),1997,27(5):389-393
    [26] Zheng Jianbin, Zhang Xiuqi, Zhang Hongquan, Gao Hong, A study on multi-order semidifferential oscillographic chronopotentiometric instrument, Instrumeng Science & technology, 2000, 28(5): 403-412
    [27] 郑建斌,刘鹏,史生华,示波分析新方法研究,西北大学学报(自然科学版),1995,25(6):619-623
    [28] 郑建斌,刘鹏,傅业伟,祁洪,计算机化的示波测定方法的研究,分析试验室,1997,16(增刊):7-9
    [29] Kalvoda R, Techniques of oscillographic polamgraphy, Amesterdam, Elsevier, 1965
    [30] 祁洪.南京大学博士论文,1989
    [31] 毕树干,高鸿,孙玉龙,实现“(dE/dt)~(-1)-E”倒数示波图的模拟电路参数选择和单板机装置,南京大学学报,1994,30(3):464-468
    [32] 祁洪,于科岐,郑建斌,田敏,高鸿,交流示波计时电位新好采集方法的研究,全国青年分析测试会议,北京,1998
    [33] 郑建斌,刘鹏,傅业伟,祁洪,计算机化的动态示波测定方法的研究,分析试验室,1997,16(增刊)):7-9
    [34] 干敏梁,干宁,基于虚拟仪器技术的示波分析方法的实现,计算机与应用化学,2001,18(6):561-563
    [35] Zheng JB, Zhang XQ, Gao H, Oscillographic chronopotentiometry with high and low frequency current, Chinese Chemical Letters, 2000, 11(5): 443-446
    [36] Zheng JB, Gao M, Fu YW, Gao H. A study of multi-order semidifferential oscillographic chronopotentiometry, Chinese Chemical Letters, 1998, 9(8): 753-756
    [37] 郑建斌,傅业伟,李圆,高鸿,3.5次微分循环示波计时电位法的研究,高等学校化学学报,1998,19(3):368-371
    [38] 郑建斌,刘鹏,巩宁,2.5次微分循环示波计时电位法用于铑的示波性质的研究,分析化学,1998,26(8):1014-1017
    [39] 郑建斌,傅业伟,杨立婷,高鸿,3.5次微分循环示波计时电位法测定铋的研究,分析试验室,1998,17(5):31-33
    [40] 郑建斌,于浩,张宏芳,二次微分简易示波伏安法刚于青霉素V钾的间接测定,应用化学,2001,18(10):851-852
    [41] 于浩,高敏,张宏芳,郑建斌,四硼酸钠用于银铊和可可碱的示波测定,西北大学学报(自然科学版),2001,31(增刊):136-137.
    [42] 于浩,张宏芳,郑建斌,苯巴比妥的二次微分简易示波伏安法测定,分析测试学报,2002,21(3):10-12
    [43] 郑建斌,张宏芳,董社英,茜素红S用于含锌药物的示波测定,应用化学,2003,20(1):83-85
    [44] 董社英,郑建斌,高鸿,钙-茜素红S的示波行为及应用,化学分析研究简报,2003,31(5):604-607
    [45] 张宏芳,陶福芳,熊迅宇,郑建斌,二次微分简易示波伏安法测定Fe~(3+),分析科学学报,2002,18(6):463-465
    [46] 索志荣,张宏芳,于浩,郑建斌,PAN-Co配合物用于维生素B12的示波测定,应用化学,2002,19(4):381-383
    [47] 干宁,毕树平,雷建平,铍试剂P钙色素双偶氮染料2示波计时电位法快速测定天然水中不同形态铝,分析化学研究报告,2003,31(4):420-424
    [48] 干宁,雷建平,毕树平,染料2示波计时电位法测定天然水中的不同形态铝,应用化学,2003,20(2):103-107
    [49] 干宁,雷建平,李伟,毕树平,谭涌霞,钙镁试剂2示波计时电位法快速测定天然水中不同形态铝,环境化学,2002,21(4):397-403
    [50] 雷建平,干宁,李伟,毕树平,铬蓝黑R2示波计时电位法快速测定天然水不同形态铝,中国稀土学报,2002,20(增刊):227-232
    [51] 干宁,毕树平,魏宗波,谭涌霞,酸性媒染紫-示波计时电位法测定天然水和引用水中铝,分析化学研究简报,2001,29(2):212-215
    [52] 干宁,王先龙,谭涌霞,毕树平,魏宗波,陈刚,邻苯二酚紫-示波计时电位法测定天然水中不同形态铝,分析化学,2001,29(10):1181-1184
    [53] 谭涌霞,毕树平,魏宗波,钙镁试剂2示波计时电位法测定天然水利饮用水中铝含 量,分析科学学,2001,17(1):6-10
    [54] 谭涌霞,毕树干,干宁,魏宗波,铬蓝黑R-示波计时电位法快速测定天然水中不同形态的铝浓度,分析科学学报,2001,17(3):177-181
    [55] 干宁,谭涌霞,先龙,雷建平,毕树平,酸性媒染紫—示波计时电位法测定天然水不同形态铝,无机化学学报,2001,17(5):718-722
    [56] 干宁,毕树平,徐仁扣,酸性铬深蓝-示波吸附计时电位法快速测定土壤溶液中不同形态铝,环境科学学报,2003,23(4):494-498
    [57] 干宁,毕树平,魏宗波,氯磺酚S-示波计时电位法测定天然水中5种形态铝,应用化学,2001,18(9):736-740
    [58] 郑建斌,倪宏刚,三价铬和烟酸的示波行为及其应用,理化检验-化学分册,2005,41(7):467-470
    [59] 张宏芳,西北大学硕士论文,2003
    [60] 陶福芳,西北大学硕士论文,2002
    [61] 倪宏刚,郑建斌,β-环糊精用于盐酸金刚烷胺的示波极谱测定,理化检验-化学分册,2004,40(10):574-576
    [62] 倪宏刚,郑建斌,头孢哌酮钠的直接和间接示波测定,分析测试学报,2004,23(3):80-82
    [63] 陶福芳,郑建斌,β-环糊精-二次微分简易示波伏安法测定苯巴比妥,理化检验-化学分册,2003,39(11):633-636
    [64] 陶福芳,董社英,张宏芳,郑建斌,β-环糊精用于铜的二次微分简易示波伏安法测定,应用化学,2003,20(8):723-726
    [65] 陶福芳,郑建斌,β-环糊精用于槐角中芦丁的示波测定,广西师范大学学报,2002,20(2):47-50
    [66] 郑建斌,陶福芳,β-环糊精用于阿莫西林的二次微分简易示波伏安测定,应用化学,2005,22(6):595-599
    [67] 董社英,郑建斌,高鸿,二次微分简易示波伏安法直接测定酒样中半胱氨酸,理化检验-化学分册,2003,39(2):80-83
    [68] 53董社英,郑建斌,高鸿,示波测定新方法的研究,西北大学学报(自然科学版),2003,33(6):673-678
    [69] 倪宏刚,西北大学硕士论文,2004
    [70] 郑建斌,倪宏刚,张宏芳,KIO_3用于药片与饮料中抗坏血酸的示波测定,应用化学,2005,22(7):726-729
    [71] 于浩,西北大学硕士论文,2002
    [72] 祁洪,田敏,郑建斌,于科岐,高鸿,交流示波计时电位法中高次谐波电位的研究,高等学校化学学报,1996,17(12):1851-1854
    [73] 郑建斌,西北大学学博士论文,1998
    [74] 顾文良,张书玲,张红权,郑建斌,小波滤噪用于示波计时电位信号处理的研究,分析化学,1999,27(2):220-223
    [75] 郑建斌,张红权,张秀琦,高鸿,小波变化用于示波计时电位信号处理的研究,吉林师范学院学报,1998,19(5):61-66
    [76] 刘辉,郑建斌,仲红波,小波模极大值滤噪法在示波计时电位信号处理中的应用,计算机与化学,2003,20(3):269-273
    [77] 仲红波,刘辉,郑建斌,李关宾,陈立仁,二进小波神经网络用于示波计时电位测定,化学通报,2002,4:269-273
    [78] 张军,唐乔阳,郑建斌,反弹传播神经网络用于痕量铬的示波计时电位法测定,分析化学,2001,29(1):70-73
    [79] 李华,张书玲,申琦,高鸿,小波分析和偏最小二乘法相结合用于示波计时电位同时测定前沿和铊中的研究,计算机与化学,2003,20(1):27-30
    [80] 郑建斌,张军,仲红波,刘辉,李关宾,陈立仁,小波变换与神经网络结合用于示波计时电位测定,北京大学学报,2001,37(2):167-172
    [81] Levie R D, Sarangapani S, Czekaj P, Numerical differentiation by Fourier transformation as applied to electrochemical interfacial tension data, Analytical Chemistry, 1978, 50(1): 110-115
    [82] Griffiths P R, Photometric precision in infrared spectra measured by Fourier transform spectroscopy, Applied Spectroscopy, 1975, 29(1): 11-14
    [83] Horlick G, Yuen W K, Fourier domain interpolation of sampled spectral signals, Analytical Chemistry, 1976; 48(11): 1643-1644
    [84] Kauppinen J K, Moffatt D J, Mantsch H H, Cameron DG, Fourier self-deconvolution: a method for resolving intrinsically overlapped bands, Applied Spectroscopy, 1981, 35(3): 271-276
    [85] Lee J P, Comisarow M B, Advantageous apodization functions for absorption-mode Fourier transform spectroscopy, Applied Spectroscopy, 1989, 43(4): 599-604
    [86] Keefe C D, Comisarow M B, Exact interpolation of apodized, magnitude-mode Fourier transform spectra, Applied Spectroscopy, 1989, 43(4): 605-607
    [87] Verdun F R, Giancaspro C, Marshall A G, Effects of noise, time-domain damping, zero-filling and the FFT algorithm on the "exact" interpolation of fast Fourier transform spectra, Applied Spectroscopy, 1988, 42(5): 715-721
    [88] Susi H, Byler D M, Fourier deconvolution of the amide I raman band of proteins as related to conformation, 1988, Applied Spectroscopy, 42(5): 819-826
    [89] Friesen W I, Michaelian K H, Deconvolution in the frequency domain, 1985, Applied Spectroscopy, 39(3): 484-490
    [90] Smeller L, Goossens K, Heremans K, How to minimize certain artifacts in Fourier self-deconvolution, Applied Spectroscopy, 1995, 49(10): 1538-1542
    [91] 郑建斌,张红权,高鸿,小波Fourier自去卷积法,中国科学(B辑),2000,30(1):21-27
    [92] 郑建斌,张红权,高鸿,Fourier自去卷积示波计时电位法的研究,高筹学校化学学报,2000,21:1037-1039
    [93] 张秀琦,张红权,郑建斌,高鸿,小波傅里叶自去卷积用于示波信号中背景扣除的研究,分析化学,2000,28(3):288-292
    [94] Zhang Xiuqi, Zheng Jianbin, Gao Hong, Hong Gao, Comparison of wavelet transform and Fourier self-deconvolution and wavelet FSD for curve fitting, Analyst, 2000, 125: 915-919
    [95] Pizeta I, Lovric M, Branica M, Detection and resolution enhancement of two close electrochemical processes, Journal of Electroanalytical Chemistry, 1990, 296(2): 395-404
    [96] Gibbs A, Morris G A, Reference deconvolution: elimination of distortions arising from reference line truncation, Journal of Magnetic Resonance, 1991, 91: 77-83
    [97] Crilly P B, The use of a ratio method as an alternative to constrained deconvolution, Journal of Chemometrics, 1991, 5(2): 85-95
    [98] Morawski RZ, Szczecinski L, Barwicz A, Deconvolution algorithms for instrumental applications: A comparative study, Journal of Chemometrics, 1995, 9:3-20
    [99] Pierce J A, Jackson R S, Every K W V, Griffiths P R, Gao H J, Combined deconvolution and curve fitting for quantitative analysis of unresolved spectral bands, Anal. Chem, 1990, 62(5): 477-484
    [100] Kim Rahmelow, Wigand Hü, Fourier Self-deconvolution: parameter determination and analytical band shapes, Applied Spectroscopy, 1996, 50(6): 795-804
    [101] 郑建斌,杨小曼,刘辉,示波信号能谱的傅里叶自去卷积法,分析化学,2003,31(3):304-306
    [102] Mukhopadhyay R, Carlile CJ, Silver RN, Application of maximum entropy to neutron tunneling spectroscopy, Physica B: Condensed Matter, 1991, 174(1-4): 546-550
    [103] Zhang Z Q, Guan S H, Marshall A G, Enhancement of the effective resolution of mass spectra of high-mass biomolecules by maximum entropy-based deconvolution to eliminate the isotopic natural abundance distribution, Journal of the American Society for Mass Spectrometry, 8(6): 659-670
    [104] Palmo K, Mannfors B, Pietila L O, A comparison of methods for decomposing overlapping bands in Raman spectra, Journal of Molecular Structure, 1988, 174: 101-106
    [105] Kauppinen J K, Moffatt D J, Mantsch H H, Cameron D G, Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours, Analytical Chemistry, 1981, 53(9): 1454-1457
    [106] Jackson RS, Griffiths PR., Comparison of Fourier self-deconvolution and maximum likelihood restoration for curve fitting, Anal. Chem., 1991, 63(22): 2557-2563
    [107] Kalkandjiev T K, Petrov V P, Nickolov J B, Deconvolution versus derivative spectroscopy, Applied Spectroscopy, 1989, 43(1): 44-48
    [108] Jakobsen R J, Lyons-Hart J, Southwick E, The use of Fourier self-deconvolution for determining vapor band contours from low-resolution (GC/IR) infrared spectra, Applied Spectroscopy, 1991, 45(3): 407-410
    [109] Czarnecki M A, Ozaki Y, Determination of integrated intensities of overlapped IR bands by curve-fitting, Fourier self-deconvolution and a combination of both methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1996, 52: 1593-1601
    [110] Mosier-Boss PA, Lieberman SH, Newbery R, Fluorescence rejection in raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques, Applied Spectroscopy, 1995, 49(5): 630-638
    [111] Rex AF, Olson MA, Silva NJ, The improvement of mossbauer spectra by FIRO deconvolution, Applied Spectroscopy, 1988, 42(5): 775-782
    [112] Shimokoshi K, Kanzaki T, Jones RN, Deconvolution of mossbauer spectra by the finite impulse response operator (FIRO) method, Applied Spectroscopy, 1985, 39(6): 1014-1017
    [113] Wang S, Pelczer I, Borer PN, Levy GC, Maximum-likelihood deconvolution of NMR spectra in multidimensional space, Journal of Magnetic Resonance, Series A, 1994, 108(2): 171-176
    [114] Kauppinen JK, Moffatt DJ, Hollberg MR, Mantsch HH, A new line-narrowing procedure based on fourier self-deconvolution, Maximum Entropy, and Linear Prediction, Applied Spectroscopy, 1991, 45 (3): 411-416
    [115] Kauppinen JK, Moffatt DJ, Hollberg MR, Mantsch HH, Characteristics of the LOMEP Line-Narrowing Method, Applied Spectroscopy, 1991, 45(9): 1516-1521
    [116] Grabaric BS, O'Halloran RJ, Smith DE, Resolution enhancement of a.c. polarographic peaks by deconvolution using the fast Fourier transform, Analytica Chimica Acta, 1981, 133(3): 349-358
    [117] Grabaric Z, Grabaric BS, Esteban M, Casassas E, Signals ratio method for resolution enhancement in differential pulse polarography and related techniques, Analytica Chimica Acta, 1995, 312(1): 27-34
    [118] Engblom SO, Fourier transform of a reversible linear sweep voltammogram, Analytical Chemistry, 1992, 64(21): 2530-2538
    [119] Engblom S O, Properties and applications of the Fourier transform of a voltammetric wave, Journal of Electroanalytical Chemistry, 1992, 332,(1-2): 73-99
    [120] Pizeta I, Deconvolution of non-resolved voltammetric signals, Analytica Chimica Acta, 1994, 285(1-2): 95-102
    [121] Pizeta I, Lovric M, Zelic M, Branica M, Application of a Fourier transform method to the resolution enhancement of adsorption peaks in differential pulse polarography, 1991, Journal of Electroanalytical Chemistry, 318(1-2): 25-38
    [122] Pilo MI, Sanna G, Seeber R, Analysis of cyclic voltammetric responses by Fourier transform-based deconvolution and convolution procedures, Journal of Electroanalytical Chemistry, 1992, 323(1-2): 103-115
    [123] Zelic M, Piceta I, Branica M, Study of cadmium adsorption from iodide media by voltammetry combined with data treatment by deconvolution, Analytica Chimica Acta, 1993, 281(1): 63-70
    [124] Shao X, Cai W, Sun P, Zhang M, Zhao G, Quantitative determination of the components in overlapping chromatographic peaks using wavelet transform, Analytical Chemistry, 1997, 69(9): 1722-1725
    [125] 邵学广,孙培艳,蔡文生,小波变换及其有色谱重叠峰解析中的应用,化学通报,1997,8:59-62
    [126] 邵学广,孙培艳,蔡文生,小波变换用于色谱重叠峰的解析,分析化学,1997,25:671-674
    [127] 邵学广,侯树泉,方能虎,小波变换用于植物激素重叠色谱峰中组分的定量分析,分析化学,1998,26:107-110
    [128] 邵学广,侯树泉,赵贵文,小波变换用于重叠色谱峰组分信息的提取分析化学,1998,26:1428-1431
    [129] Shao X G, Hou S Q,On-line resolution of overlapping chromatograms using the wavelet transform, Analytical Sciences, 1999, 15:681-684
    [130] 邵学广,蔡文生,小波包分析用于重叠分析化学信号的处理,高等学校化学学报,1999,20(1):42-46
    [131] 郑建斌,仲红波,张红权,杨德玉,潘忠孝,张懋森,高鸿,小波变换用于二次 微分交流示波计时电位信号中有用信息的提取,分析化学,1998,26(1):25-28
    [132] 郑建斌,张红权,张秀琦,高鸿,小波变换用于示波计时电位信号处理的研究,吉林师范学院学报,1998,19(5):61-66
    [133] 张红权,郑建斌,仲红波,潘忠孝,张懋森,高鸿,西北大学学报(自然科学版),1999,29(4):313-133 Shao X G, Gu H, Wu J H, Shi Y Y, Resolution of the N M R spectrum using wavelet transform, Applied Spectroscopy, 2000, 54(5): 731-738
    [134] 邵学广,顾华,蔡文生,一维核磁共振谱数据的小波变换压缩光谱学与光谱分析,1999,19:139-141
    [135] Shao X G, Cai W S, Resolution of multicomponent chromatograms by window factor analysis with wavelet transform preprocessing, Journal of Chemometrics,1998, 12 (2): 85-93
    [136] 郑小萍,莫金垣,蔡沛祥,样条小波变换用于分辨重叠伏安峰的研究,中国科学(B辑),1999,19(2):141-147
    [137] Zhang Y Q, Mo J Y, Xie T Y, Cai P X, Zou X Y, Spline wavelet self-convolution in processing overlapped peaks in capillary electrophoresis, Analyst, 2000, 125, 1303-1305
    [138] 张永清,莫金垣,谢天尧,蔡沛祥,二次微分与样条小波自卷积联用分辨重叠伏安峰,分析科学学报,2002,18(1):12-16
    [139] 王瑛,莫金垣,陈晓燕,二阶样条小波卷积法分辨重叠化学信号,中国科学(B辑),2003,33(4):296-305
    [140] 邱建丁,梁汝萍,邹小勇,莫金垣,小波分形分析重叠峰信号,分析测试学报,22(5):1-5
    [141] Ren S X, Gao L, Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares, Talanta, 2000, 50:1163-1173
    [142] 徐晓峰,赵明生,胡鑫尧,傅氏去卷积和小波理论用于谱图分峰的对比研究,计算机与应用化学,1998,15:153-157
    [143] Long J R, Gregoriou V G, Gemperline P J, Spectroscopic calibration and quantitation using artificial neural networks, Analytical Chemistry, 1990, 62(17): 1791-1797
    [144] 刘思东,分析化学,人工神经网络方法用于脉冲极谱重叠峰解析 1997,25:249-252
    [145] 刘思东,张卓勇,刘宁,人工神经网络—伏安分析法同时测定邻,同,对二硝基苯分析测试学报,1998,17:33-36
    [146] 缪华健,胡上序,色谱重叠峰分解的神经网络法,化学学报,1997,55:296-306
    [147] Bocaz-Beneventi G, Latorre R, Farková M, Havel J, Neural networks for quantification in unresolved capillary electrophoresis peaks, Analytica Chimica Acta, 2002, 452:47-63
    [148] Hemmateenejad B, Safarpour MA, Mehranpour AM, Net analyte signal-artificial neural network (NAS-ANN) model for efficient nonlinear multivariate calibration, Analytica Chimica Acta, 2005, 535:275-285
    [149] 方慧生,吴玉田,陈斌,Madaline网络分离重叠光谱峰在灰色体系分析中的应用,分析化学,1999,27:875-880
    [150] 郑建斌,张军,高鸿,人工神经网络在示波计时电位法中的应用,分析测试学报,1999,18(6):26-29
    [151] Fraga J M G, Abizanda A I J, Moreno F J, Leo6n J J A., Application of principal component regression to the determination of Captopril by differential pulse polarography with no prior removal of dissolved oxygen, Talanta, 1998, 46:75-82
    [152] Pevzner E, Ehrenberg B, Principal component analysis of the absorption and resonance Raman spectra of the metallochromic indicator antipyrylazo, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(4): 637-651
    [153] Elbergali A, Nygren J, Kubista M, An automated procedure to predict the number of components in spectroscopic data, Analytica Chimica Acta, 1999, 379(1-2): 143-158
    [154] Shen H L, Wang J H, Liang Y Z, Pettersson K, Josefson M, Gottfries J, Lee F, Chemical rank estimation by multiresolution analysis for two-way data in the presence of background, Chemometrics and Intelligent Laboratory Systems, 1997, 37(2): 261-269
    [155] Ni Y N, Jin L, Simultaneous polarographic chemometric determination of lead, copper, vanadium, cadmium and nickel, Chemometrics and Intelligent Laboratory Systems, 1999, 45:105-111
    [156] Ni Y N, Chen S H, Kokot S, Spectrophotometric determination of metal ions in electroplating solutions in the presence of EDTA with the aid of multivariate calibration and artificial neural networks, Analytica Chimica Acta, 2002, 463:305-316
    [157] Dinc E, Baydan E, Kanbur M, Onur F, Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta, 2002, 58:579-594
    [158] Boeris M S, Luco J M. and Olsina RA, Simultaneous spectrophotometric determination of phenobarbital, phenytoin and methylphenobarbital in pharmaceutical preparations by using partial least-squares and principal component regression multivariate calibration, Journal of Pharmaceutical and Biomedical Analysis, 2000, 24:259-271
    [159] Garrido Frenich A, Martfnez Galera M, Martinez Vidal JL, Gil Garcia MD, Partial least-squares and principal component regression of multi-analyte high-performance liquid chromatography with diode-array detection, Joumal of Chromatography A, 1996, 727: 27-38
    [160] Pell RJ, McKelvy M L, Harthcock MA, Effective resolution enhancement of infrared microspectroscopic data by multiresponse nonlinear optimization, Applied Spectroscopy, 1993, 47(5): 634-642
    [161] Bunker C E, Hamilton N B, Sun Y P, Quantitative application of principal component analysis and self-modeling spectral resolution to product analysis of tetraphenylethylene photochemical reactions, Analytical Chemistry, 1993, 65(23): 3460-3465
    [162] Gabanillas A G., Dias T G, Espinosa-Mansilla A, Lopez F S, Resolution of ternary mixtures of nitrofurantoin, furazolidone and furaltadone by application of Partial Least Squares analysis to the differential pulse polarographic signals, Talanta, 1994, 41(11): 1821-1832
    [163] Gabanillas A G., Dias T G, Espinosa-Mansilla A, L6pez-deoAlba P L, Lopez F S, Abilities of differentiation and partial least squares methods in the analysis by differential pulse polarography Simultaneous determination of furazolidone and furaltadone, Analytica Chimica Acta, 1995, 302(1): 9-19
    [164] 倪永年,张霖霖,偏最小二乘法用于ICP—AES法同时测定多组分稀土元素,光谱 学与光谱分析,1996, 16(3): 74-78
    [165] Sahin S, Demir C, Gucer S, Simultaneous UV-vis spectrophotometric determination of disperse dyes in textile wastewater by partial least squares and principal component regression, Dyes and Pigments, 2007, 73(3): 368-376
    [166] Zheng XP, Mo JY, Xie TY, Studies of spline wavelet least square in processing electrochemical signals, Talanta, 1999, 48(2): 425-436
    [167] Hemmateenejad B, Rezaei Z, Khabnadideh S, Saffari M, A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine-10,11-epoxide in plasma and comparison with HPL, Spectrochimica Acta Part A, 2007, doi: 10.1016/j.saa.2006.12.051
    [168] Soriano A, Pe'rez-Juan PM, Vicario A, Gonza'lez JM, Pe'rez-Coello MS, Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy, Food Chemistry, 2006, doi: 10.1016/j.foodchem.2006.10.011
    [169] Chen QS, Zhao JW, Huang XY, Zhang HD, Liu MH, Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy, Microchemical Journal, 2006, 83:42-47
    [170] González-Martin I, Bustamante-Rangel JMG M, Delgado-Zamarreno MM, Near infrared spectroscopy (NIRS) reflectance technology for determination of tocopherols in animal feeds, Analytica Chimica Acta, 2006, 558:132-136
    [171] Afkhami A, Sarlak N, Zarei AR, Simultaneous kinetic spectrophotometric determination of cyanide and thiocyanate using the partial least squares (PLS) regression, Talanta, 2007, 71:893-899
    [172] González MJG, Renedo OD, Martinez MJA, Simultaneous determination of antimony(Ⅲ) and antimony(Ⅴ) by UV-vis spectroscopy and partial least squares method (PLS), Talanta, 2005, 68:67-71
    [173] Ni YN, Qiu P, Kokot S, Simultaneous voltammetric determination of four carbamate pesticides with the use of chemome, Analytica Chimica Acta, 2005, 537:321-330
    [174] Palacios-Santander JM, Cubillana-Aguilera LM, Namnjo-Rodriguez I, Hidalgo-Hidalgo-de-Cisneros JL, A chemometric strategy based on peak parameters to resolve overlapped electrochemical signals, Chemometrics and Intelligent Laboratory Systems, 2007, 85:131-139
    [175] Guiberteau CA, Cáceres MIR, Canas MAM, Burguillos JMO, Diaz TG, Square wave adsorptive stripping voltametric determination of the mixture of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid) by multivariate methods and artificial neural network, Talanta, 2007, doi: 10.1016/j.talanta.2006.12.035
    [176] Ni YN, Wang YR, Kokot S, Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics, Talanta, 2006, 69: 216-225
    [177] Ni YN, Zhang GW, Kokot S, Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks, Food Chemistry,2005, 89: 465-473
    [178] El-Gindy A, HPLC and chemometric assisted spectrophotometric methods for simultaneous determination of diprophylline, phenobarbitone and papaverine hydrochloride, I1 Farmaco, 2005, 60:745-753
    [179] Frenich AG, Liébanas FJA, Mateu-Sánchez M, Vidal JLM, Multicomponent determination of pesticides in vegetables by gas chromatography with mass spectrometric detection and multivariate calibration, Talanta, 2003, 60:765-774
    [180] Frenich AG, Vidal JLM, Parrilla P, Galera MM, Resolution of folpet, procymidone and triazophos in highperformance liquid chromatography-diode array detection by using partial least squares calibration to cross-sections of spectrochromatograms, Journal of Chromatography A, 1997, 778:183-192
    [181] E1-Gindy A, E1-Yazby Fy, Mostafa A, Maher M, HPLC and chemometric methods for the simultaneous mdetermination of cyproheptadine hydrochloride, multivitamins, and sorbic acid, Journal of Pharmaceutical and Biomedical Analysis, 2004, 35:703-713
    [182] E1-Gindy A, Emara S, Mostafa A, HPLC and chemometric-assisted spectrophotometric methods for simultaneous determination of atenolol, amiloride hydrochloride and chlorthalidone, I1 Farmaco, 2005, 60:269-278
    [183] Wentzell P D, Montoto L V, Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures, Chemometrics and Intelligent Laboratory Systems, 2003, 65:257-279
    [184] Edmund R, Malinowski, Determination of the number of factors and the experimental error in a data matrix, Analytical Chemistry, 1977, 49(4): 612-617
    [185] Howery D G, Factor Analysis in Chemistry, New York, John & Sons, 1980
    [186] Cuesta S F, Vandeginste B G M, Hancewicz T M, Massart D L, Resolution of complex liquid chromatography-Fourier transform infrared spectroscopy Data, Analytical Chemistry, 1997, 69(8): 1477-1484
    [187] Lohnes M T, Guy R D, Wentzell P D, Window target-testing factor analysis: theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection, Analytica Chimica Acta, 1999, 38(1-3): 95-113
    [188] 白洁玲,倪永年,迭代目标转换因子分析法在吸附伏安法中的应用——混合色素的同时测定,高等学校化学学报,1996,17:693-697
    [189] Keller H R, Massart D L, Evolving factor analysis, Chemometrics and Intelligent Laboratory Systems, 1992, 12(3): 209-224
    [190] Sena M M, Fernandes J C B, Rover L, Poppi R J, Kubota L T, Application of two- and three-way chemometric methods in the study of acetylsalicylic acid and ascorbic acid mixtures using ultraviolet spectrophotometry, Analytica Chimica Acta, 2000, 40(1-2): 159-170
    [191] Keesey R L, Ryan M D, Use of evolutionary factor analysis in the spectroelectrochemistry of escherichia coli sulfite reductase hemoprotein and a Mo/Fe/S cluster, Analytical Chemistry, 1999, 71 (9): 1744-1752
    [192] Bernard G M, Vandeginste, Derks W, Kateman G, Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis, Analytica Chimica Acta, 1985, 173:253-264
    [193] Strasters J K, Billiet H A H, Galan L D, Vandeginste B G M, Kateman G, Evaluation of peak-recognition techniques in liquid chromatography with photodiode array detection, Journal of Chromatography A, 1987, 385:181-200
    [194] 毕树平,都思丹,王忠,高鸿,Kalman滤波分辨交流示波极谱图中重叠切口,高等学校化学学报,1991,12(12):1592-1595
    [195] Hayashi Y, Rutan S C., Helburn R S, Pompano J M, Information-based prediction of the precision and evaluation of the accuracy of the results from an adaptive filter, Chemometrics and Intelligent Laboratory Systems, 1993, 20(2): 163-171
    [196] Liang Y Z, Manne R, Kvalheim O M, Resolution of embedded chromatographic peaks by sequential rank analysis of the first-order differentiated elution profile in the time domain, Chemometrics and Intelligent Laboratory Systems, 1994, 22(2): 229-240
    [197] Craven P G, Fairhurst S A, Sutcliffe L H, A simple approach to derivative spectroscopy, Spectrochimica Acta Part A: Molecular Spectroscopy, 1988, 44(5): 539-545
    [1] 高鸿,示波滴定,南京:南京大学出版社,1990
    [2] Isabel CW, Angélica SAVM, Guillermo DN, Oscillopolarography of copper, Journal of Electroanalytical Chemistry, 1966, 12:151-157
    [3] Dolezal J, Koprda V, Zyka J, Oscillopolarographic detection and determination of dihydric phenols, Talanta, 1963, 10:621-632
    [4] Orzechowska M, Matysik J, Oscillopolarographic investigation of the adsorption of fatty acids on DME in acid solutions, Journal of Electroanalytical Chemistry, 1979, 103: 251-259
    [5] 宋俊峰,于科岐,过玮,示波分析在中国的发展—Ⅰ示波分析,分析化学,1998,26(6):627-632
    [6] 郑建斌,高鸿,朱俊杰,胡娟,双电解池正反馈示波计时电位法研究,高等学校化学学报,1994,15(4):509-511
    [7] 郑建斌,傅业伟,李圆,高鸿,3.5次微分循环示波计时电位法的研究,高等学校化学学报,1998,19(3):368-371
    [8] 毕树平,都思丹,高鸿,选相示波伏安法,高等学校化学学报,1994,15(7):988-990
    [9] Zheng J B, Zhang X Q, Gao H, Oscillographic chronopotentiometry with high and low frequency current, Chinese Chemical Letters, 2000, 11 (5): 443-446
    [10] 史生华,于书平,刘鹏,铂电极响应非电对离子的机理研究—Ⅰ铂电极对 Pb~(2+),Cd~(2+),Ca~(2+),Mg~(2+)的响应,中国科学(B辑),1996,26(6):516-521
    [11] 郑建斌,苏玉祥,高鸿,多功能交流示波计时电位仪的研制,西北大学学报,1997,27(5):389-393
    [12] Zheng J B, Zhang X Q, Gao M, Gao H, A study on multi-order semi-differential oscillographic chronopotentiometric instrument, Instrument Science Technology, 2000, 28:403-412
    [13] 郑建斌,刘鹏,傅业伟,祁洪,计算机化的动态示波测定方法的研究,分析试验室,1997,16(增刊)):7-9
    [14] 干敏梁,干宁,基于虚拟仪器技术的示波分析方法的实现,计算机与应用化学,2001,18(6):561-563.
    [15] 阎丽,王小宁,徐萍,示波分析数字化测试系统,西北大学学报(自然科学版),2002,32(4):363-366
    [16] Zheng J B, Gao M, Fu Y W, Gao H, A study of multi-order semidifferential oscillographic chronopotentiometry, Chinese Chemical Letters, 1998, 9(8): 753-756
    [17] 郑建斌,傅业伟,李圆,高鸿,3.5次微分循环示波计时电位法的研究,高等学校化学学报,1998,19(3):368-371
    [18] 郑建斌,刘鹏,巩宁,2.5次微分循环示波计时电位法用于铑的示波性质的研究,分析化学,1998,26(8):1014-1017
    [19] 郑建斌,傅业伟,杨立婷,高鸿,3.5次微分循环示波计时电位法测定铋的研究,分析试验室,1998,17(5):31-33
    [20] 郑建斌,于浩,张宏芳,二次微分简易示波伏安法用于青霉素V钾的间接测定,应用化学,2001,18(10):851-852
    [21] 于浩,高敏,张宏芳,郑建斌,四硼酸钠用于银铊和可可碱的示波测定,西北大学学报(自然科学版),2001,31(增刊):136-137
    [22] 于浩,张宏芳,郑建斌,苯巴比妥的二次微分简易示波伏安法测定,分析测试学报,2002,21(3):10-12
    [23] 郑建斌,张宏芳,董社英,茜素红S用于含锌药物的示波测定,应用化学,2003,20(1):83-85
    [24] 董社英,郑建斌,高鸿,钙-茜素红S的示波行为及应用,化学分析研究简报, 2003,31(5):604-607
    [25] 张宏芳,陶福芳,熊迅宇,郑建斌,二次微分简易示波伏安法测定Fe~(3+),分析科学学报,2002,18(6):463-465
    [26] 索志荣,张宏芳,于浩,郑建斌,PAN-Co配合物用于维生素B12的示波测定,应用化学,2002,19(4):381-383
    [27] 干宁,毕树平,雷建平,铍试剂P钙色素双偶氮染料2示波计时电位法快速测定天然水中不同形态铝,分析化学研究报告,2003,31(4):420-424
    [28] 干宁,雷建平,毕树干,染料2示波计时电位法测定天然水中的不同形态铝,应用化学,2003,20(2):103-107
    [29] 干宁,雷建平,李伟,毕树平,谭涌霞,钙镁试剂2示波计时电位法快速测定天然水中不同形态铝,环境化学,2002,21(4):397-403
    [30] 雷建平,干宁,李伟,毕树平,铬蓝黑R2示波计时电位法快速测定天然水不同形态铝,中国稀土学报,2002,20(增刊):227-232
    [31] 干宁,王先龙,谭涌霞,毕树干,魏宗波,陈刚,邻苯二酚紫-示波计时电位法测定天然水中不同形态铝,分析化学,2001,29(10):1181-1184
    [32] 谭涌霞,毕树平,魏宗波,钙镁试剂2示波计时电位法测定天然水和饮用水中铝含量,分析科学学,2001,17(1):6-10
    [33] 谭涌霞,毕树平,干宁,魏宗波,铬蓝黑R-示波计时电位法快速测定天然水中不同形态的铝浓度,分析科学学报,2001,17(3):177-181
    [34] 干宁,谭涌霞,先龙,雷建平,毕树平,酸性媒染紫—示波计时电位法测定天然水不同形态铝,无机化学学报,2001,17(5):718-722
    [35] 干宁,毕树平,徐仁扣,酸性铬深蓝-示波吸附计时电位法快速测定土壤溶液中不同形态铝,环境科学学报,2003,23(4):494-498
    [36] 干宁,毕树平,魏宗波,氯磺酚S-示波计时电位法测定天然水中5种形态铝,应用化学,2001,18(9):736-740
    [37] 郑建斌,倪宏刚,三价铬和烟酸的示波行为及其应用,理化检验-化学分册,2005,41(7):467-470
    [38] 倪宏刚,郑建斌,β-环糊精用于盐酸金刚烷胺的示波极谱测定,理化检验-化学分册,2004,40(10):574-576
    [39] 倪宏刚,郑建斌,头孢哌酮钠的直接和间接示波测定,分析测试学报,2004,23(3):80-82
    [40] 陶福芳,郑建斌,β-环糊精-二次微分简易示波伏安法测定苯巴比妥,理化检验-化学分册,2003,39(11):633-636
    [41] 陶福芳,董社英,张宏芳,郑建斌,β-环糊精用于铜的二次微分简易示波伏安法测定,应用化学,2003,20(8):723-726
    [42] 陶福芳,郑建斌,β-环糊精用于槐角中芦丁的示波测定,广西师范大学学报,2002,20(2):47-50
    [43] 郑建斌,陶福芳,β-环糊精用于阿莫西林的二次微分简易示波伏安测定,应用化学,2005,22(6):595-599
    [44] 董社英,郑建斌,高鸿,二次微分简易示波伏安法直接测定酒样中半胱氨酸,理化检验-化学分册,2003,39(2):80-83
    [45] 53董社英,郑建斌,高鸿,示波测定新方法的研究,西北大学学报(自然科学版),2003,33(6):673-678
    [46] 郑建斌,倪宏刚,张宏芳,KIO_3用于药片与饮料中抗坏血酸的示波测定,应用化学,2005,22(7):726-729
    [47] 海洛夫斯基 J,库达著 J,汪尔康译,极谱学基础,科学出版社,1984
    [48] Kambara T, Leybold.Polarography, Ber, 1957, 2:41
    [49] Micka J, Physik Z, Chemistry,(Leipzig),1957, 345
    [50] 毕树平,高鸿,几种微分示波伏安曲线理论方程的推导,高等学校化学学报,1995,16(10):1532-1534
    [51] 毕树平,高鸿,底液Micka公式的修正,高等学校化学学报,1990,11(5):529-531
    [52] 毕树平,马新生,高鸿,交流示波极谱基础理论研究Ⅰ,底液示波极谱曲线端点电位理论,应用化学,1987,4(4):6-10
    [53] 毕树平,马新生,高鸿,交流示波极谱基础理论研究Ⅱ,临界电流密度,应用化学,1987,4(6):54-58
    [54] 祁洪,马新生,高鸿,三角波交流示波极谱的研究,南京大学学报,1989,25(3):85-91
    [55] 祁洪,高鸿,三角波交流示波极谱的研究Ⅰ,三角波交流示波极谱图的性质,高等 学校化学学报,1988,9(6):564-567
    [56] 祁洪,高鸿,三角波交流示波极谱的研究Ⅱ,单组分三角波交流示波极谱理论公式的推导,高等学校化学学报,1988,9(7):665-669
    [57] 徐伟建,高鸿,双铂屯极交流示波双电位滴定法原理Ⅰ,荧光电位线的理论公式,高等学校化学学报,1988,9(10):1002-1005
    [58] 徐伟建,高鸿,交流示波极谱理论公式的另一种推导方法,高等学校化学学报,1988,9(8):780-785
    [59] 祁洪,田敏,郑建斌,于科歧,高鸿,交流示波计时电位法中高次谐波电位的研究,等学校化学学报,1996,17(12):1851-1854
    [60] 郑建斌,赵明仁,朱小红,苏玉祥,用脉冲波交流电流作为极化电流的微分简易示波伏安法,高等学校化学学报,1995,16(8):1209-1211
    [61] 郑建斌,高鸿,示波测定中示波图的调节,西北大学学报,1995,25(4):309-314
    [1] 郑建斌,刘鹏,傅业伟,祁洪,计算机化的动态示波测定方法的研究,分析试验室,1997,16(增刊)):7-9
    [2] 干敏梁,干宁,基于虚拟仪器技术的示波分析方法的实现,计算机与应用化学,2001,18(6):561-563
    [3] 阎丽,王小宁,徐萍,示波分析数字化测试系统,西北大学学报(自然科学版),2002,32(4):363-366
    [4] Zheng J B, Zhang X Q, Gao H, Oscillographic chronopotentiometry with high and low frequency current, Chinese Chemical Letters, 2000, 11 (5): 443-446
    [5] 郑建斌,刘鹏,史生华,示波流动注射分析,高等学校化学学报,1995,16(7):1016-1019
    [6] 贾功贤,基于PC的虚拟仪器的发展趋势,电子技术应用,1999(12):40-43
    [7] Li YW, Yi XJ, He ZX, Luo Y, A low cost uncooled focal plane array test system, Optics & Laser Technology, 2003, 35(3): 213-217
    [8] Reitz FB, Gerald HP, Labview virtual instruments for calcium buffer calculations, Computer Methods and Programs in Biomedicine, 2003, 70(1):61-69
    [9] Shaw F Z, Lai C J, Chiu T H, A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep-wake states in rats, Journal of Neuroscience Methods, 2002, 118(1): 77-87
    [10] Lipe L L, Purinton S M, M E, Harrell C C, Efta C, Murray M, Wood M, Portier R B and Chalk SJ, Development of the continuously variable volume reactor for flow injection analysis: Part 1. Design, capabilities and testing, Analytica Chimica Acta, 2002, 455(2): 287-304
    [11] Jackson M E, Gnadt J W, Numerical simulation of nonlinear feedback model of saccade generation circuit implemented in the LabView graphical programming language, Journal of Neuroscience Methods, 1999, 87(2): 137-145
    [12] Rodrigues A P, Correia C M B, Varandas C A F, Schneider F, Multiple DSP system for real time parallel processing and feedback control on fusion experiments, Fusion Engineering and Design, 1999, 43, (3-4): 401-405
    [13] Dorrestijn E, Mulder P, The automation of a reactor flow system with online G C analysis, Journal of Analytical and Applied Pyrolysis, 1998, 44(2): 167-179
    [14] Stoll T S, Ruffieux P A, Stockar U V, Marison I W, Development of an on-line control system for the cultivation of animal cells in a hollow-fiber reactor using flow injection analysis and a visual programming language, Journal of B iotechnology, 1996, 51 (1): 37-48
    [15] Ye Y C, Marcus R K, Hardware and software systems for the determination of charged particle parameters in low pressure plasmas using impedance-tuned Langmuir probes, Spectrochimica Acta Part B: Atomic Spectroscopy, 1997, 52(14): 2025-2041
    [16] Baldini A, Bemporad C, Caffau E, Cei F, Cristaudo P, Giannini G, Grassi M, Nicolò D, Parlati S, Pazzi R, The photomultiplier test facility for the reactor neutrino oscillation experiment CHOOZ and the measurements of 250 8-in. EMI 9356KA B53 photomultipliers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 372(1-2): 207-221
    [17] 王聪,董秀珍,秦明新,基于LabVIEW的磁感应方式阻抗测量系统虚拟仪器接口的实现,第四军医大学学报,2004,25(20):1905-1907
    [18] 钟绍俊,许素安,林德辉,基于LabVIEW的分布式虚拟测试系统的设计与实现,中国计量学院学报,2004,15(2):0117-0119
    [19] 单威,韩慧莲,在LabVIEW中实现远程虚拟仪器,计量与测试技术,2005,32(1):32-33
    [20] 成永军,冯焱,赵定众,张涤新,基于LabVIEW的气体微流量测量虚拟仪器的开发,航空计测技术,2004,24(2):10-13
    [21] 李功宇,郭瑜,胡持平,郑华文,基于LabVIEW平台的机电设备噪声测试虚拟仪器 设计,昆明理工大学学报(理工版),2004,29(4):91-93
    [22] 龚为进,基于可视化设计软件—LabVIEW的气浮工艺虚拟仪器,中原工学院学报,2004,15(6):28-30
    [23] 王会清,韩艳玲,基于LabVIEW虚拟仪器的激光束位置控制器,华中科技大学学报(自然科学版),2003,31(9):102-104
    [24] 李欣,齐晶瑶,基于LabVIEW的水质监测虚拟仪器的开发与应用,给水排水,2002,28(10):79-80
    [25] 高鸿,张祖训编,极谱电流理论,科学出版社,北京,1986
    [26] Loren H P, Tony M W, Friedbert W, Simple microbore high-performance liquid chromatographic method for the determination of dopamine and cocaine from a single in vivo brain microdialysis sample, Journal of Chromatography B, 1998, 709:35-45
    [27] Nagaraja P, Vasantha R A, Sunittha K R, A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations, Journal of Pharmaceutical and Biomedical Analysis, 2001, 25:417-424
    [28] Nalewajko E, Wiszowata A, Kojlo A, Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection, Journal of Pharmaceutical and Biomedical Analysis, 2007, 43(5):1673-1681
    [29] Carrera V, Sabater E, Vilanova E, Sogorb M A, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures, Journal of Chromatography B, 2007, 847(2): 88-94
    [30] Saracino M A, Mandrioli R, Mercolini L, Ferranti A, Zaimovic A, Leonardi C, Raggi MA, Determination of homovanillic acid (HVA) in human plasma by HPLC with coulometric detection and a new SPE procedure, Journal of Pharmaceutical and Biomedical Analysis, 2006, 42(1): 107-112
    [31] Baranyi M, Milusheva E, Vizi ES, Sperlágh B, Chromatographic analysis of dopamine metabolism in a Parkinsonian model, 2006, Journal of Chromatography A, 1120(1-2):13-20
    [32] Cannazza GA, Stefano D, Mosciatti B, Braghiroli D, Baraldi M, Pinnen F, Sozio P, Benatti C, Parenti C, Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of L-DOPA prodrugs by mean of HPLC-EC, Journal of Pharmaceutical and Biomedical Analysis, 2005, 36(5): 1079-1084
    [33] Yoshitake T, Yoshitake S, Fujino K, Nohta H, Yamaguchi, M Kehr J, High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex, Journal of Neuroscience Methods, 2004, 140(1-2): 163-168
    [34] Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ, High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples, Journal of Neuroscience Methods, 2004, 138(1-2): 123-132
    [35] Chen J, Shi YP, Liu JY, Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography, Journal of Chromatography A, 2003, 1003(1-2): 127-132
    [36] Kato T, Kuzuya H, Nagatsu T, A simple and sensitive assay for dopamine-β-hydroxylase activity by dual-wavelength spectrophotometry, Biochemical Medicine, 1974, 10 (4): 320-328
    [37] Damiani PC, Moschetti AC, Rovetto AJ, Benavente F, Olivieri AC, Design and optimization of a chemometrics-assisted spectrophotometric method for the simultaneous determination of levodopa and carbidopa in pharmaceutical products, Analytica Chimica Acta, 2005, 543(1-2): 192-198
    [38] Vieira IDC, Fatibello-Filho O, Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source, Talanta, 1998, 46(4): 559-564
    [39] Nagaraja P, Srinivasa KCM, Rangappa KS, Gowda NMM, Spectrophotometric methods for the determination of certain catecholamine derivatives in pharmaceutical preparations, Talanta, 1998, 46(1): 39-44
    [40] 王怀友,孙悦,唐波,分光光度法测定多巴胺,分析试验室,2003,22(1):45-47
    [41] Nevado J J B, Gallego JMLemus, Laguna P B, Flow-injection spectrophotometric determination of adrenaline and dopamine with sodium hydroxide, Journal of Pharmaceutical and Biomedical Analysis, 1996, 14(5): 571-577
    [42] Li Q M, Li J, Yang Z J, Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent, Analytica Chimica Acta, 2007, 583(1): 147-152
    [43] 汪振辉,张岱,张岩,周漱萍,多巴胺在聚对氨基吡啶修饰电极上伏安行为及其溶出伏安法测定,药学学报,2000,35(9):692-695
    [44] Codognoto L, Winter E, Paschoal J A R, Suffredini H B, Cabral M F, MachadoS A S, Rath S, Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers, Talanta, 2007, 72(2): 427-433
    [45] Kooshki M, Shams E, Selective response of dopamine in the presence of ascorbic acid on carbon paste electrode modified with titanium phosphated silica gel, Analytica Chimica Acta, 2007, 587(1): 110-115
    [46] Shakkthivel P, Chen S M, Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode, Biosensors and Bioelectronics, 2007, 22(8): 1680-1687
    [47] Shakkthivel P, Chen S M, Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode, Biosensors and Bioelectronics, 2007, 22(8): 1680-1687
    [48] Chen D C, Zhan D Z, Cheng C W, Liu A C, Chen C H, Determination of urine catecholamines by capillary electrophoresis with dual-electrode amperometric detection. Journal of Chromatography B, 2001, 750:33-39
    [49] Zhang L Y, Qu S f, Wang Z l, Cheng J K, Determination of dopamine in single rat pheochromocytoma cell by capillary electrophoresis with amperometric detection, Journal of Chromatography B, 2003, 792:381-385
    [50] Gopalan A I, Lee K, Manesh K M, Santhosh P, Kim J H , Kang J S, Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode, Talanta, 2007, 71(4): 1774-1781
    [51] Jia N Q, Wang Z Y, Yang G F, Shen H B, Zhu L Z, Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine, 2007, Electrochemistry Communications, 9(2): 233-238
    [52] Goyal R N, Gupta V K, Oyama M, Bachheti N, Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids, Talanta, 2006, doi: 10.1016/j.talanta.2006.12.029
    [53] 赵红,张玉忠,袁倬斌,聚2-吡啶甲酸修饰电极伏安法测定多巴胺,分析化学,2001,29(10):1157-1159
    [54] 梁汝萍,邱建丁,黄婷婷,莫金垣,蔡沛祥,同时测定多巴胺和肾上腺素的大环镍膜修饰电极,分析测试学报,2002,21(6):31-34
    [55] 赫春香,赵常志,唐祯安,邱介山,王立鼎,碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化,分析化学,2003,31(8):958-960
    [56] 贾莉,雷秋芬,张修华,王升富,邻氨基硫酚自组装膜修饰电极测定多巴胺,应用化学,2005,22(2):172-175
    [57] 郑建斌,苏玉祥,高鸿,多功能交流示波计时电位仪的研制.西北大学学报(自然科学版),1997,27(5):389-393
    [58] 郑建斌,高鸿,示波测定中示波图的调节,西北大学学报(自然科学版),1995,25(4):309-314
    [59] 中华人民共和国药典委员会,中华人民共和国药典,2005版,化学工业出版社,北京,2005
    [60] Wang Y S, Fice D S, Yeung P K F, A simple high-performance liquid chromatography assay for simultaneous determination of plasma norepinephrine, epinephrine, dopamine and 3,4-dihydroxyphenyl acetic acid, Journal of Pharmaceutical and Biomedical Analysis. 1999, 21:519-525
    [61] 蒋银土,朱岩,王炯,郭莹莹,离子色谱—荧光检测器同时测定多巴、肾上腺素和 多巴胺,浙江大学学报(理学版),2001,28(4):412-416
    [62] Sabbioni C, Saracino M A, Mandrioli R, Pinzauti S, Furlanetto S, Gerra G, Raggi M A, Simultaneous liquid chromatographic analysis of catecholamines and 4-hydroxy-3-methoxyphenylethylene glycol in human plasma: Comparison of amperometric and coulometric detection, Journal of Chromatography, 2004, 1032 (1-2): 65-71
    [63] Ueyama J, Kitaichi K, Iwase M, Takagi K, Takagi K, Hasegawa T, Application of ultrafiltration method to measurement of catecholamines in plasma of human and rodents by high-performance liquid chromatography, Journal of Chromatography B, 2003, 798(1): 35-41
    [64] Fotopoulou MA, Ioannou PC, Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography, Analytica Chimica Acta, 2002, 462(2): 179-185
    [65] Xu F, Gao MN, Shi G Y, Wang L, Zhang W, Xue J, Jin LT, Jin JY, Simultaneous detection of monoamines in rat striatal microdialysate at poly(para-aminobenzoic acid) modified electrode by high-performance liquid chromatography, Analytica Chimica Acta, 2001, 439(2): 239-246
    [66] Sorouraddin MH, Manzoori J L, Kargarzadeh E, Haji Shabani A M, Spectrophotometric determination of some catecholamine drugs using sodium bismuthate, Journal of Pharmaceutical and Biomedical Analysis, 1998, 18:877-881
    [67] Zhu M, Huang XM, Li J, Shen HX, Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa, Analytica Chimica Acta, 1997, 357(3): 261-267
    [68] El-Kommos M E, Mohamed F A, Khedr A S, Spectrophotometric determination of epinephrine and norepinephrine with sodium periodate, Talanta, 1990, 37(6): 625-627
    [69] Wei S L, Song G Q, Lin J M, Separation and determination of norepinephrine, epinephrine andisoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum. Journal of Chromatography A, 2005, 1098:166-171
    [70] Wang C Q, Wang H, Liu Y M, Capillary electrophoresis with direct chemiluminescence detection for the analysis of catecholamines in human urine, Chinese Chemical Letters, 2007, 18(4): 452-454
    [71] Ding Y S, Ayon A, Garcia C D, Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis, Analytica Chimica Acta, 2007, 584(2): 244-251
    [72] Solich P, Polydorou C K, Koupparis M A, Efstathiou C E, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22 : 781-789
    [73] Du JX, Shen LH, Lu JR, Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material, Analytica Chimica Acta, 2003, 489 (2): 183-189
    [74] 靳桂英,张玉忠,杨周生,聚氨基磺酸修饰玻碳电极在抗坏血酸共存时测定肾上腺素,分析化学,2005,33(1):83-86
    [75] Yogeswaran U, Thiagarajan S, Chen S M, Nanocomposite of functionalized multiwall carbon nanotubes with nation, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid, Analytical Biochemistry, 2007, doi:10.1016/j.ab.2007.02.034
    [76] Wang L, Bai JY, Huang P F, Wang H J, Zhang L Y, Zhao Y Q, Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine, Electrochemistry Communications, 2006, 8(6): 1035-1040
    [77] 孟昭仁,奚洪民,示波极谱滴定法测定盐酸肾上腺素和重酒石酸去甲肾上腺素[J].分析化学,2001,29(3):371
    [78] 中华人民共和国药典委员会,中华人民共和国药典,2005年版,北京:化学工业出版社,2005,333
    [1] Jakobsen RJ, Lyons-Hart J, Southwick E, The use of Fourier self-deconvolution for determining vapor band contours from low-resolution (GC/IR) infrared spectra, Applied Spectroscopy, 1991,45(3): 407-410
    [2] Czarnecki M A, Ozaki Y, Determination of integrated intensities of overlapped IR bands by curve-fitting, Fourier self-deconvolution and a combination of both methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1996, 52: 1593-1601
    [3] Mosier-Boss P A, Lieberman S H, Newbery R, Fluorescence rejection in raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques, Applied Spectroscopy, 1995, 49(5): 630-638
    [4] Rex A F, Olson M A, Silva N J, The improvement of mossbauer spectra by FIRO deconvolution, Applied Spectroscopy, 1988, 42(5): 775-782
    [5] Shimokoshi K, Kanzaki T, Jones RN, Deconvolution of mossbauer spectra by the finite impulse response operator (FIRO) method, Applied Spectroscopy, 1985, 39(6): 1014-1017
    [6] Wang S, Pelczer I, Borer P N, Levy G C, Maximum-likelihood deconvolution of NMR spectra in multidimensional space, Journal of Magnetic Resonance, Series A, 1994, 108(2): 171-176
    [7] Kauppinen J K, Moffatt D J, Hollberg M R, Mantsch H H, A new line-narrowing procedure based on fourier self-deconvolution, Maximum Entropy, and Linear Prediction, Applied Spectroscopy, 1991, 45 (3): 411-416
    [8] Kauppinen J K, Moffatt D J, Hollberg M R, Mantsch H H, Characteristics of the LOMEP Line-Narrowing Method, Applied Spectroscopy, 1991, 45(9): 1516-1521
    [9] Shao X, Cai W, Sun P, Zhang M, Zhao G, Quantitative determination of the components in overlapping chromatographic peaks using wavelet transform, Analytical Chemistry, 1997, 69(9): 1722-1725
    [10] 邵学广,孙培艳,蔡文生,小波变换及其有色谱重叠峰解析中的应用,化学通报,1997,8:59-62
    [11] 邵学广,孙培艳,蔡文生,小波变换用于色谱重叠峰的解析,分析化学,1997,25:671-674
    [12] 邵学广,侯树泉,方能虎,小波变换用于植物激素重叠色谱峰中组分的定量分析,分析化学,1998,26:107-110
    [13] 邵学广,侯树泉,赵贵文,小波变换用于重叠色谱峰组分信息的提取分析化学.1998,26:1428-1431
    [14] Shao X G, Hou S Q, On-line resolution of overlapping chromatograms using the wavelet transform, Analytical Sciences, 1999, 15: 681-684
    [15] 邵学广,蔡文生,小波包分析用于重叠分析化学信号的处理,高等学校化学学报,1999,20(1):42-46
    [16] Ren S X, Gao L, Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares, Talanta, 2000, 50:1163-1173
    [17] 徐晓峰,赵明生,胡鑫尧,傅氏去卷积和小波理论用于谱图分峰的对比研究,计算机与应用化学,1998,15:153-157
    [18] Grabaric B S, O'Hallomn R J, Smith D E, Resolution enhancement of a.c. polarographic peaks by deconvolution using the fast Fourier transform, Analytica Chimica Acta, 1981, 133(3): 349-358
    [19] Gmbaric Z, Grabaric BS, Esteban M, Casassas E, Signals ratio method for resolution enhancement in differential pulse polarography and related techniques, Analytica Chimica Acta, 1995, 312(1): 27-34
    [20] Engblom S O, Fourier transform of a reversible linear sweep voltammogram, Analytical Chemistry, 1992, 64(21): 2530-2538
    [21] Engblom S O, Properties and applications of the Fourier transform of a voltammetric wave,J ournal of Electroanalytical Chemistry, 1992, 332,(1-2): 73-99
    [22] Pizeta I, Deconvolution of non-resolved voltammetric signals, Analytica Chimica Acta, 1994, 285(1-2): 95-102
    [23] Pizeta I, Lovric M, Zelic M, Branica M, Application of a Fourier transform method to the resolution enhancement of adsorption peaks in differential pulse polarography, 1991, Journal of Electroanalytical Chemistry, 318(1-2): 25-38
    [24] Pilo MI, Sanna G, Seeber R, Analysis of cyclic voltammetric responses by Fourier transform-based deconvolution and convolution procedures, Journal of Electroanalytical Chemistry, 1992, 323(1-2): 103-115
    [25] Zelic M, Pizeta I, Branica M, Study of cadmium adsorption from iodide media by voltammetry combined with data treatment by deconvolution, Analytica Chimica Acta, 1993, 281(1): 63-70
    [26] 郑小萍,莫金垣,蔡沛祥,样条小波变换用于分辨重叠伏安峰的研究,中国科学(B辑),1999,19(2):141-147
    [27] Zhang Y Q, Mo J Y, Xie T Y, Cai P X, Zou X Y, Spline wavelet self-convolution in processing overlapped peaks in capillary electrophoresis, Analyst, 2000, 125, 1303-1305
    [28] 张永清,莫金垣,谢天尧,蔡沛祥,二次微分与样条小波自卷积联用分辨重叠伏安峰,分析科学学报,2002,18(1):12-16
    [29] 郑建斌,张红权,高鸿,小波Fourier自去卷积法,中国科学(B辑),2000,30(1):21-27
    [30] 郑建斌,张红权,高鸿,Fourier自去卷积示波计时电位法的研究,高等学校化学学报,2000,21:1037-1039
    [31] 张秀琦,张红权,郑建斌,高鸿,小波傅里叶自去卷积用于示波信号中背景扣除的研究,分析化学,2000,28(3):288-292
    [32] 郑建斌,杨小曼,刘辉,示波信号能谱的傅里叶自去卷积法,分析化学,2003,31(3):304-306
    [33] 郑建斌,仲红波,张红权,杨德玉,潘忠孝,张懋森,高鸿,小波变换用于二次微分交流示波计时电位信号中有用信息的提取,分析化学,1998,26(1):25-28
    [34] 郑建斌,张红权,张秀琦,高鸿,小波变换用于示波计时电位信号处理的研究,吉林师范学院学报,1998,19(5):61-66
    [35] 毕树平,都思丹,王忠,高鸿,Kalman滤波分辨交流示波极谱图中重叠切口,高等学校化学学报,1991,12(12):1592-1595
    [36] Kauppinen J K, Moffatt D J, Mantsch H H, Cameron D G, Fourier self-deconvolution: a method for resolving intrinsically overlapped bands, Applied Spectroscopy, 1981, 35(3): 271-276
    [37] Kauppinen J K, Moffatt D J, Mantsch H H, Cameron D G, Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours, Analytical Chemistry, 1981, 53(9): 1454-1457
    [38] Lee J P, Comisarow M B, Advantageous apodization Functions for absorption-mode Fourier transform spectroscopy, Applied Spectroscopy, 1989, 43(4): 599-604
    [39] Keefe C D, Comisarow M B, Exact interpolation of apodized, magnitude-mode Fourier transform spectra, Applied Spectroscopy, 1989, 43(4): 605-607
    [40] Verdun F R, Giancaspro C, Marshall A G, Effects of noise, time-domain damping, zero-filling and the FFT algorithm on the "exact" interpolation of fast Fourier transform spectra, Applied Spectroscopy, 1988, 42(5): 715-721
    [41] Susi H, Byler D M, Fourier deconvolution of the amide I Raman band of proteins as related to conformation, 1988, Applied Spectroscopy, 42(5): 819-826
    [42] Friesen W I, Michaelian KH, Deconvolution in the Frequency Domain, 1985, Applied Spectroscopy, 39(3): 484-490
    [43] 郑建斌,刘辉,Fourier自去卷积及其在化学信号处理中的应用,西北大学学报,2000,30(6):496-500
    [44] Pizeta I, Lovric M, Branica M, Detection and resolution enhancement of two close electrochemical processes, Journal of Electroanalytical Chemistry, 1990, 296(2): 395-404
    [45] Gibbs A, Morris G A, Reference deconvolution: elimination of distortions arising from reference line truncation, Journal of Magnetic Resonance, 1991, 91 : 77-83
    [46] Crilly P B, The use of a ratio method as an alternative to constrained deconvolution, Journal of Chemometrics, 1991, 5(2): 85-95
    [47] Morawski R Z, Szczecinski L, Barwicz A, Deconvolution algorithms for instrumental applications: A comparative study, Journal of Chemometrics, 1995, 9:3-20
    [48] Pierce J A, Jackson R S, Every K W V, Griffiths P R, Gao H J, Combined deconvolution and curve fitting for quantitative analysis of unresolved spectral bands, Anal. Chem, 1990, 62(5): 477-484
    [49] Kim Rahmelow, Wigand Hü, Fourier Self-deconvolution: parameter determination and analytical band shapes, Applied Spectroscopy, 1996, 50(6): 795-804
    [50] Palmo K, Mannfors B, Pietila L O, A comparison of methods for decomposing overlapping bands in Raman spectra, Journal of Molecular Structure, 1988, 174: 101-106
    [51] Kauppinen J K, Moffatt D J, Mantsch H H, Cameron D G, Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours, Analytical Chemistry, 1981, 53(9): 1454-1457
    [52] Jackson R S, Griffiths P R., Comparison of Fourier self-deconvolution and maximum likelihood restoration for curve fitting, Anal. Chem., 1991, 63(22): 2557-2563.
    [53] Kalkandjiev T K, Petrov V P, Nickolov J B, Deconvolution versus derivative spectroscopy, Applied Spectroscopy, 1989, 43(1): 44-48
    [54] Smeller L, Goossens K, Heremans K, How to minimize certain artifacts in Fourier self-deconvolution, Applied Spectroscopy, 1995, 49(10): 1538-1542
    [55] 郑建斌,高鸿,示波测定中示波图的调节,西北大学学报(自然科学版),1995,25(4):309-314
    [1] 梁逸曾,俞汝勤.分析化学手册:10化学计量学,化学工业出版社,北京,2000
    [2] Afkhami A, Sarlak N, Zarei A R, Simultaneous kinetic spectrophotometric determination of cyanide and thiocyanate using the partial least squares (PLS) regression, Talanta, 2007, 71: 893-899
    [3] González M J G, Renedo O D, Martinez M J A, Simultaneous determination of antimony(Ⅲ) and antimony(V) by UV-vis spectroscopy and partial least squares method (PLS), Talanta, 2005, 68:67-71
    [4] Ni YN, Qiu P, Kokot S, Simultaneous voltammetric determination of four carbamate pesticides with the use of chemome, Analytica Chimica Acta, 2005, 537:321-330
    [5] Palacios-Santander JM, Cubillana-Aguilera LM, Naranjo-Rodriguez I, Hidalgo-Hidalgo-de-Cisneros JL, A chemometric strategy based on peak parameters to resolve overlapped electrochemical signals, Chemometrics and Intelligent Laboratory Systems, 2007, 85:131-139
    [6] Guiberteau CA, Cáceres MIR, Canas MAM, Burguillos JMO, Díaz TG, Square wave adsorptive stripping voltametric determination of the mixture of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid) by multivariate methods and artificial neural network, Talanta, 2007, doi: 10.1016/j.talanta.2006.12.035
    [7] Ni YN, Jin L, Simultaneous polarographic chemometric determination of lead, copper, vanadium, cadmium and nickel, Chemometrics and Intelligent Laboratory Systems, 1999, 45:105-111
    [8] Frenich AG, Liébanas FJA, Mateu-Sánchez M, Vidal JLM, Multicomponent determination of pesticides in vegetables by gas chromatography with mass spectrometric detection and multivariate calibration, Talanta, 2003, 60:765-774
    [9] El-Gindy A, El-Yazby Fy, Mostafa A, Maher M, HPLC and chemometric methods for the simultaneous mdetermination of cyproheptadine hydrochloride, multivitamins, and sorbic acid, Journal of Pharmaceutical and Biomedical Analysis, 2004, 35:703-713
    [10] El-Gindy A, Emara S, Mostafa A, HPLC and chemometric-assisted spectrophotometric methods for simultaneous determination of atenolol, amiloride hydrochloride and chlorthalidone, I1 Farmaco, 2005, 60:269-278
    [11] Sahin S, Demir C, Gücer S, Simultaneous UV-vis spectrophotometric determination of disperse dyes in textile wastewater by partial least squares and principal component regression, Dyes and Pigments, 2007, 73(3): 368-376
    [12] Zheng XP, Mo JY, Xie TY, Studies of spline wavelet least square in processing electrochemical signals, Talanta, 1999, 48(2): 425-436
    [13] Hemmateenejad B, Rezaei Z, Khabnadideh S, Saffari M, A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine -10,11-epoxide in plasma and comparison with HPL, Spectrochimica Acta Part A, 2007, doi:10.1016/j.saa.2006.12.051
    [14] Soriano A, Pe'rez-Juan PM, Vicario A, Gonza'lez JM, Pe'rez-Coello MS, Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy, Food Chemistry, 2006, doi: 10.1016/j.foodchem.2006.10.011
    [15] Chen QS, Zhao JW, Huang XY, Zhang HD, Liu MH, Simultaneous determination of total polyphenols and caffeine contents of green tea by near-infrared reflectance spectroscopy, Microchemical Journal, 2006, 83:42-47
    [16] Fraga JMG, Abizanda AIJ, Moreno FJ, Leoón JJA., Application of principal component regression to the determination of Captopril by differential pulse polarography with no prior removal of dissolved oxygen, Talanta, 1998, 46:75-82
    [17] Pevzner E, Ehrenberg B, Principal component analysis of the absorption and resonance Raman spectra of the metallochromic indicator antipyrylazo, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(4): 637-651
    [18] Elbergali A, Nygren J, Kubista M, An automated procedure to predict the number of components in spectroscopic data, Analytica Chimica Acta, 1999, 379(1-2): 143-158
    [19] Shen HL, Wang JH, Liang YZ, Pettersson K, Josefson M, Gottfries J, Lee F, Chemical rank estimation by multiresolution analysis for two-way data in the presence of background, Chemometrics and Intelligent Laboratory Systems, 1997, 37(2): 261-269
    [20] Ni YN, Chen SH, Kokot S, Spectrophotometric determination of metal ions in electroplating solutions in the presence of EDTA with the aid of multivariate calibration and artificial neural networks, Analytica Chimica Acta, 2002, 463:305-316
    [21] Dinc E, Baydan E, Kanbur M, Onur F, Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods, Talanta, 2002, 58:579-594
    [22] Boeris M S, Luco J M, Olsina RA, Simultaneous spectrophotometfic determination of phenobarbital, phenytoin and methylphenobarbital in pharmaceutical preparations by using partial least-squares and principal component regression multivariate calibration, Journal of Pharmaceutical and Biomedical Analysis, 2000, 24:259-271
    [23] Pell RJ, McKelvy ML, Harthcock MA, Effective resolution enhancement of infrared microspectroscopic data by multiresponse nonlinear optimization, Applied Spectroscopy, 1993, 47(5): 634-642
    [24] Bunker C E, Hamilton N B, Sun Y P, Quantitative application of principal component analysis and self-modeling spectral resolution to product analysis of tetraphenylethylene photochemical reactions, Analytical Chemistry, 1993, 65(23): 3460-3465
    [25] Ni YN, Zhang G W, Kokot S, Simultaneous spectrophotometric determination of maltol, ethyl maltol, vaniilin and ethyl vanillin in foods by multivariate calibration and artificial neural networks, Food Chemistry,2005, 89:465-473
    [26] Long J R, Gregofiou V G, Gemperline P J, Spectroscopic calibration and quantitation using artificial neural networks, Analytical Chemistry, 1990, 62 (17): 1791-1797
    [27] 刘思东,分析化学,人工神经网络方法用于脉冲极谱重叠峰解析,1997,25:249-252
    [28] 缪华健,胡上序,色谱重叠峰分解的神经网络法,化学学报,1997,55:296-306
    [29] Bocaz-Beneventi G, Latorre R, Farková M, Havel J, Neural networks for quantification in unresolved capillary electrophoresis peaks, Analytica Chimica Acta, 2002, 452: 47-63
    [30] Hemmateenejad B, Safarpour MA, Mehranpour AM, Net analyte signal-artificial neural network (NAS-ANN) model for efficient nonlinear multivariate calibration, Analytica Chimica Acta, 2005, 535:275-285
    [31] 方慧生,吴玉田,陈斌,Madaline网络分离重叠光谱峰在灰色体系分析中的应用,分析化学,1999,27:875-880
    [32] 郑建斌,张红权,张秀崎,高鸿,小波变换用于示波计时电位信号处理的研究.吉林师范学院学报,1998,19(5):61-65
    [33] 张红权,郑建斌,仲红波,潘忠孝,张懋森,小波变换用于示波计时电位法中重叠峰解析.西北大学学报,1999,29(4):313-316
    [34] 郑建斌,张军,人工神经网络在示波计时电位法中的应用,分析测试学报,1999,18(6):26-29
    [35] 毕树平,都思丹,Kalman滤波分辨交流示波极谱图中重叠切口,高等学校化学学报,1991,12(12):1592-1594
    [36] 刘辉,郑建斌,仲洪波,小波模极大值滤噪法在示波计时电位信号处理中的应用,计算机与应用化学,2003,20(3):269-273.
    [37] 郑建斌,杨小曼,刘辉,示波信号能谱的傅里叶自去卷积法,分析化学,2003,31(3):304-306
    [38] 仲红波,刘辉,郑建斌,陈立仁,二进小波神经网络用于示波计时电位测定,化学通报,2002,65(4):269-273
    [39] 李华,张书玲,申琦,高鸿,小波分析与偏最小二乘法相结合用于示波计时电位同时测定铅和铊的研究,计算机与应用化学,2003,20(1):27-30
    [40] 杨南林,程翼宇,瞿海斌,用人工神经网络-近红外光谱法测定冬虫夏草中的甘露醇,分析化学,2003,31(6):664-668.
    [41] 郑建斌,苏玉祥,高鸿,多功能交流示波计时电位仪的研制,西北大学学报,1997,27(5):389-393
    [42] 郑建斌,高鸿.示波测定中示波图的调节,西北大学学报,1995,25(4):309-314.
    [43] Ren S., Gao L.. Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares, Talanta, 2000, 50:1163-1173
    [44] Zheng JB, Zhang XQ, Gao H, Oscillographic Chronopotentiometry with High and Low Frequency Current, Chinese Chemical Letters, 2000, 11(5): 443-446
    [45] Ministry of Public Health of the People's Republic of China, 中华人民共和国药典,化学工业出版社, 2005, 1:152
    [46] Ministry of Public Health of the People's Republic of China, 中华人民共和国药典,
    化学工业出版社,2005,1:139
    [47] Ministry of Public Health of the People's Republic of China, 中华人民共和国药典,化学工业出版社, 2005, 1:219
    [48] Ministry of Public Health of the People's Republic of China, 中华人民共和国药典,化学工业出版社, 2005, 1:103
    [49] 邢俊波,李萍,忍冬屈化学成分研究概况及展望,中药材,1999,22(7):366-370
    [50] Harbome J B, Heywood V H, Saleh N A M, Chemosystematics of the composiate: flavonoid patterns in the Chrysanthemum complex of the tribe anthemideae, Phytochemistry, 1970, 9:2011-2017
    [51] Lopez M, Martinez F, Valle C D, Ferrit M, Luque R, Study of phenolic compounds as natural antioxidants by a fluorescence method, Talanta, 2003, 60:609-616
    [52] Rao M V S S T, Muralikrishna G, Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana Indaf-15), Journal of Agricultural and Food Chemistry, 2002, 50:889-892
    [53] Yang B, Kotani A, Arai K, Kusu F, EStimation of the Antioxidant ACtivitieS of FlavonoidS from Their oxidation Potentials, Analytical Science, 2001, 17:599-604
    [54] Evans C A, Miller N J, Paganga G, Strncture-dntioxidant activity relationships of flavonids and phenolic acids, Free Radical Biology & Medicine, 1996, 20:933-956
    [55] 王天志,李永梅,金银花的研究进展,华西药学杂志,2000,15(4):292-298.
    [56] Males Z, Medic-Saric M, Optimization of TLC analysis of flavonoids and phenolic acids of Helleborus atrorubens Waldst. et Kit, Journal of Pharmaceutical and Biomedical Analysis, 2001, 24:353-359
    [57] Chen H, Zuo Y G, Deng Y W, Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high performance liquid chromatography, Journal of Chromatography A, 2001, 913:387-395
    [58] Bolarinwa A, Linseisen J, Validated application of a new high-performance liquid chromatographic method for the determination of selected flavonoids and phenolic acids in human plasma using electrochemical detection, Journal of Chromatography B, 2005, 823:143-151
    [59] Cui H, Zhou J, Xu F, Lai CZ, Wan GH, Determination of phenolic compounds using high-performance liquid chromatography with ce~(4+)-Tween 20 chemiluminescence detection, Analytica Chimica Acta, 2004, 511 : 273-279
    [60] Serot T, Lafficher C, Optimisation of solid-phase microextraction coupled to gas chromatography for determination of phenolic compounds in smoked herring, Food Chemistry, 2003, 82: 513-519
    [61] Rodriguez-Delgado MA, Perez ML, Corbella R, Gonzalez G, Montelongo FJG, Optimization of the separation of phenolic compounds by micellar electrokinetic capillary chromatography, Journal of Chromatography A, 2000, 871:427-438
    [62] Nevada JJB, Flores JR, Peiialvo GC, Simultaneous spectrophotometric determination of ethinylestradiol and levonorgestrel by partial least squares and principal component regression multivariate calibration, Analytica Chimica Acta, 1997, 340:257-265
    [63] Capitán-Vallvey LF, Fema'ndez MD, Orbe I, Avidad R, Simultaneous determination of the colorants tartrazine, ponceau 4R and sunset yellow FCF in foodstuffs by solid phase spectrophotometry using partial least squares multivariate calibration, Talanta, 1998, 47:861-868
    [64] Rodriguez AMG, Torres AG, Pavon JMC, Ojeda CB, Simultaneous determination of iron, cobalt, nickel and copper by UV-visible spectrophotometry with multivariate calibration, Talanta, 1998, 47:463-470
    [65] Goicoechea HC, Olivieri AC, PenAa AM, Determination of theophylline in blood serum by UV spectrophotometry and partial least-squares (PLS-1) calibration, Analytica Chimica Acta, 1999, 384:95-103
    [66] Gallego JML, Arroyo JP, Spectrophotometric determination of hydrocortisone, nystatin and oxytetracycline in synthetic and pharmaceutical preparations based on various univariate and multivariate methods, Analytica Chimica Acta, 2002, 460: 85-97
    [67] Palabiyik IM, Dinc E, Onur F, Simultaneous spectrophotometric determination of pseudoephedrine hydrochloride and ibuprofen in a pharmaceutical, Journal of harmaceutical and Biomedical Analysis, 2004, 34:473-483
    [68] Ragno G, Ioele G, Risoli A, Multivariate calibration techniques applied to the spectrophotometric analysis of one-to-four component systems, Analytica Chimica Acta, 2004, 512:173-180
    [69] Espinosa-Mansilla A, Pena AM, Canada-Canada F, Gómez DG, Determinations of Xuoroquinolones and nonsteroidal anti-inXammatory drags in urine by extractive spectrophotometry and photoinduced spectroXuorimetry using multivariate calibration, Analytical Biochemistry, 2005, 347:275-286
    [70] Nascimento P C, Jost C L, Guterres M V, Fabro L D D, Carvalho L M, Bohrer D, Simultaneous determination of Al(Ⅲ) and Fe(Ⅲ) in post-hemodialysis fluids by spectrophotometry and multivariate calibration, Talanta, 2006, 70:540-545
    [71] Sahin S, Demir C, Güper S, Simultaneous UVevis spectrophotometric determination of disperse dyes in textile wastewater by partial least squares and principal component regression, Dyes and Pigments, 2006, doi:10.1016/j.dyepig.2006.01.045
    [72] El-Gindy A, Emara S, Mostafa A, Application and validation of chemometrics-assisted spectrophotometry and liquid chromatography for the simultaneous determination of six-component pharmaceuticals, Journal of Pharmaceutical and Biomedical Analysis, 2006, 41:421-430
    [73] Frenich A G, Galera M M, Vidal J L M, García MDG, Partial least-squares and principal component regression of multi-analyte high-performance liquid chromatography with diode-array detection, Journal of ChromatographyA, 1996, 727:27-38
    [74] Frenich A G, Martfnez vidal J L, Parrilla P, Galera M M, Resolution of folpet, procymidone and triazophos in high - performance liquid chromatography-diode array detection by using partial least squares calibration to cross-sections of spectrochromatograms, Journal of Chromatography A, 1997, 778:183-192
    [75] Togari N, Kobayashi A, Aishima T, Relating sensory properties of tea aroma to gas chromatographic data by chemometric calibration methods, Food Research international, 1995, 28 (5): 485-493
    [76] El-Gindy A, HPLC and chemometric assisted spectrophotometric methods for simultaneous determination of diprophylline, phenobarbitone and papaverine hydrochloride, Ⅱ Farmaco, 2005, 60:745-753
    [77] Saurina J, Hemández-Cassou S, Fàbregas E, Alegret S, Cyclic voltammetric simultaneous determination of oxidizable amino acids using multivariate calibration methods. Analytica Chimica Acta, 2000, 405:153-160
    [78] Ni Y N, Wang Y R, Kokot S, Voltammetric determination of butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate and tert-butylhydroquinone by use of chemometric approaches, Analytica Chimica Acta, 2000, 412:185-193
    [79] Bessant C, Saini S, A chemometric analysis of dual pulse staircase voltammogramsobtained in mixtures of ethanol, fructose and glucose, Journal of Electroanalytical Chemistry, 2000, 489:76-83
    [80] Schreyer S K, Mikkelsen S R, Chemometric analysis of square wave voltammograms for classification and quantitation of untreated beverage samples, Sensors and Actuators B, 2000, 71:147-153
    [81] Ni Y N, Wang Y R, Kokot S, Simultaneous determination of three fluoroquinolones by linear sweep stripping voltammetry with the aid of chemometrics, Talanta, 2006, 69: 216-225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700