用户名: 密码: 验证码:
化学小分子和纳米金对自吞噬影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自噬是相对保守机制,它通过包裹细胞内受损的细胞器以及错误折叠的蛋白质将其运输到溶酶体中降解以维持细胞的动态平衡。自噬在癌症和神经退行性疾病中有着非常重要的作用。3-MA是应用最为广泛的自吞噬体的抑制剂。但其溶解度非常差,100%抑制自吞噬体的浓度为10mM。3-MA(3-methyladenine)为6-氨基-3-甲基嘌呤,它是由嘧啶和咪唑环并合而成的并环体系。而3-MA N3和C6位是活性官能团,从氨基出发改造最为容易,可以形成多种极性的基团。我们通过在3-MA的N3和C6加入不同的官能团合成出36种3-MA的衍生物。经过高通量筛选发现有3种化学小分子能够抑制自噬。应用免疫荧光进一步验证了20,24和34在浓度为1mM对自吞噬体有非常好的抑制效果,特别是34100%抑制自噬的最低浓度为50μM。并确定这三种化学小分子抑制自吞噬是通过抑制Vps34酶的活性实现的。我们研究表明对3-MA改造是开发自吞噬体抑制剂的最有效的方式,并为临床研究奠定基础。最近研究表明纳米颗粒诱导自吞噬。金颗粒是一种纳米材料,在生物学和医学方面应用的非常广泛。我们通过实验发现,金颗粒通过内吞途径进入细胞,且直径越大进入细胞越多,最终滞留在溶酶体中,并通过改变溶酶体pH值破坏了溶酶体使自吞噬的不能被溶酶体降解,导致细胞中自吞噬体增多。我们的研究为纳米材料在生物学及医学中的应用有着非常重要的指导作用。
Autophagy is a conserved degradation process misfolded or aggregated proteinsand damaged organelles are engulfed by special double membrane vesicles termedautophagosome and subsequencetly delivered to lysosome for degradation and playsimportant pathophysiological roles.3-methyladenine (3-MA) is widely used inautophagic research although a few inhibitors of autophagy are in market. Theefficiency is very low when the concentration is lower than10mM and solubility ispoor in water, which impedes the progress of being widely used in Clinic research.3-MA is6-amino-3-methyl purine, it is blended by the pyrimidine and imidazole ring,pyrimidine and imidazole form the ring system.It can be easily modified at C6and N3poisition. Here we designed and synthesized36derivatives of3-MA. After screeningwith high-throughput system, we identified3small molecues had the inhibitory abilityand further confirmed it by immunoflurorescence staining. We also identified that1mM20,24and34inhibited autophagy, especially34, completely inhibited autophagy in theconcentration of50μM. These new inhibitors of autophagy provide useful tools tostudy the cellular role of the autophagy and may lead to the development of therapeuticagents for the treatment of various diseases.It has been reported that nanoparticles caninduce autophagy. Gold nanoparticle is one of being widely used in biomaterial andbiotechnology. In this paper we found that nanogold entered into NRK cells by thesize-dependent manner. Nano gold caused lysosome alkalinization and blocked thedegradation of autophagosome. So it should be cautious to use nanoparticles fordiseases treatment.
引文
[1] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell,2008,132(1):27-42.
    [2] Kunz J B, Schwarz H, Mayer A. Determination of four sequential stages duringmicroautophagy in vitro. Journal of Biological Chemistry,2004,279(11):9987-9996.
    [3] Klionsky D J. The molecular machinery of autophagy: unanswered questions. Journal ofCell Science,2005,118(1):7-18.
    [4] Yorimitsu T, Klionsky D J. Autophagy: molecular machinery for self-eating. Cell Deathand Differentiation,2005,12:1542-1552.
    [5] Majeski A E, Dice J F. Mechanisms of chaperone-mediated autophagy. InternationalJournal of Biochemistry&Cell Biology,2004,36(12):2435-2444.
    [6] Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellularself-digestion. Nature,2008,451(7182):1069-1075.
    [7] Longatti A, Tooze S A. Vesicular trafficking and autophagosome formation. Cell Deathand Differentiation,2009,16(7):956-965.
    [8] Ishihara N, Hamasaki M, Yokota S, et al. Autophagosome requires specific early Secproteins for its formation and NSF/SNARE for vacuolar fusion. Molecular Biology ofthe Cell,2001,12(11):3690-3702.
    [9] Hayashi-Nishino M, Fujita N, Noda T, et al. A subdomain of the endoplasmic reticulumforms a cradle for autophagosome formation. Nature Cell Biology,2009,11(12):1433-1437.
    [10] Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required forautophagosome formation, mediates membrane tethering and hemifusion. Cell,2007,130(1):165-178.
    [11] Budnik A, Stephens D J. ER exit sites--localization and control of COPII vesicleformation. FEBS Letters,2009,583(23):3796-3803.
    [12] Ravikumar B, Imarisio S, Sarkar S, et al. Rab5modulates aggregation and toxicity ofmutant huntingtin through macroautophagy in cell and fly models of Huntington disease.Journal of Cell Science,2008,121(10):1649-1660.
    [13] Subramani S, Farre J C. A ubiquitin-like protein involved in membrane fusion. Cell,2007,130(1):18-20.
    [14] Munafo D B, Colombo M I. Induction of autophagy causes dramatic changes in thesubcellular distribution of GFP-Rab24. Traffic,2002,3(7):472-482.
    [15] Itoh T, Fujita N, Kanno E, et al. Golgi-resident small GTPase Rab33B interacts withAtg16L and modulates autophagosome formation. Molecular Biology of the Cell,2008,19(7):2916-2925.
    [16] Ishihara N, Hamasaki M, Yokota S, et al. Autophagosome requires specific early Secproteins for its formation and NSF/SNARE for vacuolar fusion. Molecular Biology ofthe Cell,2001,12(11):3690-3702.
    [17] Zoppino F C M, Militello R D, Slavin I, et al. Autophagosome Formation Depends onthe Small GTPase Rab1and Functional ER Exit Sites. Traffic,2010,11(9):1246-1261.
    [18] Lynch-Day M A, Bhandari D, Menon S, et al. Trs85directs a Ypt1GEF, TRAPPIII, tothe phagophore to promote autophagy. Proceedings of the National Academy ofSciences of the United States of America,2010,107(17):7811-7816.
    [19] Ravikumar B, Moreau K, Jahreiss L, et al. Plasma membrane contributes to theformation of pre-autophagosomal structures. Nature Cell Biology,2010,12(10):1021-1021.
    [20] Moreau K, Ravikumar B, Renna M, et al. Autophagosome Precursor MaturationRequires Homotypic Fusion. Cell,2011,146(2):303-317.
    [21] Nair U, Jotwani A, Geng J F, et al. SNARE Proteins Are Required for Macroautophagy.Cell,2011,146(2):290-302.
    [22] Weidberg H, Shvets E, Elazar Z. Biogenesis and Cargo Selectivity of Autophagosomes.Annual Review of Biochemistry,2011,80:125-156.
    [23] Laplante M, Sabatini D M. mTOR signaling at a glance. Journal of Cell Science,2009,122(20):3589-3594.
    [24] Codogno P, Meijer A J. Autophagy and signaling: their role in cell survival and celldeath. Cell Death and Differentiation,2005,12:1509-1518.
    [25] Hara K, Maruki Y, Long X M, et al. Raptor, a binding partner of target of rapamycin(TOR), mediates TOR action. Cell,2002,110(2):177-189.
    [26] Kim E, Goraksha-Hicks P, Li L, et al. Regulation of TORC1by Rag GTPases in nutrientresponse. Nature Cell Biology,2008,10(8):935-945.
    [27] Peterson T R, Laplante M, Thoreen C C, et al. DEPTOR Is an mTOR InhibitorFrequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival.Cell,2009,137(5):873-886.
    [28] Sancak Y, Thoreen C C, Peterson T R, et al. PRAS40is an insulin-regulated inhibitor ofthe mTORC1protein kinase. Molecular Cell,2007,25(6):903-915.
    [29] Vander Haar E, Lee S, Bandhakavi S, et al. Insulin signalling to mTOR mediated by theAkt/PKB substrate PRAS40. Nature Cell Biology,2007,9(3):316-323.
    [30] Wang L F, Harris T E, Roth R A, et al. PRAS40regulates mTORC1kinase activity byfunctioning as a direct inhibitor of substrate binding. Journal of Biological Chemistry,2007,282(27):20036-20044.
    [31] Richter J D, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitoryproteins. Nature,2005,433(7025):477-480.
    [32] Mayer C, Zhao J, Yuan X, et al. mTOR-dependent activation of the transcription factorTIF-IA links rRNA synthesis to nutrient availability. Genes&Development,2004,18(4):423-434.
    [33] Schieke S M, Phillips D, McCoy J P, Jr., et al. The mammalian target of rapamycin(mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity.Journal of Biological Chemistry,2006,281(37):27643-27652.
    [34] Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function ofhematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygenspecies. Journal of Experimental Medicine,2008,205(10):2397-2408.
    [35] Cunningham J T, Rodgers J T, Arlow D H, et al. mTOR controls mitochondrialoxidative function through a YY1-PGC-1alpha transcriptional complex. Nature,2007,450(7170):736-740.
    [36] Bentzinger C F, Romanino K, Cloetta D, et al. Skeletal Muscle-Specific Ablation ofraptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy.Cell Metabolism,2008,8(5):411-424.
    [37] Long X, Lin Y, Ortiz-Vega S, et al. Rheb binds and regulates the mTOR kinase. CurrentBiology,2005,15(8):702-713.
    [38] Reiling J H, Hafen E. The hypoxia-induced paralogs scylla and charybdis inhibit growthby down-regulating S6K activity upstream of TSC in Drosophila. Genes&Development,2004,18(23):2879-2892.
    [39] Brugarolas J, Lei K, Hurley R L, et al. Regulation of mTOR function in response tohypoxia by REDD1and the TSC1/TSC2tumor suppressor complex. Genes&Development,2004,18(23):2893-2904.
    [40] Sofer A, Lei K, Johannessen C M, et al. Regulation of mTOR and cell growth inresponse to energy stress by REDD1. Molecular and Cellular Biology,2005,25(14):5834-5845.
    [41] Inoki K, Zhu T Q, Guan K L. TSC2mediates cellular energy response to control cellgrowth and survival. Cell,2003,115(5):577-590.
    [42] Chiang G G, Abraham R T. Phosphorylation of mammalian target of rapamycin (mTOR)at ser-2448is mediated by p70S6kinase. Journal of Biological Chemistry,2005,280(27):25485-25490.
    [43] Kim D H, Sarbassov D D, Ali S M, et al. MTOR interacts with Raptor to form anutrient-sensitive complex that signals to the cell growth machinery. Cell,2002,110(2):163-175.
    [44] Feng Z, Zhang H, Levine A J, et al. The coordinate regulation of the p53and mTORpathways in cells. Proceedings of the National Academy of Sciences of the UnitedStates of America,2005,102(23):8204-8209.
    [45] Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53.Molecular Cell,2001,8(2):317-325.
    [46] Lee D F, Kuo H P, Chen C T, et al. IKK beta suppression of TSC1function links themTOR pathway with insulin resistance. International Journal of Molecular Medicine,2008,22(5):633-638.
    [47] Foster D A. Regulation of mTOR by phosphatidic acid. Cancer Research,2007,67(1):1-4.
    [48] Toschi A, Lee E, Xu L M, et al. Regulation of mTORC1and mTORC2ComplexAssembly by Phosphatidic Acid: Competition with Rapamycin. Molecular and CellularBiology,2009,29(6):1411-1420.
    [49] Mizushima N. The role of the Atg1/ULK1complex in autophagy regulation. CurrentOpinion in Cell Biology,2010,22(2):132-139.
    [50] Kamada Y, Yoshino K, Kondo C, et al. Tor directly controls the Atg1kinase complex toregulate autophagy. Molecular and Cellular Biology,2010,30(4):1049-1058.
    [51] Yeh Y Y, Wrasman K, Herman P K. Autophosphorylation Within the Atg1ActivationLoop Is Required for Both Kinase Activity and the Induction of Autophagy inSaccharomyces cerevisiae. Genetics,2010,185(3):871-882.
    [52] Chan E Y W, Longatti A, McKnight N C, et al. Kinase-Inactivated ULK Proteins InhibitAutophagy via Their Conserved C-Terminal Domains Using an Atg13-IndependentMechanism. Molecular and Cellular Biology,2009,29(1):157-171.
    [53] Jung C H, Jun C B, Ro S H, et al. ULK-Atg13-FIP200Complexes Mediate mTORSignaling to the Autophagy Machinery. Molecular Biology of the Cell,2009,20(7):1992-2003.
    [54] Ganley I G, Lam D H, Wang J R, et al. ULK1center dot ATG13center dot FIP200Complex Mediates mTOR Signaling and Is Essential for Autophagy. Journal ofBiological Chemistry,2009,284(18):12297-12305.
    [55] Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required forautophagosome formation in mammalian cells. Journal of Cell Biology,2008,181(3):497-510.
    [56] Chan E Y. mTORC1Phosphorylates the ULK1-mAtg13-FIP200Autophagy RegulatoryComplex. Science Signaling,2009,2(84):284
    [57] Kihara A, Noda T, Ishihara N, et al. Two distinct Vps34phosphatidylinositol3-kinasecomplexes function in autophagy and carboxypeptidase Y sorting in Saccharomycescerevisiae. Journal of Cell Biology,2001,152(3):519-530.
    [58] Burman C, Ktistakis N T. Regulation of autophagy by phosphatidylinositol3-phosphate.FEBS Letters,2010,584(7):1302-1312.
    [59] Axe E L, Walker S A, Manifava M, et al. Autophagosome formation from membranecompartments enriched in phosphatidylinositol3-phosphate and dynamically connectedto the endoplasmic reticulum. Journal of Cell Biology,2008,182(4):685-701.
    [60] Krick R, Tolstrup J, Appelles A, et al. The relevance of thephosphatidylinositolphosphat-binding motif FRRGT of Atg18and Atg21for the Cvtpathway and autophagy. FEBS Letters,2006,580(19):4632-4638.
    [61] Krick R, Henke S, Tolstrup J, et al. Dissecting the localization and function of Atg18,Atg21and Ygr223c. Autophagy,2008,4(7):896-910.
    [62] Simonsen A, Birkeland H C, Gillooly D J, et al. Alfy, a novel FYVE-domain-containingprotein associated with protein granules and autophagic membranes. Journal of CellScience,2004,117(18):4239-4251.
    [63] Matsunaga K, Morita E, Saitoh T, et al. Autophagy requires endoplasmic reticulumtargeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology,2010,190(4):511-521.
    [64] Miller S, Tavshanjian B, Oleksy A, et al. Shaping development of autophagy inhibitorswith the structure of the lipid kinase Vps34. Science,2010,327(5973):1638-1642.
    [65] Liang X H, Kleeman L K, Jiang H H, et al. Protection against fatal Sindbis virusencephalitis by beclin, a novel Bcl-2-interacting protein. Journal of Virology,1998,72(11):8586-8596.
    [66] Wei Y, Pattingre S, Sinha S, et al. JNK1-mediated phosphorylation of Bcl-2regulatesstarvation-induced autophagy. Molecular Cell,2008,30(6):678-688.
    [67] Maiuri M C, Le Toumelin G, Criollo A, et al. Functional and physical interactionbetween Bcl-XL and a BH3-like domain in Beclin-1. EMBO Journal,2007,26(10):2527-2539.
    [68] Li B, Hu Q, Wang H, et al. Omi/HtrA2is a positive regulator of autophagy thatfacilitates the degradation of mutant proteins involved in neurodegenerative diseases.Cell Death and Differentiation,2010,17(11):1773-1784.
    [69] Fimia G M, Stoykova A, Romagnoli A, et al. Ambra1regulates autophagy anddevelopment of the nervous system. Nature,2007,447(7148):1121-1125.
    [70] Takahashi Y, Coppola D, Matsushita N, et al. Bif-1interacts with Beclin1throughUVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology,2007,9(10):1142-1151.
    [71] Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novelBeclin1-binding protein UVRAG. Nature Cell Biology,2006,8(7):688-699.
    [72] Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin1-binding proteins, Atg14L andRubicon, reciprocally regulate autophagy at different stages. Nature Cell Biology,2009,11(4):385-396.
    [73] Taguchi-Atarashi N, Hamasaki M, Matsunaga K, et al. Modulation of local PtdIns3Plevels by the PI phosphatase MTMR3regulates constitutive autophagy. Traffic,2010,11(4):468-478.
    [74] Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. NatureReviews Molecular Cell Biology,2001,2(3):211-216.
    [75] Suzuki N N, Yoshimoto K, Fujioka Y, et al. The crystal structure of plant ATG12and itsbiological implication in autophagy. Autophagy,2005,1(2):119-126.
    [76] Mizushima N, Sugita H, Yoshimori T, et al. A new protein conjugation system in human.The counterpart of the yeast Apg12p conjugation system essential for autophagy.Journal of Biological Chemistry,1998,273(51):33889-33892.
    [77] Tanida I, Mizushima N, Kiyooka M, et al. Apg7p/Cvt2p: A novel protein-activatingenzyme essential for autophagy. Molecular Biology of the Cell,1999,10(5):1367-1379.
    [78] Shintani T, Mizushima N, Ogawa Y, et al. Apg10p, a novel protein-conjugating enzymeessential for autophagy in yeast. EMBO Journal,1999,18(19):5234-5241.
    [79] Kuma A, Mizushima N, Ishihara N, et al. Formation of the approximately350-kDaApg12-Apg5.Apg16multimeric complex, mediated by Apg16oligomerization, isessential for autophagy in yeast. Journal of Biological Chemistry,2002,277(21):18619-18625.
    [80] Fujita N, Itoh T, Omori H, et al. The Atg16L Complex Specifies the Site of LC3Lipidation for Membrane Biogenesis in Autophagy. Molecular Biology of the Cell,2008,19(5):2092-2100.
    [81] Fader C M, Colombo M I. Autophagy and multivesicular bodies: two closely relatedpartners. Cell Death and Differentiation,2009,16(1):70-78.
    [82] Ichimura Y, Imamura Y, Emoto K, et al. In vivo and in vitro reconstitution of Atg8conjugation essential for autophagy. Journal of Biological Chemistry,2004,279(39):40584-40592.
    [83] Kirisako T, Ichimura Y, Okada H, et al. The reversible modification regulates themembrane-binding state of Apg8/Aut7essential for autophagy and the cytoplasm tovacuole targeting pathway. Journal of Cell Biology,2000,151(2):263-276.
    [84] Yang Z, Klionsky D J. An overview of the molecular mechanism of autophagy. CurrentTopics in Microbiology and Immunology,2009,335:1-32.
    [85] Weidberg H, Shvets E, Shpilka T, et al. LC3and GATE-16/GABARAP subfamilies areboth essential yet act differently in autophagosome biogenesis. EMBO Journal,2010,29(11):1792-1802.
    [86] Hanada T, Noda N N, Satomi Y, et al. The Atg12-Atg5conjugate has a novel E3-likeactivity for protein lipidation in autophagy. Journal of Biological Chemistry,2007,282(52):37298-37302.
    [87] Noda T, Kim J, Huang W-P, et al. Apg9p/Cvt7p Is an Integral Membrane ProteinRequired for Transport Vesicle Formation in the Cvt and Autophagy Pathways. TheJournal of Cell Biology,2000,148(3):465-480.
    [88] Young A R, Chan E Y, Hu X W, et al. Starvation and ULK1-dependent cycling ofmammalian Atg9between the TGN and endosomes. Journal of Cell Science,2006,119(18):3888-3900.
    [89] Reggiori F, Tucker K A, Stromhaug P E, et al. The Atg1-Atg13complex regulates Atg9and Atg23retrieval transport from the pre-autophagosomal structure. DevelopmentalCell,2004,6(1):79-90.
    [90] Webber J L, Young A R, Tooze S A. Atg9trafficking in Mammalian cells. Autophagy,2007,3(1):54-56.
    [91] Arighi C N, Hartnell L M, Aguilar R C, et al. Role of the mammalian retromer in sortingof the cation-independent mannose6-phosphate receptor. Journal of Cell Biology,2004,165(1):123-133.
    [92] Diaz E, Pfeffer S R. TIP47: a cargo selection device for mannose6-phosphate receptortrafficking. Cell,1998,93(3):433-443.
    [93] Rutherford A C, Traer C, Wassmer T, et al. The mammalian phosphatidylinositol3-phosphate5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport.Journal of Cell Science,2006,119(19):3944-3957.
    [94] Seaman M N. Cargo-selective endosomal sorting for retrieval to the Golgi requiresretromer. Journal of Cell Biology,2004,165(1):111-122.
    [95] Reggiori F, Wang C W, Stromhaug P E, et al. Vps51is part of the yeast Vps fifty-threetethering complex essential for retrograde traffic from the early endosome and Cvtvesicle completion. Journal of Biological Chemistry,2003,278(7):5009-5020.
    [96] Siniossoglou S, Pelham H R. Vps51p links the VFT complex to the SNARE Tlg1p.Journal of Biological Chemistry,2002,277(50):48318-48324.
    [97] Zohn I E, Li Y, Skolnik E Y, et al. p38and a p38-interacting protein are critical fordownregulation of E-cadherin during mouse gastrulation. Cell,2006,125(5):957-969.
    [98] Webber J L, Tooze S A. Coordinated regulation of autophagy by p38alpha MAPKthrough mAtg9and p38IP. EMBO Journal,2010,29(1):27-40.
    [99] Nagy Z, Riss A, Romier C, et al. The human SPT20-containing SAGA complex plays adirect role in the regulation of endoplasmic reticulum stress-induced genes. Molecularand Cellular Biology,2009,29(6):1649-1660.
    [100] Wang Y L, Faiola F, Xu M, et al. Human ATAC Is a GCN5/PCAF-containing acetylasecomplex with a novel NC2-like histone fold module that interacts with theTATA-binding protein. Journal of Biological Chemistry,2008,283(49):33808-33815.
    [101] Prick T, Thumm M, Kohrer K, et al. In yeast, loss of Hog1leads to osmosensitivity ofautophagy. Biochemical Journal,2006,394(1):153-161.
    [102] Lum J J, Bauer D E, Kong M, et al. Growth factor regulation of autophagy and cellsurvival in the absence of apoptosis. Cell,2005,120(2):237-248.
    [103] Onodera J, Ohsumi Y. Ald6p is a preferred target for autophagy in yeast, Saccharomycescerevisiae. Journal of Biological Chemistry,2004,279(16):16071-16076.
    [104] Pattingre S, Tassa A, Qu X, et al. Bcl-2antiapoptotic proteins inhibit Beclin1-dependent autophagy. Cell,2005,122(6):927-939.
    [105] Kang C, You Y J, Avery L. Dual roles of autophagy in the survival of Caenorhabditiselegans during starvation. Genes&Development,2007,21(17):2161-2171.
    [106] Espert L, Denizot M, Grimaldi M, et al. Autophagy is involved in T cell death afterbinding of HIV-1envelope proteins to CXCR4. Journal of Clinical Investigation,2006,116(8):2161-2172.
    [107] Scott R C, Juhasz G, Neufeld T P. Direct induction of autophagy by Atg1inhibits cellgrowth and induces apoptotic cell death. Current Biology,2007,17(1):1-11.
    [108] Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin1program of autophagic celldeath by caspase-8. Science,2004,304(5676):1500-1502.
    [109] Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellularself-digestion. Nature,2008,451(7182):1069-1075.
    [110] Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption ofthe beclin1autophagy gene. Journal of Clinical Investigation,2003,112(12):1809-1820.
    [111] Yue Z, Jin S, Yang C, et al. Beclin1, an autophagy gene essential for early embryonicdevelopment, is a haploinsufficient tumor suppressor. Proceedings of the NationalAcademy of Sciences of the United States of America,2003,100(25):15077-15082.
    [112] Marino G, Salvador-Montoliu N, Fueyo A, et al. Tissue-specific autophagy alterationsand increased tumorigenesis in mice deficient in Atg4C/autophagin-3. Journal ofBiological Chemistry,2007,282(25):18573-18583.
    [113] Botti J, Djavaheri-Mergny M, Pilatte Y, et al. Autophagy signaling and the cogwheels ofcancer. Autophagy,2006,2(2):67-73.
    [114] Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer developmentand response to therapy. Nature Reviews Cancer,2005,5(9):726-734.
    [115] Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. NatureReviews Cancer,2007,7(12):961-967.
    [116] Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cellscauses neurodegenerative disease in mice. Nature,2006,441(7095):885-889.
    [117] Nixon R A, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimerdisease: an immuno-electron microscopy study. Journal of Neuropathology&Experimental Neurology,2005,64(2):113-122.
    [118] Rubinsztein D C, DiFiglia M, Heintz N, et al. Autophagy and its possible roles innervous system diseases, damage and repair. Autophagy,2005,1(1):11-22.
    [119] Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1forms protein aggregates degradedby autophagy and has a protective effect on huntingtin-induced cell death. Journal ofCell Biology,2005,171(4):603-614.
    [120] Pankiv S, Clausen T H, Lamark T, et al. p62/SQSTM1binds directly to Atg8/LC3tofacilitate degradation of ubiquitinated protein aggregates by autophagy. Journal ofBiological Chemistry,2007,282(33):24131-24145.
    [121] Arrasate M, Mitra S, Schweitzer E S, et al. Inclusion body formation reduces levels ofmutant huntingtin and the risk of neuronal death. Nature,2004,431(7010):805-810.
    [122] Tanaka M, Kim Y M, Lee G, et al. Aggresomes formed by alpha-synuclein andsynphilin-1are cytoprotective. Journal of Biological Chemistry,2004,279(6):4625-4631.
    [123] Martinez-Vicente M, Cuervo A M. Autophagy and neurodegeneration: when thecleaning crew goes on strike. Lancet Neurology,2007,6(4):352-361.
    [124] Yu W H, Cuervo A M, Kumar A, et al. Macroautophagy--a novel Beta-amyloidpeptide-generating pathway activated in Alzheimer's disease. Journal of Cell Biology,2005,171(1):87-98.
    [125] Levine B, Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity.Nature Reviews Immunology,2007,7(10):767-777.
    [126] Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invadinggroup A Streptococcus. Science,2004,306(5698):1037-1040.
    [127] Orvedahl A, Alexander D, Talloczy Z, et al. HSV-1ICP34.5confers neurovirulence bytargeting the Beclin1autophagy protein. Cell Host&Microbe,2007,1(1):23-35.
    [128] Levine B. Cell biology: autophagy and cancer. Nature,2007,446(7137):745-747.
    [129] Massey D C, Parkes M. Genome-wide association scanning highlights two autophagygenes, ATG16L1and IRGM, as being significantly associated with Crohn's disease.Autophagy,2007,3(6):649-651.
    [130] Kim D H, Sarbassov D D, Ali S M, et al. mTOR interacts with raptor to form anutrient-sensitive complex that signals to the cell growth machinery. Cell,2002,110(2):163-175.
    [131] Klionsky D J, Emr S D. Autophagy as a Regulated Pathway of Cellular Degradation.Science,2000,290(5497):1717-1721.
    [132] Seglen P O, Gordon P B.3-Methyladenine: specific inhibitor of autophagic/lysosomalprotein degradation in isolated rat hepatocytes. Proceedings of the National Academy ofSciences of the United States of America,1982,79(6):1889-1892.
    [133] Vlahos C J, Matter W F, Hui K Y, et al. A specific inhibitor of phosphatidylinositol3-kinase,2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). Journal ofBiological Chemistry,1994,269(7):5241-5248.
    [134] Arcaro A, Wymann M P. Wortmannin is a potent phosphatidylinositol3-kinase inhibitor:the role of phosphatidylinositol3,4,5-trisphosphate in neutrophil responses.Biochemical Journal,1993,296(2):297-301.
    [135] Raynaud F I, Eccles S, Clarke P A, et al. Pharmacologic characterization of a potentinhibitor of class I phosphatidylinositide3-kinases. Cancer Research,2007,67(12):5840-5850.
    [136] Fleming A, Noda T, Yoshimori T, et al. Chemical modulators of autophagy as biologicalprobes and potential therapeutics. Nature Chemical Biology,2011,7(1):9-17.
    [137] Williams R S, Cheng L, Mudge A W, et al. A common mechanism of action for threemood-stabilizing drugs. Nature,2002,417(6886):292-295.
    [138] Sarkar S, Floto R A, Berger Z, et al. Lithium induces autophagy by inhibiting inositolmonophosphatase. Journal of Cell Biology,2005,170(7):1101-1111.
    [139] Shaltiel G, Shamir A, Shapiro J, et al. Valproate decreases inositol biosynthesis.Biological Psychiatry,2004,56(11):868-874.
    [140] Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington's disease in anmTOR-independent autophagy pathway. Nature Chemical Biology,2008,4(5):295-305.
    [141] Xia H G, Zhang L, Chen G, et al. Control of basal autophagy by calpain1mediatedcleavage of ATG5. Autophagy,2010,6(1):61-66.
    [142] Crowe J. Trehalose Csermely P, Vígh L. As a “Chemical Chaperone”Molecular Aspectsof the Stress Response: Chaperones, Membranes and Networks//Advances inExperimental Medicine and Biology: Springer New York,2007:143-158.
    [143] Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell,2010,140(3):313-326.
    [144] Tanida I, Minematsu-Ikeguchi N, Ueno T, et al. Lysosomal Turnover, but Not a CellularLevel, of Endogenous LC3is a Marker for Autophagy. Autophagy,2005,1(2):84-91.
    [145] Shvets E, Fass E, Elazar Z. Utilizing flow cytometry to monitor autophagy in livingmammalian cells. Autophagy,2008,4(5):621-628.
    [146] Bj rk y G, Lamark T, Brech A, et al. p62/SQSTM1forms protein aggregates degradedby autophagy and has a protective effect on huntingtin-induced cell death. The Journalof Cell Biology,2005,171(4):603-614.
    [147] Mizushima N, Yoshimori T. How to Interpret LC3Immunoblotting. Autophagy,2007,3(6):542-545.
    [148] He C, Klionsky D J. Regulation mechanisms and signaling pathways of autophagy.Annual Review of Genetics,2009,43:67-93.
    [149] Katayama H, Yamamoto A, Mizushima N, et al. GFP-like proteins stably accumulate inlysosomes. Cell Structure and Function,2008,33(1):1-12.
    [150] Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation processby a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy,2007,3(5):452-460.
    [151] Yeh Y C, Creran B, Rotello V M. Gold nanoparticles: preparation, properties, andapplications in bionanotechnology. Nanoscale,2012,4(6):1871-1880.
    [152] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering propertiesof gold nanoparticles of different size, shape, and composition: applications inbiological imaging and biomedicine. Journal of Physical Chemistry B,2006,110(14):7238-7248.
    [153] Su K H, Wei Q H, Zhang X, et al. Interparticle Coupling Effects on PlasmonResonances of Nanogold Particles. Nano Letters,2003,3(8):1087-1090.
    [154] Pons T, Medintz I L, Sapsford K E, et al. On the quenching of semiconductor quantumdot photoluminescence by proximal gold nanoparticles. Nano Letters,2007,7(10):3157-3164.
    [155] Phillips R L, Miranda O R, You C-C, et al. Rapid and Efficient Identification of BacteriaUsing Gold-Nanoparticle–Poly(para-phenyleneethynylene) Constructs. AngewandteChemie International Edition,2008,47(14):2590-2594.
    [156] Kennedy L C, Bear A S, Young J K, et al. T cells enhance gold nanoparticle delivery totumors in vivo. Nanoscale Res Lett,2011,6(1):283.
    [157] Li X, Zhou H, Yang L, et al. Enhancement of cell recognition in vitro by dual-ligandcancer targeting gold nanoparticles. Biomaterials,2011,32(10):2540-2545.
    [158] Giljohann D A, Seferos D S, Prigodich A E, et al. Gene regulation with polyvalentsiRNA-nanoparticle conjugates. Journal of the American Chemical Society,2009,131(6):2072-2073.
    [159] Zavaleta C L, Smith B R, Walton I, et al. Multiplexed imaging of surface enhancedRaman scattering nanotags in living mice using noninvasive Raman spectroscopy.Proceedings of the National Academy of Sciences,2009,106(32):13511-13516.
    [160] Semmler-Behnke M, Kreyling W G, Lipka J, et al. Biodistribution of1.4-and18-nmGold Particles in Rats. Small,2008,4(12):2108-2111.
    [161] Terentyuk G S, Maslyakova G N, Suleymanova L V, et al. Circulation and distributionof gold nanoparticles and induced alterations of tissue morphology at intravenousparticle delivery. Journal of Biophotonics,2009,2(5):292-302.
    [162] De Jong W H, Hagens W I, Krystek P, et al. Particle size-dependent organ distributionof gold nanoparticles after intravenous administration. Biomaterials,2008,29(12):1912-1919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700