用户名: 密码: 验证码:
1,3-D防治蔬菜根结线虫病及其对土壤细菌多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是重要的设施蔬菜生产国,因长期连作种植导致以根结线虫为代表的土传病虫害发生严重,制约了设施蔬菜的发展。实践证明,使用甲基溴熏蒸处理土壤是防治土传病虫害最有效的方法。但因其破坏臭氧层,亟须寻找新的替代药剂。近年来,国内外都在大力研究甲基溴的替代品,并发现1,3-D(1,3-二氯丙烯)不仅具有良好的杀线虫活力,而且对某些土传病原菌和杂草也具有一定的防效,同时对蔬菜还有一定的增产作用,是一种很有开发潜力的甲基溴替代品。目前1,3-D已在国外推广应用,但该化合物作为农药在我国尚未获得登记。针对我国农业的特点、经济水平、农药的使用和管理等要求,1,3-D可否作为甲基溴替代品在国内获得登记并应用,仍需进行系统的研究。本研究拟通过室内毒力测定、温室盆栽试验和大田验证试验,评价1,3-D对南方根结线虫、土传病原菌和杂草的生物活性,明确其在我国保护地蔬菜上实际应用的效果和价值。同时,通过传统分析方法研究1,3-D对可培养微生物数量及土壤酶活的影响,结合分子生物学技术(T-RFLP)和最新的高通量测序技术(Roche454GS FLX+)探讨1,3-D对细菌微生物多样性的影响,为支撑其在我国作为甲基溴替代药剂获得农药登记,并为其在设施蔬菜上的安全合理应用提供科学依据,也为克服土壤连作障碍和保障设施蔬菜可持续生产奠定理论基础。主要研究结果如下:
     1.采用触杀法测定了1,3-D对南方根结线虫的毒力,表明1,3-D对南方根结线虫的LC50和LC90分别为1.20和3.74mg/L。采用美国农业部杂草种子处理方法研究了1,3-D对多种杂草种子的剂量-响应关系,发现杂草种子对1,3-D敏感性由大到小顺序为:马唐>牛筋>稗草>反枝苋,其LC90在14.23-73.59mg/kg之间。采用十字交叉法测定了1,3-D对辣椒疫霉病菌、草莓枯萎病菌、棉花立枯病菌、烟草黑胫病菌和番茄灰霉病菌的毒力,明确1,3-D对辣椒疫霉病菌和草莓枯萎病菌的LC50分别为0.24和1.55g/m2,辣椒疫霉病菌对1,3-D最为敏感,草莓枯萎病菌对1,3-D最不敏感,其他种类病原菌对1,3-D则表现出中等程度的敏感性。
     2.通过分别在温室大棚番茄和黄瓜上进行田间药效试验,证明1,3-D(90、120和180L/ha)对南方根结线虫、杂草和土传病害病原菌均有较高的防治效果。1,3-D施用后能够有效抑制根结线虫侵染和种群数量,降低根结指数,减少土传病害发生率,还有显著地促进作物生长、增强植株活力和增加作物产量的作用,并且1,3-D中、高剂量熏蒸处理小区在除杂草防治以外的其他各种防治指标上均达到甚至超过甲基溴处理小区,尤其在作物产量上1,3-D处理与甲基溴处理之间无显著性差异。
     3.采用传统方法研究1,3-D对土壤可培养微生物数量和土壤酶的影响。结果表明,1,3-D熏蒸土壤后,各处理浓度对土壤可培养真菌、细菌和放线菌的影响表现为抑制-激活再逐渐恢复作用,最后各处理与对照无显著性差异。1,3-D熏蒸土壤后,各浓度处理对土壤脲酶、蔗糖酶、过氧化氢酶、脱氢酶、酸性磷酸酶与FDA水解酶等6种主要土壤酶的影响,在处理开始时均表现为激活或抑制作用,然后逐渐恢复,最后各处理与对照无显著性差异。
     4. T-RFLP分析结果表明,1,3-D熏蒸土壤后,在不同采样时期存在23个主要的长度片段,1,3-D施用之后不同时间对不同细菌种群影响存在显著差异。从3个不同取样时期可以看出,一开始5WAT,1,3-D对各种细菌种群主要呈现抑制作用;随着时间推移,在10WAT各种细菌种群开始慢慢恢复,并且对有些种群刺激作用比较明显;而在15WAT,处理组菌群与对照组菌群之间并无显著性差异。T-RFLP结果证明了1,3-D与其他甲基溴替代药剂相比,其对细菌微生物群落的影响相对比较短暂。
     5.本研究首次将第二代高通量测序技术应用于熏蒸土壤的研究,明确了1,3-D熏蒸处理设施蔬菜连作土壤后对土壤细菌微生物多样性的影响,全面揭示了熏蒸土样中的微生物组成及丰度。高通量测序结果发现变形菌门、拟杆菌门、放线菌门、酸杆菌门和厚壁菌门是样品中主要门类。细菌种群多样性在施药前期受到一定抑制,然而在熏蒸中后期各处理逐渐恢复至对照水平,甚至还表现出刺激生长的趋势,熏蒸土样的微生物多样性及丰度均高于对照土样,这表明1,3-D熏蒸土壤对细菌微生物多样性只有短暂影响,并且1,3-D熏蒸处理能够刺激某些细菌种群的增殖。
China is one of the most important producting country of protected vegetablein the world.Meantime, protected vegetable is the most dynamic industry in agriculture of China, playing akey role in the development of modern agriculture. However, many greenhouse crops sufferfrom attack by nematodes, soil-borne pathogens as well as to competition from weeds,especially in monocropping systems. The risk of nematodes and soil-borne epidemic whencrops are grown under such intensive regimes is high, and often results inreduction ofquantity and quality of vegetables. At present, the standard treatment for the management ofnematodes, soil-borne pathogens and weeds in many high-value crop production systems ispreplant soil fumigation with methyl bromide (MB). However, developing countries arecommitted to totally phasing out MB production and use by2015due to its detrimental effectson stratospheric ozone. The absence of MB from market will impact agricultural, silvicultural,and horticultural production unless safe and efficacious alternatives are found. Based on ourprevious study,1,3-D (1,3-dichloropropene), is one of the potential candidates of MB as a soildisinfectant. However, due to the limitation by the current level of economic development,many advanced fumigant application methods and much of the equipment cannot be used inChina. As one of the most promising short-term alternatives to MB,1,3-D is going to beregistered as preplant fumigant in China. Therefore, in this study,a series of laboratory test,greenhouse pot experiment and field trials were conducted to determine thebioactivities of1,3-D for its potential to control nematode, soil-borne pathogens andweeds.Meanwhile,traditional physiological and biochemical methods, associate with T-RFLPandhigh-throughput DNA sequencing (Roche454GS FLX+) were used to determine theeffects of1,3-D on soil culturable microorganismspopulation, enzyme activities and microbialdiversity to obtain microorganism flora and species richness at different levels. The results ofthis studywill evaluate the bioactivities and ecological safetyof1,3-D,offering a theoreticalfoundation to the use of1,3-D on greenhouse vegetable industry. The results were as follows:
     1. Laboratory toxicity results showed that the LC50and LC90of1,3-D to second-stagejuveniles (J2)of Meloidogyne incognitawere1.20and3.74mg/L, respectively. Dose-responsestudies found that the seeds of Digitaria chinensis were the most sensitive to soil fumigationwith1,3-D, followed by Eleusina indica, Echinochloa crusgalli and Amaranthus retroflexuswith the LC90values between14.23and73.59mg/kg soil. Among the pathogens,Phytophthora capsici was the most sensitive and Fusarium oxysporum was the least sensitiveto1,3-D fumigation with the LC50values were0.24and1.55g/m2. Rhizoctonia solani, Phytophthora nicotianae and Botrytis cinerea exhibited intermediate susceptibility.
     2. Field trials in tomato and cucumber were conducteddetermine the efficacy of1,3-D(90,120and180L/ha) for its potential to control nematode, soil-borne pathogens and weeds.The results revealed that1,3-D exhibited excellent control effects to M. incognita while withcertain yield increase. In both trials,1,3-D at the doses of120and180L/ha were as effectiveas MB in increasing plant height, vigor, tomato yield and in reducing the incidence ofsoil-borne disease, especially in maintaining excellent nematode control efficiency, but itproviding relatively poor control over weeds.
     3.Traditional physiological and biochemical methods were used to determine the effectsof1,3-D on population of culturable microorganisms and soil enzyme activities. The resultsshowed that all doses of1,3-D exhibited a inhibition initially and then recovery. There wereno signifant effects between fumigation treatments and the control. The activities of theurease,invertase,hydrogen peroxidase,dehydrogenase, acid phosphataseand FDA hydrolyticactivity were also investigated. The results showed that all doses of1,3-D exhibited ainhibition initially and then recovery. There were no signifant effects between fumigationtreatments and the control in the end.
     4. T-RFLPresults showed that there were23main TRFs in different sampling time. At5WAT,1,3-D exhibited a inhibition effects to soil bacteria. While, at10WAT, bacteriarecovered and stimulation effects developed. At15WAT,there were no signifant effectsbetween fumigation treatments and the control.
     5. To the best of our knowledge, this study is the first application of PCR-based454pyrosequencing to characterize fumigating soil samples.454sequencing results revealed thatProteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria and Firmicutes werepredominant phylum in soils. Bacterial diversity was affected initially, while recovered in thelater treatments and soils from1,3-D treatment plots had a more bacterial diversity.1,3-D hadonly a short-term and transitory impact on the indigenous soil microbial community, andapplication of1,3-D fumigation would stimulate the proliferationof some microbialpopulation.
引文
毕志树,李进主编.植物线虫学[M].农业出版社,1965.
    毕江涛,贺达汉,沙月霞,黄泽勇.荒漠草原不同植被类型土壤微生物群落功能多样性[J].干旱地区农业研究,2009,27(5):149-155.
    毕明丽,宇万太,姜子绍,马强,张璐,徐永刚.利用PLFA方法研究不同土地利用方式对潮棕壤微生物群落结构的影响[J].中国农业科学,2010,43(9):1834-1842.
    曹坳程.中国甲基溴土壤消毒替代技术[M].北京:中国农业大学出版社,2000a.
    曹坳程.用于土壤消毒的甲基溴化学替代品[J].世界农业,2000b,7:26-27.
    曹坳程.中国甲基溴土壤消毒替代技术筛选[M].北京:中国农业大学出版社,2003a.
    曹坳程.溴甲烷及其替代产品[J].农药,2003b,42(6):1-5.
    曹坳程,褚世海,郭美霞,段霞瑜,袁会珠,齐淑华.硫酰氟——溴甲烷土壤消毒潜在的替代品[J].农药学学报,2002,4(3):91-93.
    曹志艳,杨胜勇,董金皋.植物病原真菌黑色素与致病性关系的研究进展[J].微生物学通报,2006,33(1):154-158.
    陈品三.杀线虫剂主要类型、特性及其作用机制[J].农药科学与管理,2001,22(2):33-35.
    褚海燕,朱建国,谢祖彬.稀土元素镧对红壤脲酶、酸性磷酸酶活性的影响[J].农业环境保护,2002,19(4):193-196.
    崔金香,王帅.土壤微生物多样性研究进展[J].河南农业科学,2010,6:165-169.
    董金皋.农业植物病理学(第二版)[M].北京:中国农业出版社,2007.
    董莉,于风霞,罗宏伟.有机肥料的作用[J].吉林农业,2004(8):22-23.
    范昆.1,3-二氯丙烯对番茄根结线虫的控制效果和环境生态效应[D].山东农业大学硕士学位论文,2006c.
    范昆,王开运,胡燕,夏晓明,张勇.1,3-二氯丙烯对番茄根结线虫病的防治效果[J].山东农业大学学报(自然科学版),2006b,37(3):325-328.
    范昆,王开运,王东,崔淑华,王刚,郭庆龙.溴甲烷土壤消毒替代品的研究进展[J].世界农药,2006a,28(2):45-50.
    方中达.植病研究方法[M].北京:中国农业出版社,1996.
    高中强.山东省设施蔬菜发展现状、问题及对策建议[J].中国果蔬,2010,2:12-14.
    顾兴芳,张圣平,张思远,王长林.抗南方根结线虫黄瓜砧木的筛选[J].中国蔬菜,2006,2:4-8.
    关松荫,张德生,张志明.土壤酶及其研究法[M].北京:中国农业出版社,1986:274-313.
    韩熙莱主编.农药概论[M].北京:中国农业大学出版社,1995,246-250.
    黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    孔维栋,朱永官,傅伯杰,陈保冬,童依平.农业土壤微生物基因与群落多样性研究进展[J].生态学报,2004,24(12):2894-2900.
    李建伟.2005年我国蔬菜产业发展的回顾[J].中国蔬菜,2006,10:1-2.
    李丽,刘涛,张凡华,任放,王跃进.大豆疫霉检疫熏蒸处理技术初探[J].植物检疫,2013,27(1):21-24.
    李明立.出口农产品质量安全生产手册[M].北京:中国农业出版社,2004.
    李世东,缪作清,高卫东.我国农林园艺作物土传病害发生和防治现状及对策分析[J].中国生物防治学报,2011,27(4):433-440.
    李新宇,张惠文,吴敏娜,张勤,张成刚.乙草胺、甲胺磷及其复合对土壤真菌种群的毒性效应[J].农业环境科学学报,2008,27(5):1842-1847.
    林郁.农药应用大全[M].北京:农业出版社,1989.
    刘维志.植物病原线虫学[M].北京:中国农业出版社,2000,7.
    刘维志.植物线虫志.北京:中国农业出版社,2004.
    刘文娜,吴文良,王秀斌,王明新,毛文峰.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报,2006,12(3):406-411.
    林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010.
    林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报,2008,45(5):892-900.
    鲁如坤.土壤农化分析方法[M].北京:农业科技出版社,1999.
    罗希茜,郝晓辉,陈涛,邓婵娟,吴金水,胡荣桂.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报,2009,29(2):740-748.
    彭德良.蔬菜线虫病害的发生和防治[J].中国蔬菜,1998,4:57-58.
    蒲金基,曾会才.绿色木霉LTB12-1对黄瓜枯萎病菌防治作用机制的初步研究[J].热带农业科学,2002,22(4):22-25.
    宋兆新.1,3-二氯丙烯与二甲基二硫作为土壤熏蒸剂的应用技术研究[D].中国农业科学院硕士学位论文,2008.
    宋兆欣,王秋霞,郭美霞,赵云,曹坳程.二甲基二硫作为土壤熏蒸剂的效果评价[J].农药,2008,47(6):454-456.
    王才斌,郑亚萍,梁晓艳,王建国,郑永美,孙学武,冯昊,吴正峰,孙秀山.施肥对旱地花生主要土壤肥力指标及产量的影响[J].生态学报,2013,33(4):1300-1307.
    王方艳,王秋霞,颜冬冬,毛连纲,郭美霞,燕平梅,曹坳程.二甲基二硫熏蒸对保护地连作土壤微生物群落的影响[J].2011,19(4):890-896.
    徐秋芳,姜培坤,陆贻通.不同施肥对雷竹林土壤微生物功能多样性影响初报[J].浙江林学院学报,2008,25(5):548-552.
    许育新,李晓慧,滕齐辉,陈义,吴春艳,李顺鹏.氯氰菊酯污染土壤的微生物修复及对土著微生物的影响[J].土壤学报,2008,45(4):693-698.
    颜冬冬,王秋霞,郭美霞,郭章碧,曹坳程.4种熏蒸剂对土壤氮素转化的影响[J].中国生态农业学报,2010,18(5):934-938.
    严昶升.土壤肥力研究方法[M].北京:农业出版社,1988.
    杨喜田,宁国华,董慧英,李有.太行山区不同植被群落土壤微生物学特征变化[J].应用生态学报,2006,17(9):1761-1764.
    喻景权.“十一五”我国设施蔬菜生产和科技进展及其展望[J].中国蔬菜,2011,2:11-23.
    喻子牛,何绍江,李阜棣.农业微生物学实验技术[M].北京:农业出版社,1996.
    仉欢.56%磷化铝片剂对番茄、黄瓜根结线虫的控制效果及其土壤微生物生态效应[D].山东农业大学硕士论文,2011.
    张秋芳,刘波,林营志,史怀,杨述省,周先冶.土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J].生态学报,2009,29(8):4127-4137.
    张真和,陈青云,高丽红,王娟娟,沈军,李中民,张雪艳.我国设施蔬菜产业发展对策研究(上)[J].蔬菜,2010a,5:1-3.
    张真和,陈青云,高丽红,王娟娟,沈军,李中民,张雪艳.我国设施蔬菜产业发展对策研究(下)[J].蔬菜,2010b,6:1-3.
    张志斌.我国蔬菜设施栽培技术发展趋势与任务的探讨[C].2008年全国现代设施园艺技术交流会论文集,1-8.
    赵善欢主编.植物化学保护第三版[M].北京:中国农业出版社,2000,102-106.
    赵洪海.中国部分地区根结线虫的种类鉴定和四种最常见种的种内形态变异研究[D].沈阳:沈阳农业大学,1999,44-50.
    郑剑宁,裘炯良,卢岳云.硫酰氟熏蒸技术与应用研究概况[J].中华卫生杀虫药械,2008,14(5):327-329.
    邹雅新,曹素芳,马娟,张小风,张金林,陈书龙.阿维菌素和硫线磷对南方根结线虫的毒力[J].植物保护,2009,35(2):39-43.
    周艳红,丁衬衬,史建荣.转基因作物对土壤微生物多样性影响研究技术的进展[J].江苏农业科学,2010(4):362-365.
    Acosta-Martínez V, Dowd S, Sun Y, Allen VG. Tag-encoded pyrosequencinganalysis ofbacterial diversity in a single soil type as affected by managementand land use. SoilBiology and Biochemistry,2008,40:2762-2770.
    Adam G, Duncan H. Development of a sensitive and rapid method for the measurement oftotal microbial activity using fluorescein diacetate (FDA) in a range of soils. SoilBiology and Biochemistry,2001,33:943-951.
    Andersen SO, Sarma KM. Protecting the Ozone Layer: The United Nations History. London:Earthscan Publ. Ltd,2002,490pp.
    Anonymous. Telone,2005. Gallo ArtiGrafiche. Dow Agro Sciences. www.dowagro.com/it.96.
    Ashworth DJ, Yates SR. Surface irrigation reduces the emission of volatile1,3-D fromagricultural soils. Environmental Science and Technology,2007,41:2231-2236.
    Atkinson HJ, Urwin PE, McPherson MJ. Engineering plants for nematode resistance. AnnualReview of Phytopathology,2003,41:615-639.
    Austerweil M, Steiner B, Gamliel A. Permeation of soil fumigants through agricultural plasticfilms. Phytoparasitica,2006,34:491-501.
    Blum U. The value of model plant-microbe-soil systems for understanding processesassociated with allelopathic interaction: one example. Allelopathy Organisms, Processesand Applications. Washington DC. American Society,1995,582:127-131.
    Boukaew S, Chuenchit S, Petcharat V. Evaluation of Streptomyces spp. for biological controlof Sclerotium rootand stem rot and Ralstoniawilt of chili pepper. BioControl,2011,56:365-374.
    Boz, Yildiz A, Benlioglu K, Benlio lu HS. Methyl bromide alternatives for presowingfumigation in tobacco seedling production. Turkish Journal of Agriculture and Forestry,2011,35:73-81.
    Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F.454pyrosequencinganalyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist,2009,184:449-456.
    Burelle NK, Bausher MG, Rosskopf EN. Greenhouse evaluation of Capsicum rootstocks formanagement of Meloidogyne incognita on grafted bell pepper. Nematropica,2009,39:121-132.
    Bünemann EK, Smithson PC, Jama B, Frossard E, Oberson A. Maize productivity andnutrient dynamics in maize-fallow rotations in western Kenya. Plant and Soil,2004,264:195-208.
    Busacca J. Surfuryl fluoride: summary of field trials in Florida and Georgia. Annu. Int. Res.Conf. Methyl Bromide Altern. Emiss. Reduct., San Diego, CA. Abstr.2009,23.http://mbao.org.
    Carpenter-Boggs L, Stahl PD, Lindstrom MJ, Schumacher TE. Soil microbial propertiesunder permanent grass, conventional tillage,and no-till management in South Dakota.Soil and Tillage Research,2003,71(1):15-23.
    Chellemi DO, Olson SM, Mitchell DJ, Secker I, McSorley R. Adaptation of soil solarizationto the integrated management of soilborne pests of tomato under humid conditions.Phytopathology,1997,87:250-258.
    Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S. Influence of plantdevelopment, cultivar and soil type on microbial colonization of maize root. Applied SoilEcology,1998,8:11-18.
    Christie JR, Cobb GS. The inefficiency of methyl bromide fumigation against thechrysanthemum foliar nematode. Proceedings of the Helminthological. Society ofWashington,1940,7:62.
    Covarellia L, Pannaccia E, Beccaria G, D’Erricob FP, Tosia L. Two-year investigations on theintegrated control of weeds and root parasites in Virginia bright tobacco(Nicotianatabacum L.) in central Italy. Crop Protection,2010,29:783-788.
    Desaeger JA, RiveraM, LeightyR, Portillo H. Effect of methomyl and oxamyl soilapplicationson early control of nematodesand insects. Pest Management Science,2011,67:507-513.
    Desaeger JA, Seebold KW, Csinos AS. Effect of application timing and method on efficacyand phytotoxicity of1,3-D, chloropicrin and metam-sodium combinations in squashplasticulture. Pest Management Science,2008,64:230-238.
    Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schlüter A, Tebbe CC. Importance of raretaxa for bacterial diversity in the rhizosphere of Bt-and conventional maize varieties.The ISME Journal,2013,7:37-49.
    Dungan RS, Ibekwe AM, Yates SR. Effect of propargyl bromide and1,3-dichloropropene onmicrobial communities in an organically amended soil. FEMS Microbiology Ecology,2003,43:75-87.
    Dungan RS, Yates SR. Degradation of fumigant pesticides:1,3-dichloropropene, methylisothiocyanate, chloropicrin, and methyl bromide. Vadose Zone Journal,2003,2:279-286.
    Duniway JM. Status of chemical alternatives to methyl bromide for pre-plant fumigation ofsoil. Phytopathology,2002,92:1337-1343.
    Eshel D, GamLiel A, Katan J, Grinstein A. Evaluation of soil fumigants on soilborne fungalpathogens in a controlled-environment system and in soil. Crop Protection,1999,18:437-443.
    Fennimore SA, Kabir Z, Ajwa HA, Daugovish O, Roth K. Chloropicrinand InLine lethal doseon nutsedge and knotweed under impermeable film. In: Proceedings AnnualInternational Research Conference on Methyl Bromide Alternatives and EmissionsReductions,2005,54:1-4.
    Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions areseparated in denaturing gradient gels: correspondence with melting theory. Proceedingsof the National Academy of Sciences USA,1983,80:1579-1583.
    Franzluebbers AJ. Soil organic matter stratification ratio as an indicator of soil quality. Soiland Tillage Research,2002,66:95-106.
    Fulthorpe RR, Roesch LFW, Riva A, Triplett EW. Distantly sampled soils carry few species incommon. The ISME Journal,2008,2:901-910.
    Gan J, Yates SR, Crowley D, Becker JO. Acceleration of1,3-dichloropropene degradation byorganic amendments and potential application for emissions reduction. Journal ofEnvironmental Quality,1998,27:408-414.
    Gan J, Yates SR, Ernst FF, Jury WA. Degradation and volatilization of the fumigantchloropicrin after soil treatment. Journal of Environmental Quality,2000,29:1391-1397.
    Gao G, Yin D, Chen S, Xia F, Yang J, Li Q, Wang W. Effect of biocontrol agent pseudomonasfluorescens2P24on soil fungal community in cucumber rhizosphere using T-RFLP andDGGE. PLoS One,2012,7(2): e31806.
    Gao S, Qin R, McDonald JA, Hanson BD, Trout TJ. Field tests of surface seals and soiltreatments to reduce fumigant emissions from shank injection of Telone C35. Science ofthe Total Environment,2008,405:20-214.
    Gelsomino A, Keijzer-Wolters A, Cacco G, van Elsas JD. Assessment of bacterial communitystructure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis.Journal of Microbiological Methods,1999,38:1-15.
    Gerik JS, Vail SS, ElmoreCL, Greene ID. Alternative soil treatments for field grownornamentals.In2002Annual International Research Conference on Methyl BromideAlternatives and Emissions Reductions,2002, pp.93:1-3. Methyl Bromide AlternativesOutreach, Fresno, CA.
    Giannakou IO, Karpouzas DG. Evaluation of chemical and integrated strategies asalternatives to methyl bromide for the control of root-knot nematodes in Greece. PestManagement Science,2003,59:883-892.
    Giannakou IO, Sidiropoulos A, Prophetou-Athanasiadou D. Chemical alternatives to methylbromide for the control of root-knot nematodes in greenhouses. Pest ManagementScience,2002,58:290-296.
    Gilreath JP, Santos BM. Herbicide dose and incorporation depth in combination with1,3-dichloropropene plus chloropicrin for Cyperusrotundus control in tomato and pepper.Crop Protection,2004,23:205-210.
    Guffedge J, Ahmad A, Steudler PA. Family-and genus-level16S rRNA-targetedoligonucleotide probes for ecological studies of methanotrophicbacteria. Applied andEnvironmental Microbiology,2001,67:4726-4733.
    Haar MJ, Fennimore SA, Ajwa HA, Winterbottom CQ. Chloropicrin effecton weed seedviability. Crop Protection,2003,22:109-115.
    Hanson BD, Gerik JS, Schneider SM. Effects of reduced-rate methyl bromide applicationsunder conventional and virtually impermeable plastic film in perennial crop fieldnurseries. Pest Management Science,2010,66:892-899.
    Hari CM, Vijay TG, Ghanendra S, Anju K, Gautam C. Persistence and nematicidal efficacy ofcarbosulfan, cadusafos, phorate, and triazophos in soil and uptake by chickpea andtomato crops under tropical conditions. J Agric Food Chem,2010,58:1815-1822.
    Haydock PPJ, Deliopoulos T, Evans K, Minnis ST. Effects of the nematicide1,3-dichloropropene on weed populations and stemcanker disease severity in potatoes.Crop Protection,2010,29:1084-1090.
    Ho Adrian, Lüke Claudia, Frenzel Peter. Recovery of methanotrophs from disturbance:population dynamics, evenness and functioning. The ISME Journal,2011,5:750-758.
    Hopkins RJ, van Dam NM, van Loon JJA. Role of glucosinolates in insect-plant relationshipsand multitrophic interactions. Annual Review of Entomology,2009,54:57-83.
    Hussey RS, Barker KR. A comparison of methods of collecting inocula for Meloidogyne spp.,including a new technique. Plant Disease Reporter,1973,57:1025-1028.
    Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang C, Crowley DE. Impact of fumigants onsoil microbial communities. Applied and Environmental Microbiology,2001,67:3245-3257.
    Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM,Coleman DC, Whitman WB. Relative impacts of land-use, management intensity andfertilization upon soil microbial community structure in agricultural systems. SoilBiology and Biochemistry,2008,40:2843-2853.
    Jenkins WR. A rapid centrifugal-flotation technique for separating nematodes from soil. PlantDisease Reporter,1964,48:692.
    Jhala AJ, Gao S, Gerik JS, Qin R, Hanson BD. Effects of surface treatments and applicationshanks on nematode, pathogen and weed control with1,3-dichloropropene. PestManagement Science,2012,68:225-230.
    Kaffe-abramovich T, Steinberger Y. Soil microbial functional diversity response followingnematocide and biocide amendments in a desert ecosystem. Soil Biology andBiochemistry,2006,38:1966-1976.
    Katan J, Greenberger A, Alon H, Grinstein A. Solar heating by polyethylene mulching for thecontrol of diseases caused by soilborne pathogens. Phytopathology,1976,66:683-688.
    Kennday AC, Papendick RI. Microbial characteristics of soil quality. Journal of Soil andWater Conversation,1995,50:243-248.
    Kircher M, Kelso J. High-throughput DNA sequencing--concepts and limitations. Bioessays,2010,32:524-536.
    Klose S, Ajwa HA. Enzyme activities in agricultural soils fumigated with methyl bromidealternatives. Soil Biology and Biochemistry,2004,36:1625-1635.
    Klose S, Ajwa HA, Browne GT, Subbarao KV, Martin FN, Fennimore SA, Westerdahl BB.Dose response of weed seeds, plant-parasitic nematodes, and pathogens to twelve ratesof metam sodium in a California soil. Plant Disease,2008,92:1537-1546.
    Klose S, Ajwa HA, Fennimore SA, Martin FN, Browne GT, Subbarao KV. Dose response ofweed seeds and soilborne pathogens to1,3-D and chloropicrin. Crop Protection,2007,26:535-542.
    K berl M, Müller H, Ramadan EM, Berg G. Desert farming benefits from microbial potentialin arid soils and promotes diversity and plant health. PLoS One,2011,6(9): e24452.
    Kubota C, McClure MA, Kokalis-Burelle N, Bausher MG, Rosskopf EN. Vegetable grafting:history, use, and current technology status in North America. Hortscience,2008,43:1664-1669.
    Lamastra L, Ferrari F, Fait G, Greco L, Kennedy SH, Capri E, Trevisan M. Higher-tierassessment of the potential for groundwater issues due to the use of1,3-D soil fumigant;evaluation of the active ingredient, metabolites and potentially related chlorinatedcompounds. Pest Management Science,2011,67:1439-1445.
    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC,Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils.Nature,2006,442:806-809.
    Lembright HW. Soil fumigation-principles and application technology. Journal of Nematology,1990,22:632-644.
    Li R, Khafipour E, Krause DO, Entz MH, de Kievit TR, Fernando WD. Pyrosequencingreveals the influence of organic and conventional farming systems on bacterialcommunities. PLoS one,2012,7(12): e51897.
    Liu WT, Marsh TL, Cheng H, Forney LJ. Characterization of microbial diversity bydetermining terminal restriction fragment length polymorphisms of genes encoding16SrRNA. Applied and Environmental Microbiology,1997,63:4516-4522.
    Liu Z, Fu B, Zheng X, Liu G. Plant biomass, soil water content and soil N:P ratio regulatingsoil microbial functional diversity in a temperate steppe: A regional scale study. SoilBiology and Biochemistry,2010,42:445-450.
    Mao LG, Wang QX, Yan DD, Xie HW, Li Y, Guo MX, Cao AC. Evaluation of thecombination of1,3-dichloropropene and dazomet as an efficient alternative to methylbromide for cucumber production in China. Pest Management Science,2012,68:602-609.
    Marschner P, Yang CH, Lieberei R, Crowley DE. Soil and plant specific effects onbacteria1community composition in the rhizosphere. Biology and Biochemistry,2001,33:1437-1445.
    Marsh TL. Terminal restriction fragment length polymorphism (T-RFLP): an emergingmethod for characterizing diversity among homologous populations of amplificationproducts. Current Opinion in Microbiology,1999,2:323-327.
    Martin FN. Development of alternative strategies for management of soilborne pathogenscurrently controlled with methyl bromide. Annual Review of Phytopathology,2003,41:325-350.
    Melero-Vara JM, Lopez-Herrera CJ, Prados-Ligero AM, Vela-Delgado MD, Navas-BecerraJA, Basallote-Ureba MJ. Effects of soil amendment with poultry manure on carnationFusarium wilt in greenhouses in southwest Spain. Crop Protection,2011,30:970-976.
    Minnis ST, Haydock PPJ, Evans K. Control of potato cyst nematodes and economic benefitsof application of1,3-dichloropropene and granular nematicides. Annals of AppliedBiology,2004,145:145-156.
    Morgan DO. Investigations on eelworm in potatoes in south Lincolnshire. Journal ofHelmintholog,1925,3:185-192.
    Muyzer G, Waal EC, Uitterlinden AG. Profiling of complex microbialpopulations bydenaturing gradient gel electrophoresis analysis ofpolymerase chain reaction-amplfiedgenes coding for16S rRNA. Applied and Environmental Microbiology,1993,59:695-700.
    Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK. Structureand function of alpine and arctic soil microbial communities. Research in Microbiology,2005,156:775-784.
    Noling JW, Becker JO. The challenge of research and extension to define and implementalternatives to methyl bromide. Journal of Nematology,1994,26:573-586.
    Nyczepir AP, Rodr guez-Kabana R. Preplantbiofumigation with sorghum or methyl bromidecompared for managing Criconemoidesxenoplax in a young peach orchard. Plant Disease,2007,91:1607-1611.
    O’Donnell AG, Seasman M, Macrea A, Waite I, Davies JT. Plants and fertilisers as drivers ofchange in microbial community structure and function in soils. Plant and Soil,2002,96:135-145.
    Ohr HD, Sims JJ, Grwch NM, Becker JO, MEMcGiffenJr. Methyl iodide, an ozone-safealternative to methyl bromide as a soil fumigant. Plant Disease,1996,80:731-735.
    Ovreas L. Population and community level approaches for analyzing microbial diversity innatural environments. Ecology Letters,2000,3:236-251.
    Omirou M, Rousidou C, Bekris F, Papadopoulou KK, Menkissoglou-Spiroudi U, Ehaliotis C,Karpouzas DG. The impact of biofumigation and chemical fumigation methods on thestructure and function of the soil microbial community. Microbial Ecology,2011,61:201-213.
    Perucci P. Effect of the addition of municipal solid waste compost on microbial biomass andenzyme activities in soil. Biology and Fertility of Soils,1990,10:221-226.
    Petersen SO, Debosz K, Schjonning P, Christensen BT, Elmholt S. Phospholipid fatty acidprofiles and C availability inwet-stable macro-aggregates from conventionally andorganicallyfarmed soils. Geoderma,1997,78:181-196.
    Pielou EC. Ecological Diversity. Wiley Interscience,1975, NewYork, NY, U.S.A.
    Pinton R, Varanin Z, Nannipieri P. The Rhizosphere biochemistry and organic substances atthe soil-plant interface [M]. America: CRC Press,2007.
    Ploeg A. Biofumigation tomanage plant-parasitic nematodes. In Integrated Management andBiocontrol of Vegetable and Grain Crop Nematodes, ed. A Ciancio, KGMukerji,2008,pp.239-248. Dordrecht: Springer.
    Qian Y, Kamel A, Stafford C, Nguyen T, Chism WJ, Dawson J, Smith CW. Evaluation of thepermeability of agricultural films to various fumigants. Environmental Science andTechnology,2011,45:9711-9718.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbialgene catalogue established by metagenomic sequencing. Nature,2010,464:59-65.
    Ramsey PW, Rillig MC, Feris KP, Holben WE, Gannon JE. Choice of methods for soilmicrobial community analysis: PLFA maximizes power compared to CLPP andPCR-based approaches. Pedobiologia,2006,50:275-280.
    Rashed NA, MacDonald MH, Matthews BF. Protease inhibitor expression in soybean rootsexhibiting susceptible and resistant interactions with soybean cyst nematode. JournalofNematology,2008,40:138-146.
    Ren Y, Lee B, Padovan B, Cai L. Ethyl formate plus methyl isothiocyanate--a potential liquidfumigant for stored grains. Pest Management Science,2012,68:194-201.
    Ricárdez-Salinas M, Huitron-Ramirez MV, Tello-Marquiana JC, Camacho-Ferre F. Plantingdensity for grafted melon as an alternative to methyl bromide use in Mexico.ScientiaHorticulturae,2010,126:236-241.
    Ristaino JB, Thomas W. Agriculture, methyl bromide, and the ozone hole: can we fill the gaps.Plant Disease,1997,81:964-977.
    Roberts PA. Current status of the availability, development, and use of host plant-resistance tonematodes. Journal of Nematology,1992,24:213-227.
    Rodriguez-Kabana R, Akridge JR, Burkett JE. Sodium azide (SEP100) for control ofroot-knot nematodes, weeds, and soil borne disease in cantaloupe production. In2004Annual International Research Conference on Methyl Bromide Alternatives andEmissions Reductions,2004, pp.49:1-8. Methyl Bromide Alternatives Outreach, Fresno,CA.
    Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, CamargoFA, Farmerie WG, Triplett EW. Pyrosequencing enumerates and contrasts soil microbialdiversity. The ISME Journal,2007,1:283-290.
    Roux-Michollet D, Czarnes S, Adam B, Berry D, CommeauxC, Guillaumaud N, Le Roux X,Clays-Josserand A. Effects of steam disinfestations on community structure, abundanceand activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farmingsoil. Soil Biology&Biochemistry,2008,40:1836-1845.
    Samtani JB, Ajwa HA, Weber JB, Browne GT, Klose S, Hunzie J, Fennimore SA. Evaluationof non-fumigant alternatives to methyl bromide for weed control and crop yield inCalifornia strawberries (FragariaananassaL.). Crop Protection,2011,30:45-51.
    Santos BM, Gilreath JP, Motis TN, Noling JW, Jones JP, Norton JA. Comparing methylbromide alternatives for soilborne disease nematode and weed management in freshmarket tomato. Crop Protection,2006,25:690-695.
    Schneider SM, Ajwa H, Trout TJ. Chemical alternatives to methyl bromide for nematodecontrol under vineyard replant conditions. American Journal of Enology and Viticulture,2006,57:183-193.
    Schneider SM, Rosskopf EN, Leesch JG,Chellemi DO, Bull CT, Mazzola M. United StatesDepartment of Agriculture-Agricultural Research Service research on alternatives tomethyl bromide: pre-plant and post-harvest. Pest Management Science,2003,59:814-826.
    Schütte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. Advances in theuse of terminal restriction fragment length polymorphism (T-RFLP) analysis of16SrRNA genes to characterize microbial communities. Applied Microbiology andBiotechnology,2008,80:365-380.
    Sen F, Meyvaci KB, Aksoy U, Emekci M, Feri zli AG. Effects of the post-harvestapplication of methyl bromide alternatives on storage pests and quality of dried fig.Turkish Journal of Agriculture and Forestry,2009,33:403-412.
    Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E. Microbial populationstructures in soil particle size fraction of a long-term fertilizer field experiment. Appliedand Environmental Microbiology,2001,67:4215-4224.
    Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology,2008,26:1135-1145.
    Simpson CR, Nelson SD, Stratmann JE, Ajwa HA. Surface water seal application to minimizevolatilization loss of methyl isothiocyanate from soil columns. Pest Management Science,2010,66:686-692.
    Srivastava SC, Singh JS. Microbial C, N and in dry tropical forest soils: Effects of alternateland-use and nutrient flux. Soil Biology and Biochemistry,1991,23:117-124.
    Staddon WJ, Trevors JT, Duchesne LC, Colombo CA. Soil microbial diversity andcommunity structure across a climatic gradient in western Canada. Biodiversity andConservation,1998,7:1081-1092.
    Tanaka S, Kobayashi T, Iwasaki K, Yamate S, Maeda K, Sakurai K. Microbial properties andmetabolic diversity of the soilstreated with steam sterilization in comparison withmethylbromide and chloropicrin fumigations. Soil Science and Plant Nutrition,2003,49:603-610.
    TEAP. Report of the technology and economic assessment panel, May2005progress report.Nairobi: UNEP,2005,136-137.
    Teixeira L, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS. Bacterialdiversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritimeAntarctica. The ISME Journal,2010,4:989-1001.
    Thalmann A. Zurmethodik der bestimmung der dehydrogenaseaktivitat imboden mittelsTriphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch,1968,21:249-258.
    Thomas JE, On LT, Allen LH, McCormack LA, Vu JC, Dickson DW. Persistence, distribution,and emission of Teione C35injected into a Florida sandy soil as affected by moisture,organic matter, and plastic film cover. Journal of Environmental Science and Health PartB-Pesticides Food Contaminants and Agricultural Wastes,2004,39:505-516.
    Thomas JE, Ou L, Allen Jr LH, Vu JC, Dickson DW. Nematode, fungi, and weed controlusing Telone C35and colored plastic mulches. Crop Protection,2009,28:338-342.
    Toyota K, Ritz K, Young IM. Survival of bacterial and fungalpopulations followingchloroform-fumigation: effects of soilmatric potential and bulk density. Soil Biology andBiochemistry,1996,28:1545-1547.
    Tubajika KM, Barak AV. Fungitoxicity of methyl iodide, sulfuryl fluoride, and methylbromide to CeratocystisFagacearum in red oak, maple, poplar, birch and pine wood.American Journal of Plant Sciences,2011,2:265-272.
    Tu CM. Effect of four organophpsphorus insecticides on microbial activities in soil. AppliedMicrobiology,1970,19:479-484.
    US Environmental Protection Agency.1986. Pesticide Fact Sheet Number98: MethylBromide. Washington DC: U.S. Gov. Print. Off.
    Wada S, Toyota K. Effect of three organophosphorousnematicides on non-target nematodesand soil microbial community. Microbes and Environments,2008,23:331-336.
    Waggoner M, Ohr HD, Adams C, Sims JJ, Gonzalez D. Methyl iodide: An alternative tomethyl bromide for insectary fumigation. Journal of Applied Entomology,2000,124:113-117.
    Wang Q, Song Z, Tang J, Yan D, Wang F, Zhang H, Guo M, Cao A. Efficacy of1,3-dichloropropene gelatin capsule formulation for the control of soilborne pests.Journal of Agricultural and Food Chemistry,2009,57:8414-8420.
    Watts CW, Eich S, Dexter AR, Addiscott TM. Effects of mechanical energy inputs on soilrespiration at the aggregate and field scales. Soil and Tillage Research,2000,53:231-243.
    White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV. Pyrosequencing of bacterialsymbionts within Axinellacorrugata sponges: diversity and seasonal variability. PLoSOne,2012,7: e38204.
    Williamson VM, Kumar A. Nematode resistance in plants: the battle underground. Trends inGenetics,2006,22:396-403.
    Williamson VM. Root-knot nematode resistance genes in tomato and their potential for futureuse. Annual Review of Phytopathology,1998,36:277-293.
    Yakabe LE, Macdonald JD. Soil treatments for the potential elimination ofPhytophthoraramorum in ornamental nursery beds. Plant Disease,2010,94:320-324.
    Yakabe LE, Parker SR, Kluepfel DA. Effect of pre-plant soil fumigants on Agrobacteriumtumefaciens, pythiaceous species, and subsequent soil recolonization by A. tumefaciens.Crop Protection,2010,29:583-590.
    Yan H, Wang D, Dong B, Tang F, Wang B, Fang H, Yu Y. Dissipation of carbendazim andchloramphenicol alone and in combination and their effects on soil fungal: bacterialratios and soil enzyme activities. Chemosphere,2011,84:634-641.
    Yang S, Wen X, Jin H, Wu Q. Pyrosequencing investigation into the bacterial community inpermafrost soils along the China-Russia crude oil pipeline (CRCOP). PLoS One,2012,7:e52730.
    Zasada IA, Halbrendt JM, Kokalis-Burelle N, LaMondia J, McKenry MV, Noling JW.Managing nematodes without methyl bromide. Annual Review of Phytopathology,2010,48:311-328.
    Zhang T, Shao MF, Ye L.454Pyrosequencing reveals bacterial diversity of activated sludgefrom14sewage treatment plants. The ISME Journal,2012,6:1137-1147.
    Zhang W, McGiffen Jr. ME, Becker JO, Ohr HD, Sims JJ, Campbell SD. Effect of soilphysical factors on methyl iodide and methyl bromide. Pesticide Science,1998,53:71-79.
    Zhong WH, Cai ZC. Long-term effects of inorganic fertilizers on microbial biomass andcommunity functional diversity in a paddy soil derived from quaternary red clay. AppliedSoil Ecology,2007,36:84-91.
    Zhang Y, Wang D. Emission, distribution and leaching of methyl isothiocyanate andchloropicrin under different surface containments. Chemosphere,2007,68:445-454.
    Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, Xie J, Van Nostrand JD, He Z, Yang Y.Reproducibility and quantitation of amplicon sequencing-based detection. The ISMEJournal,2011,5:1303-1313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700