用户名: 密码: 验证码:
铜尾矿自然生态恢复过程中优势植物白茅的营养生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为世界广布的植物类群,禾本科植物的多数种类对不良物理化学性质、极端pH值与营养贫瘠等特征的尾矿基质具有较强耐受性,成为铜尾矿原生演替草本植物阶段的主要优势植物类群。本研究试图以铜尾矿自然生态恢复草本植物阶段的优势植物白茅(Imperata cylindrica(Linn.)Beauv.)为主要实验材料,探究其成为该阶段优势植物种群的营养生态学策略及其生长代谢过程对尾矿基质营养状况的改良作用机理。主要的研究结果如下:
     1、样地调查与植物形态构件特征分析表明,铜尾矿基质的养分及其它理化性质均存在较大的空间异质性,白茅的地上克隆分株的数量和地下茎长度随微生境中的总氮(r=0.513,p<0.05;r=0.687,p<0.01)和有效磷(r=0.695,p<0.01;r=0.486,p<0.05)含量增加而显著增加。然而,不同营养条件微生境中的白茅根茎内养分却并不存在显著差异(p>0.05)。这说明根状茎型植物白茅可通过牺牲其生理可塑性为代价来增加其形态可塑性,将更多的幼根分布在远离母株的不同的生境中,以提高对环境选择压力的生态适应性,实现其在贫瘠尾矿生境中对养分及其它生存必需条件的寻觅和吸收。
     2、白茅根系活动对根际磷动态影响研究表明,白茅及其它5种常见伴生植物的生长活动能有效降低根际pH值约0.16-1.40个单位,根际中各形态无机磷和有机磷含量与无植被尾矿之间存在显著差异(p<0.05),根际中碱性磷酸酶活性显著高于无植被尾矿(p<0.05)。根际中2钙结合态、铝结合态和铁结合态无机磷的含量均被显著提高86.56%-147.58%、5.46%-88.86%和49.22%-214.20%。2钙结合态、铝结合态和铁结合态无机磷的含量与pH值均表现为显著负相关性(r=-0.586,p<0.01;r=-0.487,p<0.05;r=-0.417, p<0.05).在本研究中,豆科植物马棘表现出最强的增加根际有效磷含量的特性,禾本科植物中白茅对根际有效磷相对含量的提高效率最高。
     3、白茅根系活动对根际无机氮动态影响研究表明,白茅及其它5种常见伴生植物的生长代谢活动有效的增加了基质氮养分的总量和有效态含量。根际中无机氮和总氮的含量均明显高于无植被尾矿(p<0.05);白茅等禾本科植物根际中各形态无机氮所占总氮的比例均高于其常见伴生植物,其中硝态氮所占总氮的比例显著高于豆科植物马棘(p<0.05)和两种菊科植物(p<0.05),铵态氮也显著高于菊科植物(p<0.05)。这说明白茅等禾本科植物可以通过根系活动增加有效态氮在总氮中的比例,以提高植物对根系周围氮营养的吸收效率。
     4、以铜尾矿同区域农田中生长的白茅居群为对照,对不同生长时期的白茅体内氮(N)、磷(P)营养浓度、叶片硝酸还原酶和酸性磷酸酶活性动态等的研究表明,在萌芽期,两居群白茅体内的N、P均主要集中于根状茎。到花蕾期、成熟期时,两居群白茅体内的N、P均向成熟叶片迁移,浓度均达到最高。但在衰败期,铜尾矿白茅体内的N主要迁移到根状茎中,P在根状茎中的浓度也达到生长期中的最高值,而农田白茅成熟叶片内N、P浓度依然最高。铜尾矿白茅叶片N、P的再吸收效率分别为49.54%-65.22%和74.71%-98.71%,衰老叶片中N的再吸收效率显著大于农田居群(p<0.05),P达到完全再吸收的程度。铜尾矿白茅叶片硝酸还原酶活性在生长旺盛期显著高于农田居群(p<0.05),是白茅加强对自身氮养分代谢活动调节作用的表现;同一生长时期白茅叶片酸性磷酸酶活性在两种生境间差异性并不明显(p>0.05),但随着生长期的延长,白茅叶片酸性磷酸酶活性表现出不断升高的趋势,这有利于生长后期衰老叶片中有机P的水解再吸收。总之,铜尾矿中生长的白茅可通过对N、P养分的适时分配,提高营养成分的再吸收效率和调节N、P代谢相关调节酶活性等方式来减轻生境的营养胁迫。
     5、以同一尾矿中的禾本科植物白茅和中华结缕草(Zoysia sinica Hance)群落、隐花植物木贼(Hippochaete ramosissmium L.)群落和藻类植物结皮中的土壤和植物衰败组织为实验材料,研究了土壤和植物组织中的有机碳氮含量、13C和15N的同位素相对丰度值(δ13C和δ15N),以分析植物组织对尾矿土壤有机质碳氮的影响。结果表明,植物群落土壤内的δ13C和δ15N值低于无植被尾矿土壤,禾本科植物群落中植物组织和土壤之间的有机碳含量具有显著相关性(r=0.998,p<0.01),但这种相关关系在隐花植物群落中没有被发现。白茅和藻类植物结皮的生长代谢活动有效的影响了土壤中δ13C,且土壤的含水量(r=0.716,p<0.01)、土壤微生物碳含量(r=0.729,p<0.01)和pH值(r=0.529,p<0.05)也显著的影响了土壤δ13C。相对而言,仅土壤微生物的氮含量对土壤中δ1SN值表现出显著的相关关系(r=0.935,p<0.01)。
Gramineous plants are considerable distributed in the whole world. They can tolerate some extreme physical and chemical conditions in the copper tailings wasteland, such as the droughty conditions, extremely changed temperature, extreme pH, high salinity and high concentrations of harmful substances. They are also commonly survived from the nutrition stress in the barren habitat of the copper tailings. According to these ecological adaptive characteristics, gramineous plants become the mainly dominant vegetation group in the copper mine tailings. In this study, the nutritional strategy of Imperata cylindrica (Linn.) Beauv living in the copper tailings wasteland was explored. And the effect of Ⅰ. cylindrica growth metabolic process on nutrient level of copper tailings soil ecosystem was studied. The main research contents and conclusions are as follows:
     1. The nutrients conditions and other physicochemical properties of the copper tailings had more severe spatial heterogeneity. The number of the ground cloning seedlings and the rhizome length of Ⅰ. cylindrica increase significantly with the rich content of total nitrogen (r=0.513, p<0.05; r=0.687, p<0.01) and effective phosphorus (r=0.695,p<0.01; r=0.486, p<0.05) in the copper tailings. But the difference of the nutrients content in the stems and roots of Ⅰ. cylindrica between barren tailings and rich tailings was not significant. This indicated that Ⅰ. cylindrica was to adapt the barren environment of the tailings by reducing the physiological plasticity and improving its morphological plasticity. To increase the chances of looking for and absorbing nutrients, the roots of I. cylindrica were distributed in different nutrients level microhabitat in the copper tailings.
     2. P dynamics from rhizosphere of Ⅰ. cylindrica and other five plants in the copper tailings were studied. The results indicated that the plant growth decreased the rhizosphere pH by0.16-1.40pH units significantly. The difference of contents of soil inorganic P (Pi) and organic P between the rhizosphere and no-plant tailings were significant (p<0.05). The alkali-phosphatase activity in the rhizosphere was significant higher than in the no-plant tailings (p<0.05). The mean concentration of Ca2-bound Pi, Al-bound Pi and Fe-bound Pi in all the rhizosphere was significantly enhanced compared with the no-plant tailings, with the increase range from86.56%to147.58%, from5.46%to88.86%and from49.22%to214.20%respectively. All the other forms of phosphorus except Ca8-bound Pi and Caio-bound Pi, were shown to be negatively correlated with pH in the rhizosphere (r=-0.586, p<0.01; r=-0.487, p<0.05; r=-0.417, p<0.05). Among the studied species included the study, this capability of Indigofera pseudotinctoria on enhancing available P content was the most significant. Among three graminaceous plants, the relative content of available P in Ⅰ. cylindrica rhizosphere was the highest.
     3. The impacts of the roots activities of Ⅰ. cylindrica on its rhizosphere inorganic nitrogen dynamic were studied and with the five associated plants as control in the copper tailings. The results showed that the growth of plants influenced effectively the contents of total nitrogen and bioavailable nitrogen, and the contents of inorganic nitrogen and total nitrogen in all the plants rhizosphere were significantly higher than that in no-plant tailings (p<0.05). The percontages of all the forms inorganic nitrogen in the total nitrogen in the gramineous rhizosphere were slightly higher than that of other plants. The percontage of nitrate nitrogen in total nitrogen was significantly higher than in leguminous and compositae communities (p<0.05). The percontage of ammonium nitrogen in total nitrogen was also significantly higher than that of compositae rhizosphere (p<0.05). These indicated that Ⅰ. cylindrica could increase the ratio of bioavailable nitrogen in total nitrogen by roots activity in order to improve the absorption efficiency of nitrogen nutrition around the root system.
     4. N and P distributions, N:P, nutrient resorption rate, nitrate reductase and acidic phosphatase activities of Ⅰ. cylindrica organs in the copper tailings and the farmlands as control were investigated. The results showed that N and P in both populations were mainly in the rhizomes in the growth initial stage. At bud and mature times, N and P concentrations were highest in leaves and lowest in roots and rhizome. At the decay period, N and P concentrations in senescent leaves were9.19±0.80and0.05±0.03mg·g-1,respectively, which were significantly lower than for the control farmlands (p<0.05). The N and P resorption efficiencies of Ⅰ, cylindrica leaves in the tailings were49.54%-65.22%and74.71%-98.71%, respectively, with P in senescent leaves resorbed completely. Nitrate reductase activity of Ⅰ. cylindrica leaves in the tailings was significantly higher than in the farmlands (p<0.05), and this is useful to regulate Ⅰ. cylindrica nitrogen metabolism activities. But with plant growth, the differences gradually disappeared. At the same growth period, acidic phosphatase activity of Ⅰ. cylindrica leaves between the tailings and the farmlands were not significantly significant (p>0.05). With the plant growth, the acidic phosphatase activities increased, which was conducive to decompose organophosphate in senescent leaves and increase P resorption efficiencies. In short,Ⅰ. cylindrica might reduce the nutrition stress from the copper tailings by the timely distribution of N, P in its tissues, the enhancing resorption efficiencies of nutritions and the adjusting nutrition metabolism enzymatic activities.
     5. The soil and tissue litter of Gramineae (I. cylindrica and Zoysia sinica Hance) and Cryptogam (Hippochaete ramosissmium and algal-moss crusts) in the copper tailings were collected as experimental material. The differences and relationships of C, N contents, carbon isotope ratio (δ13C) and nitrogen isotope ratio (δ15N) between litter and soil were analyzed. The soil δ13C and δ15N in all community areas were lower than those in no-plant tailings. The correlation of C content between the litter and soil was significant in Gramineae community (r=0.998, p<0.01), but the relationship in Cryptogam community was not found. The effects of Ⅰ. cylindrica and algal-moss on soil13C enrichment were significant, and the microbial biomass C (r=0.729, p<0.01), water content (r=0.716, p<0.01) and pH (r=0.529, p<0.05) also effectively affected soil813C. In contrast, the significant correlation was observed only between microbial biomass N and soil δ15N (r=0.935, p<0.01), and the other factors had no obvious effects on soil815N in the tailings.
引文
[1]Young K. Destruction of ecological habitats by mining activities [J]. Agricultural Ecology, 1988,16:37-40.
    [2]邓建,彭怀生,张强.矿业可持续发展理论及应用[J].黄金,1997,18(7):20-23.
    [3]张应红,文志岳.矿山环境综合治理政策研究[J].中国地质矿产经济,2003(6):9-11.
    [4]潘德成 吴祥云.矿区次生裸地水土保持与生态重建技术探讨[J].水土保持应用技术,2009(4):23-25.
    [5]宋焕斌,张文彬.加强矿山复垦保护土地资源[J].中国矿业,1998(3):72-75.
    [6]Toomik A, Libbik V. Oil shale mining and processing impact on landscapes in northeast Estonia [J]. Landscape and Urban Planning,1998,41(3-4):285-292.
    [7]Singer PC, Stumm W. Acidic mine drainage; rate-determining step [J]. Science,1970, 167(3921):1121-1123.
    [8]束文圣,黄立南,张志权,等.几种矿业废物的酸化潜力[J].中国环境科学,1999,19(5):402-405.
    [9]束文圣,蓝崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997(8):314-318.
    [10]Lan CY, Shu WS, Wong MH. Revegetation of lead/zinc mine tailings at Shao guan, Guangdong Province, China[C]//Phytotoxicity of the Tailings:Global Environmental Biotechnology.1997. London:Elsevier science BV.
    [11]李艺,李明顺,杨胜香,等.广西凤凰锰矿区废弃地生态环境问题及恢复治理对策[J].地球与环境,2007,35(3):267-272.
    [12]黄树焘,宋静,骆永明,等.铜陵杨山冲尾矿库能源植物生产示范基地的特征化[J].广西农业科学,2009,40(6):691-695.
    [13]蓝崇钰,束文圣,孙庆业.采矿地的复垦[A].见:陈昌笃.持续发展与生态学[M].北京:中国科技出版社,1993.
    [14]孙庆业,任冠举,杨林章,等.自然植物群落对铜尾矿废弃地土壤酶活性的影响[J].土壤学报,2005,42(1):37-43.
    [15]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,23(6):1172-1176.
    [16]林初夏,黄少伟,童晓立,等.大宝山矿水外排的环境影响:Ⅱ农业生态系统[J].生态环境,2005,14(2):169-172.
    [17]王振刚,何海燕,严于伦.石门雄黄矿地区居民砷暴露研究[J].卫生研究,1999(1):6-8.
    [18]查书平,丁裕国,王宗英,汪权方,孙庆业.铜陵铜尾矿废弃地动物群落研究[J].生态环境,2004,13(2):167-169.
    [19]王英辉,陈学军.金属矿山废弃地生态恢复技术[J].金属矿山,2007,6:4-8.
    [20]Tordoff GM, Baker AJM, Willis A J. Current approaches to the revegetation and reclamation of metalliferous mine wastes [J]. Chemosphere,2000,41:219-228.
    [21]束文圣,叶志鸿,张志权等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [22]田胜尼,孙庆业,王铮峰等.铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93.
    [23]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169.
    [24]卫智军,李青丰,贾鲜艳,等.矿业废弃地的植被恢复与重建[J].水土保持学报,2003,17(4):172-175.
    [25]Bradshaw A. Restoration of mined lands-Using natural processes [J]. Ecological Engineering 1997,8:255-269.
    [26]Sun QY, An SQ, Yang LZ, Wang ZS. Chemical properties of the upper tailings beneath biotic crusts [J]. Ecological Engineering,2004,23(1):47-53
    [27]高国雄,高宝山,周心澄等.国外工矿区土地复垦动态研究[J].水土保持研究,2001,8(3):98-103.
    [28]彭少麟,陆宏芳.恢复生态学焦点问题[J].生态学报,2003,23(7):1249-1257.
    [29]束文圣,张志权,蓝崇任.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-29.
    [30]Yang B, Shu WS, Ye ZH, Lan CY, Wong MH. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings [J]. Chemosphere,2003,52: 1593-1600.
    [31]Teng Y, Timmer VR. Rhizosphere phosphorus depletion induced by heavy nitrogen fertilization in forest nursery soils [J]. Soil Sciences,1995,59:227-233.
    [32]黎炜,陈龙乾,周天建.张集矿区复垦土壤养分变化研究及评价[J].现代矿业,2011,2:41-43.
    [33]Chen YQ, Ren GJ, An SQ, et al. Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis)[J]. Pedosphere,2008, 18(6):73-740.
    [34]张旭情,吴亭亭,王友保,等.高羊茅生长对不同处理铜尾矿的土壤酶活性的影响[J].安徽农业科学,2010,38(26):14514-14815.
    [35]陈友静,陈家元,杨静丹,等.五节芒定居对尾矿砂微生物群落结构的影响[J].生态学杂志,2009,25(10):2002-2008.
    [36]任冠举,孙庆业,安树青,等.不同植物群落下酸化尾矿养分状况及土壤酶活性[J].生态学杂志,2006,25(4):379-382.
    [37]沈章军,田胜尼,孙庆业.铜尾矿自然定居白茅对体内氮磷的适时分配及叶片氮磷代谢调节酶活性动态[J].植物生态学报,2012,36(2):159-168.
    [38]Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands [J]. Oecologia,1990,84:391-397.
    [39]Aerts R, Caluwe H De. Effects of nitrogen supply on canopy structure and leaf nitrogen distribution in Carex species [J]. Ecology,1994,75(5):1482-1490.
    [40]Aerts R. Nutrient resorption from senescing leaves of perennials:are there general patterns? [J]. Ecology,1996,84:597-608
    [41]Birk EM, Peter MV. Nitritional availability and nitrogen use efficiency in loblolly pine stands [J]. Ecology,1986,67(1):69-79.
    [42]Chapin FS, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves [J]. Ecology,1991,72(2):709-715.
    [43]Killingbeck KT. Nutrient in senesced leaves:keys to the search for potential resorption and resorption proficiency [J]. Ecology,1996,77:1716-1727.
    [44]Dalton. Effect of organic matter on phosphate availability [J]. Soil Sciences,1952,73: 173-178.
    [45]Appelt H, Colenman NT, Pratt PF. Interactions between organic compounds, minerals, and ions in volcanic-ash-derived soils Ⅱ. Effects of organic compounds on the adsorption of phosphorus [J]. Soil Science Society of America Journal,1975,39:628-630.
    [46]Kafkafi U, Bar-Yosef B, Rosenberb R et al. Phosphorus adsorption by kaolinite and montmorillonite Ⅱ. Organic anion competition [J]. Soil Science Society of America Journal,1988,52:1585-1589.
    [47]李志安,王伯荪,林永标,曾友特.植物营养转移研究进展[J].武汉植物学研究,2000,18(3):229-236.
    [48]Gerloff GC. Plant efficiencies in the use of nitrogen, phosphorus and potassium [A]. In: Wright MJ, ed. Plant adaptation to mineral stress in problem soils[C]. New York: Cornell University Agriculture Experimental Station,1976,161-169.
    [49]Chrstlansen MN, Lewis CF. Breeding for less favorable environments [M]. New York:John Wiley and Sons,1982,71-142.
    [50]Abrahamson WG, Hal C. On the comparative allocation of biomass, energy, and nutrient in plants [J]. Ecology,1982,63(4):982-991.
    [51]孙庆业,刘付程.铜陵铜矿尾矿理化性质的变化对植被重建的影响[J].农村生态环境,1998,14(1):21-23.
    [52]李影,王友保,刘登义.安徽省铜陵狮子山铜尾矿废弃地植被调查[J].应用生态报,2003,14(11):1981-1984.
    [53]姜长阳,宁淑香.白茅的组织培养及植株再生[J].植物生理学通讯,2001,37(2):132-133.
    [54]冷琴,杨雅玲.中国白茅属Imperata Cyrillo(禾本科)部分生物学特性的研究[J].南京大学学报(自然科学),2002,38(5):703-715.
    [55]Aerts R, Chapin FS. The Mineral Nutrition of Wild Plants Revisited:a Re-evaluation of Processes and Patterns [J]. Advances in Ecological Research,2000,30:1-67.
    [56]Olde VH, Wassen MJ, Verkroost AWM, de Ruiter PC. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands [J]. Ecology,2003,84: 2191-2199.
    [57]St John TV, Coleman, DC et al. Growth and spatial distribution of nutrient-obsorbing organs:selective exploitation and soil heterogeneity [J]. Plant Soil,1983,71:487-493.
    [58]Robertson GP, Crum MA, Ellis BG. The spatial variability of soil resource following long-term disturbance [J]. Oecologia,1993,96:451-456.
    [59]Jackson RB, Caldwell MM. Geostatistical patterns of soil heterogeneity around perennial plants [J]. Ecology,1993,81:683-692.
    [60]Gross KL, Pregitzer KS, Burton AJ. Spatial variation in nitrogen availablity in three successional plant communities [J]. Ecology,1995,83:357-368.
    [61]Farley RA, Fitter AH. Temporal and spatial variation in soil resources in deciduous woodland [J]. Ecology,1999,87:688-696.
    [62]Salzman AG. Habitat selection in a clonal plant [J]. Science,1985.228:602-604.
    [63]Sutherland W J. Growth and foraging behavior [J]. Nature,1987.350:18-19.
    [64]Hutchings MJ, de Kroon H. Foraging in plants:The role of morphological plasticity in resource acquisition [J]. Advances in Ecological Research,1994,25:159-238.
    [65]Lopez F, Serrano JM, Acosta FJ. Parallels between the foraging strategies of ants and plants [J]. Tree,1994,9:150-153.
    [66]Yu FH, Dong M. Effect of light intensity and nutrient availability on clonal growth and clonal morphology of the stoloniferous herb Halerpestes ruthenica [J]. Acta Botanica Sinic,2003,45(4):408-416.
    [67]Suzuki JI. Growth dynamics of shoot height and foliage structure of an rhtizomatous Perennial hebr, Poylgonum cuspidatum [J]. Annals of Batany,1994,73:629-638.
    [68]Rasheed MA. Recoveyr and succession in a multi-species tropical seagrass medaow following experimental disturbnace:the role of sexual and asexual reproduction [J]. Jounral of Experimental Marine Biology and Ecology,2004,310:13-45.
    [69]Pitelka LF and Ashmun JW. Physiology and integration of ramets in clonal plants. In:J B.C.Jaekson, L.W.Buss, R.E.Cook,(editors). Population biology and evolution of clonal organisms:Yale University Press, New Haven, Connection, USA.1985,399-436.
    [70]Salzman AG, Parker MA. Neighbours ameliorate local salinity stress for a rhizomatous plant in a heterogeneous envi-ronment [J]. Oecologia,1985,65:273-277.
    [71]Arpet P. Resource sharing among ramets in the clonal herbFragaria chiloensis [J]. Oecologia,1986,70:227-233.
    [72]Stuefer JF, During H, de Kroon H. High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environment [J]. Ecology,1994, 82:511-518.
    [73]Dong M. Morphological plasticity of the clonal herbLamiastrum galeobdolon (L.) Ehrend &Polatschek in response to partial shading [J]. New Phytologist,1993,124:291-300.
    [74]Waite S. Field evidences of plastic growth responses to habitat heterogeneity in clonal herbRanuncalus repen [J]. Ecological Research,1994,9:311-316.
    [75]de Kroon H, Hutchings MJ. Morphological plasticity in clonal plants:the foraging concept reconsidered [J]. Journal of Ecology,1995,83:143-152.
    [76]Evans JP. The effect of local resource availability and clonal integration on ramet functional morphology inHydro-cotyle bonariensis [J]. Oecologia,1992,89:265-276.
    [77]Dong M. Morphological responses to local light conditions in clonal herbs from contrasting habitats, and their modifi-cation due to physiological integration [J]. Oecologia,1995, 101:282-288.
    [78]Alpertp. Nutrient sharing among ramts increases clonal growth in Fragaria [J]. Ecology, 1991,72(17):69-81.
    [79]Alpertp. Effects of clonal integration on plant plasticity in Fragaria Chilaensis [J]. Plant Ecology,1999,141:99-106.
    [80]Bell AD. Dynamic morphology:A contribution to plant population ecology. In:Dirzo R, Sarukhan J eds., Perspec-tives on Plant Population Ecology [J]. Sinauer:Sunderland, 1984,48-65.
    [81]高俊凤.植物生理学实验技术[M].西安:兴界图书出版社,2000:145-148.
    [82]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:63-67,68-103,136-140,146-157,362-375.
    [83]王忠.植物生理学[M].北京:中国农业出版社,2002:84-86.
    [84]许凯扬,叶万辉,李国民,李静.入侵种喜旱莲子草对光照强度的表型可塑性反应[J].武汉植物学研究,2005,23(6):560-563.
    [85]雷妮娅,米湘成,陈勇,王旭航,李俊清.生态因子及其交互作用对拟南芥(Arabidopsis thaliana)表型可塑性的影响[J].生态学报,2008,28(5):1949-1957.
    [86]Schlesinger WH, Raikes JA, Hartley AE, Cross F. On the spatial pattern of soil nutrients in desert ecosystems [J]. Ecology,1996,77:364-374.
    [87]王庆成,程云环.土壤养分空间异质性与植物根系的觅食反应[J].应用生态学报,2004,15(6):1063-1068.
    [88]胡宝忠,刘娣.无性系植物种群的研究进展[J].草业科学,1999,16(3):62-67.
    [89]Zzk D R, Tilman D, Fisher F M, et al. Plant production and soil microorganisms in late-successional ecosystems:A continent a-lscale study [J]. Ecology,1994,75:2333-2347.
    [90]何军,赵聪蛟,清华,等.土壤水分条件对克隆植物互花米草表型可塑性的影响[J].生态学报,2009,29(7):3518-3524.
    [91]李红丽,智颖飙,雷光春,等.不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局[J].生态学报,2009,29(7):3525-3531.
    [92]Dure L. Plant responses to cellular dehydration during environment stress [J]. Plant Physiology,1993,103(10):91-93.
    [93]何开跃,李晓储,黄利斌,等.干旱胁迫对木兰科5树种生理生化指标的影响[J].植物资源与环境学报,2004,13(4):20-23.
    [94]Jones OR, Hanser VL. No-tillage effects on in filtration, runoff and water conservation on dryland [J]. American Society of Agriculture Engineers,1994,37(2):473-479.
    [95]Raghothama KG. Phosphate acquisition. Annu. Rev. Plant Physiol [J]. Plant Molecular Biology,1999,50:665-693.
    [96]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review [J]. Plant Soil,2001,237:173-195.
    [97]Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:critical adaptations by plants for securing a non renewable resource [J]. New Phytologist,2003,157:423-447.
    [98]Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le Cadre E, Hinsinger P. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems [J]. Plant Soil,2008,312:139-150.
    [99]Marschner H. Mineral nutrition of higher plants,2nd edn. Academic, London,1995, p 889.
    [100]Sharpley AN, McDowell RW, Kleinman PJA. Amounts, forms and solubility of phosphorus in soils receiving manure [J]. Soil Science Society of America Journal,2004,68: 2048-2054.
    [101]Malik MA, Khan KS, Marschner P, Ali S. Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils [J]. Biol Fertil Soils. Doi: 10.1007/s00374-012-0738-6,2012. Available at:http: //www.springerlink.com/content/6470721h1v482577/.
    [102]Rovira AD. Rhizosphere research-85 year of progress and frustration. In:Keister DL, Cregan PB (Eds). The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Dordrecht,1991, pp 3-13.
    [103]Hendricks JJ, Hendricks RL, Wilson CA, Mitchell RJ, Pecot SD, Guo D. Assessing the patterns and controls of fine root dynamics:an empirical test and methodological review[J]. Journal of Ecology,2006,94:40-57.
    [104]Pollierer MM, Lange R, Korner C, Maraun M, Scheu S. The underestimated importance of belowground carbon input for forest soil animal food webs [J]. Ecology Letters,2007, 10:729-736.
    [105]Campbell R and Greaves MP.Anatomy and community structure of the rhizosphere. In: Lynch JM (Ed.). The rhizosphere. Wiley, Chichester,1990, pp 11-34.
    [106]Chen CR, Condron LM, Davis MR, Sherlock RR. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiate pine (pinns radiate D. Don.) [J]. Soil Biology & Biochemistry,2002,34:487-499.
    [107]Bar-Yosef B. Root excretions and their environmental effects:influence on availability of phosphorus. In:Waisel Y, Eshel A, Kafkafi U (Eds.). Plant Roots:The Hidden Half. Marcel Dekker, New York,1996, pp 581-605.
    [108]Hinsinger P, Gilkes RJ. Mobilization of phosphate from phosphorus rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pH [J]. European Journal of Soil Science,1996,47:533-544.
    [109]Hinsinger P, Gilkes RJ. Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P fixing mineral substrate [J]. Geoderma,1997,75:231-249.
    [110]Bertrand I, Hinsinger P, Jaillard B, Arvieu JC. Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite [J]. Plant Soil, 1999,211:111-119.
    [111]Morel C, Hinsinger P. Root-induced modifications of the exchange of phosphate ion between soil solution and soil solid phase [J]. Plant Soil,1999,211:103-110.
    [112]Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H. Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus despite releasing fewer carboxylates into the rhizosphere[J]. New Phytologist, 2006,169:515-524.
    [113]Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MDA, Lambers H. Carboxylate composition of root exudates does not relate consistently to a crop species'ability to use phosphorus from aluminium, iron or calcium phosphate sources [J]. New Phytologist,2007,173:181-190.
    [114]Lajtha K. The use of ion-exchange bags for measuring nutrient availability in an arid ecosystem [J]. Plant Soil,1988,105:105-111.
    [115]Cross AF, Schlesinger WH. Biological and geochemical controls on phosphorus fractions in semiarid soils [J]. Biogeochemistry,2001,52:155-172.
    [116]关松荫.土壤酶及其研究方法[M].北京:中国农业出版社.1986.
    [117]Brady NC and Weil RR The nature and properties of soils. Prentice Hall, New Jersey.1999.
    [118]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66.
    [119]Jackson MLR. Soil Chemical Analysis-Advanced Course [M]. Soil Chemical Analysis-Advanced Course.1969.
    [120]Tiessen H, Moir JO. Characterization of available P by sequential extraction. In:Carter MR (ed) Soil sampling and methods of analysis [M]. Canadian Society of Soil Science, Lewis Publishers, Boca Raton,1993, pp 75-86.
    [121]Olsen SR and Sommers LE. Phosphorus. In:Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties. A.L. Page, R.H. Miller & D.R. Keeney (Eds). Madison, Wisconsin:American Society of Agronomy,1982,403-427.
    [122]Mehta NC, Legg JO, Goring CAI, Black CA. Determination of organic phosphorus in soils: Ⅰ. Extraction method [J]. Soil Science Society of America Journal,1954,18:443-449.
    [123]Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters [J]. Analytica Chimica Acta,1962,27:31-36.
    [124]Neumann G, Romheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants [J]. Plant Soil,1999,211:121-130.
    [125]Cambardella CA and Elliott ET. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils [J]. Soil Science Society of America Journal.1993, 57:1071-1076.
    [126]Mattingly GEG. Labile phosphorus in soils [J]. Soil Sciences,1975,119:369-375.
    [127]Smith SE, Ryan PR, Smith FA. The soil-plant interface:rhizosphere and mycorrhizosphere, in:Plant Nutrition for Food Security [J]. Human Health and Environment Protection, 2005, pp 10-11.
    [128]Fischerov Z, Tlustos P, Szakova J, Sichorova K. A comparison of phytoremediation capability of selected plant species for given trace elements [J]. Environmental Pollution,2006,144:93-100.
    [129]Lynch JP. Root phenes for enhanced soil exploration and phosphorus acquisition:tools for future crops [J]. Plant Physiology,2011,156:1041-1049.
    [130]Jain A, Nagarajan VK, Raghothama KG. Transcriptional regulation of phosphate acquisition by higher plants [J]. Cellular and Molecular Life Sciences,2012,69: 3207-3224.
    [131]Nwoke OC, Vanlauwe B, Diels J, Sanginga N and Osonubi O. The distribution of phosphorus fractions and desorption characteristics of some soils in the moist savanna zone of West Africa [J]. Nutrient Cycling in Agroecosystems,2004,69:127-141.
    [132]Zhu YG, He YQ, Smith SE & Smith FA. Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from calcium (Ca)-bound Source [J]. Plant and Soil,2002,239:1-8.
    [133]Magid J, Tiessen H, Condron LM. Dynamics of organic phosphorus in soil natural and agricultural ecosystem. In:Piccolo A (Ed.). Humic Substances in Terrestrial Ecosystems [J]. Elsevier, Amsterdam,1996, pp 429-466.
    [134]Richardson AE, Hadobas PA, Hayes JE. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate [J]. Plant Journal, 2001,25:641-649.
    [135]Fohse D, Claassen N and Jungk A. Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species [J]. Plant and Soil, 1988,110:101-109.
    [136]宋会兴,苏智先,彭远英.渝东山地黄壤肥力变化与植物群落演替的关系[J].应用生态学报,2005,16(2):223-226.
    [137]Mcquilkin WE. The natural establishment of pine in abandoned fields in the Piedmour Plateau Region [J]. Ecology,1940,21(2):135-147.
    [138]Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems [J]. Ecological Monographs,1982,52(2):155-177.
    [139]Stuart Chapin Ⅲ F, Vitousek PM, Cleve KV. The nature of nutrient limitation in plant communities [J]. The American Naturalist,1986,127(1):148-158.
    [140]Kahindi JHP, Woomer P, George T, de Souza Moreira FM, Karanja NK, Giller K E. Agricultural intensification, soil biodiversity and ecosystem function in the tropics:the role of nitrogen-fixing bacteria [J]. Applied Soil Ecology,1997,6(1):55-76.
    [141]Hurek T, Reinhold-Hurek B. Azoarcus sp. Strain BH72 as a model for nitrogen-fixing grass endophytes [J]. Journal of Biotechnology.2003,106(2/3):169-178.
    [142]Clein JS, Schimel JP. Nitrogen turnover and availability during succession from alder to poplar in Alaskan Taiga forests [J]. Soil Biology and Biochemistry,1995,27(6): 743-752.
    [143]Roy A, Singh KP. Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics [J]. Soil Biology and Biochemistry, 2003,35(3):365-372.
    [144]Li GC, Han XG, Huang JH. N mineralization and nitrification in a primary Lithocarpus xylocarpus forest and degrade vegetation in the Ailao Mountain, Yunnan Province [J]. Acta Botanica Sinica,2004,46(2):194-201.
    [145]刘光松.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996:33-37.
    [146]安宗胜,詹静,孙庆业.自然植物群落形成过程中铜尾矿废弃地氮素组分的变化[J].生态学报,2010,30(21):5958-5966.
    [147]Williams RF. Redistribution of mineral elements during development [J]. Annual Review of Plant Physiology,1955,6:25-44
    [148]李志安,王伯荪,张宏达.关于植物营养生态学[J].生态科学,1999,18(4):43-47.
    [149]Killingbeck KT. The terminologial jungle revisited:Making a case for use of the term resorption [J]. Oikos,1986,46(2):263-264.
    [150]Aerts R, Cornelissen J H C, Vanlogtestijn R S P, et al. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland [J]. Oecologia, 2007,151(1):132-139.
    [151]曾德慧,陈广生,陈伏生,等.不同林龄樟子松叶片养分含量及其再吸收效率[J].林业科学,2005,41(5):21-27.
    [152]May JD, Killingbeck KT. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics [J]. Ecology,1992,73(5):1868-1878.
    [153]Santa RI, Rico M, Rapp M, et al. Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica [J]. Journal of Vegetation Science,1997,8(5):651-654.
    [154]Venterink HO, Wassen MJ, Verkroost AWM, et al. Species richness-productivity patterns differ between N-, P-and K-limited wetlands [J]. Ecology,2003,84(8):2191-2199.
    [155]刘丽,甘志军,王宪泽.植物氮代谢硝酸还原酶水平调控机制的研究进展[J].西北植物学报,2004,24(7):1355-1361.
    [156]David TC. Factors affecting mineral nutrition acquisition by plants [J]. Annual Review of Plant Physiology,1985, (36):77-115.
    [157]沈章军,王友保,王广林,等.铜陵铜尾矿白芍种植地重金属污染初探[J].应用生态学报,2005,16(4):673-677.
    [158]Gusewell S, Koerselman M. Variation in nitrogen and phosphorus concentrations of wetland plants [J]. Perspectives in Plant Ecology Evolution and Systematics,2002,5(1): 37-61.
    [159]Tessier JT, Raynal DJ. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation [J]. Journal of Applied Ecology,2003,40(3): 523-534.
    [160]Koide RT, Dickie I A, Goff MD. Phosphorus deficiency, plant growth and the phosphorus efficiency index [J]. Functional Ecology,1999,13(5):733-736.
    [161]Chapin FS. The mineral nutrition of wild plants. Annual Review of Ecology System,1980, 11:233-260.
    [162]Berendse F, Aerts R. Nitrogen use efficiency:a biologically meaningful definition? [J]. Functional Ecology,1987,1:293-296.
    [163]刘爱民,黄为.铜尾矿复垦后土壤微生物活性及其群落功能多样性研究[J].生态环境,2005,14(6):876-879.
    [164]尚文勤,朱利平,孙庆业等.自然生态恢复过程中尾矿废弃地土壤微生物变化[J].生态环境,2008,17(2):713-717.
    [165]陈政,阳贵德,孙庆业.铜尾矿废弃地生物结皮对土壤微生物量和土壤酶活性的影响[J].应用生态学报,2009,20(9):2193-2198.
    [166]Yuan ZY, Li LH, Han XG et al. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China [J]. Journal of Arid Environments,2005, 63(1):191-202.
    [167]Del Arco, Jose M, Alfonso E and Vega Garrido M. Effects of Site Characteristics on Nitrogen Retranslocation from Senescing Leaves [J]. Ecology,1991,72:701-708.
    [168]Wright IJ, Westoby M. Nutrient concentration, resorption and lifespan:leaf traits of Australian sclerophyll species [J]. Functional Ecology,2003,17(3):10-19.
    [169]张世英,程炳篙.硝酸还原酶及其活力调节因子[J].山东农业大学学报,1987,3(18):81-88.
    [170]Dominiqu L, Pascal T, Alain G, Marc L. Gene Expression of the NO3- Transporter NRT1.1 and the Nitrate Reductase NIA1 Is Repressed in Arabidopsis Roots by NO2-, the Product of NO3- Reduction [J]. Plant Physiology,2003,132:958-967.
    [171]Elliott GC, Lauchl I A. Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in leaves of maize (Zea mays L.) [J]. Journal of Plant Nutrition,1986, 9:1469-1477.
    [172]Tadano T, Sakai H. Secretion of acid phopshatase by the roots of several crop species under phosphorus-deficient conditions [J]. Soil Science and Plant Nutrition,1991,37(1): 129-140.
    [173]Ascencio J. Growth strategies and utilization of phosphorus in Cajanus cajan (L.) Millsp and Desmodium tortuosum (SW.) DC under deficiency [J]. Communications in Soil Science and Plant Analysis,1996,27:1971-1993.
    [174]梁霞,刘爱琴,马祥庆,等.磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J].植物生态学报,2005,1:54-59.
    [175]Lambers H, Chapin FS, Pons T. Decomposition, In:Plant Physiological Ecology [M]. Springer, New York,1998, pp.495-502.
    [176]Robertson GP, Paul EA. Decomposition and soil organic matter dynamics, In:Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (Eds.), Methods in Ecosystem Science [M], Springer, New York,2000, pp.104-116.
    [177]Mazzarino MJ, Bertiller MB, Sain CL, Satti P, Coronato FR. Soil nitrogen dynamics in northern Patagonia steppe under different precipitation regimes [J]. Plant and Soil,1998, 202:125-131.
    [178]Loke PF, Kotze E, Du Preez CC. Changes in soil organic matter indices following 32 years of different wheat production management practices in semi-arid South Africa [J], Nutrient Cycling in Agroecosystems,2012,94(1):97-109.
    [179]Hoorens B, Aerts R, Stroetenga M. Litter quality and interactive effects in litter mixtures: more negative interactions under elevated CO2? [J]. Journal of Ecology,2002,90: 1009-1016.
    [180]Carrera AL, Bertiller MB, Sain CL, Mazzarino MJ. Relationship between plant nitrogen conservation strategies and the dynamics of soil nitrogen in the arid Patagonian Monte, Argentina [J]. Plant and Soil,2003,255:595-604.
    [181]Carrera AL, Vargas DN, Campanella MV, Bertiller MB, Sain CL, Mazzarino MJ. Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina [J]. Plant Ecology,2005,181:239-251.
    [182]Bertiller MB, Sain CL, Carrera AL, Vargas DN. Patterns of nitrogen and phosphorus conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia, Argentina [J]. Journal of Arid Environments,2005,62:209-223.
    [183]Reynolds JF, Virginia RA, Schlesinger WH. Defining plant functional types for models of desertification[M], In:Smith, TM, Shugart, HH, Woodward, FI (Eds.), Plant Functional Types Cambridge,1997, pp.195-210.
    [184]Peters DPC, Herrick JE. Modelling vegetation change and land degradation in semiarid and arid ecosystems:an integrated hierarchical approach [J]. Advances in Environmental Monitoring and Modelling,2001,1:1-29.
    [185]Bertiller MB and Bisigato AJ. Vegetation dynamics under grazing disturbance. The state-and-transition model for the Patagonian steppes [J]. Ecological Austral.1998,8: 191-199.
    [186]Larson WE and Pierce FJ. Conservation and enhancement of soil quality. In:Evaluation for Sustainable Land Management in the Developing World, Vol.2:Technical papers [C]. Bangkok, Thailand:International Board for Research and Management, IBSRAM Proceedings No.12(2).1991, p.175-203.
    [187]Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH. Towards a minimum data set to assess soil organic matter quality in agricultural soils [J]. Canadian Journal of Soil Science,1994,74:367-385.
    [188]Smith P, Powlson DS, Smith JU, Falloon P and Coleman K. Meeting Europe's climate change commitments:quantitative estimates of the potential for carbon mitigation by agriculture [J]. Globle Change Biology,2000,6:525-539.
    [189]Holland EA and Coleman DC. Litter placement effects on microbial and organic matter dynamics in an agroecosystem [J]. Ecology,1987,68:425-433.
    [190]Chang RY, Fu BJ, Liu GH, Liu SG. Soil Carbon Sequestration Potential for "Grain for Green" Project in Loess Plateau, China [J]. Environmental Management,2011,48: 1158-1172.
    [191]Boutton TW, Archer SR, Midwood AJ, Zitzer SF, Bol R.δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem [J]. Geoderma,1998,82:5-41.
    [192]Wardle DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biological Reviews,1992,67:321-358.
    [193]Tracy BF and Frank DA. Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem:Yellowstone National Park [J]. Oecologia,1998,114:556-562.
    [194]Griffiths H. Applications of stable isotope technology in physiological ecology [J]. Functional Ecology,1991,5:254-269.
    [195]Paul D, Ayaka I, Richard D, Stephen CH, Egbert S, Oleg VM, Bruce AH.13C and 15N natural abundance of the soil microbial biomass [J]. Soil Biology & Biochemistry,2006, 38:3257-3266.
    [196]Bowling DR, Pataki DE,Randerson JT. Carbon isotopes in terrestrial ecosystem pools and C02 fluxes [J]. New Phytologist,2008,178(1):24-40.
    [197]Larionova AA, Stulin AF, Zanina OG, Yevdokimov IV, Khokhlova OS, Buegger F, Schloter M and Kudeyarov VN. Distribution of stable carbon isotopes in an agrochernozem during the transition from C3 vegetation to a corn monoculture [J]. Eurasian Soil Science,2012,45(8):768-778.
    [198]Wang SQ, Fan JW, Song MH, Yu GR, Zhou L, Liu JY, Zhong HP, Gao LP, Hu ZM, Wu WX, Song T. Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau [J]. Plant and soil,2013, 363:243-255.
    [199]O'Leary MH. Carbon isotope fractionation in plants [J]. Phytochemistry,1981,20: 553-567.
    [200]Farquhar GD, O'Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide content in leaves [J]. Australian Journal of Plant Physiology,1982,9:121-137.
    [201]Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes [J]. Australian Journal of Plant Physiology,1984,11: 539-552.
    [202]Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annual Review of isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:503-537.
    [203]Ehleringer JR, Buchmann N, Flanagan LB. Carbon isotope ratios in belowground carbon cycle process [J]. Ecological Applications,2000,10:412-422.
    [204]Evelyn SK, Jan OS.δ13C and δ15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy [J]. Geoderma,2003,112:1-29.
    [205]Stevenson BA, Kelly EF, McDonald EV, Busacca AJ. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA [J]. Geoderma,2005,124: 37-47.
    [206]Boutton TW. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change, In:Boutton, T.W., Yamasaki, S.I. (Eds.), Mass Spectrometry of Soils [M]. Marcel-Dekker, New York,1996, pp.47-81.
    [207]Kwak JH, Choi WJ, Arshad MA.δ13C,δ15N, N content and Ca-to-Al ratios of forest samples from Pinus densiflora stands in rural and industrial areas [J]. Chemical Geology,2009,264:385-393.
    [208]Smernik RJ. A new way to use solid-state carbon-13 nuclear magnetic resonance spectroscopy to study the sorption of organic compounds to soil organic matter [J]. Journal of Environmental Quality,2005,34:1194-1204.
    [209]Somsamak P, Richnow HH, Haggblom MM. Carbon isotope fractionation during anaerobic degradation of methyl tert-butyl ether under sulfate-reducing and methanogenic conditions [J]. Applied and Environmental Microbiology,2006,72:1157-1163.
    [210]Wang YB, Liu DY, Zhang L, Li Y, Chu L. Patterns of vegetation succession in the process of ecological restoration on the deserted land of Shizishan copper tailings in Tongling City [J]. Acta Botanica Sinica,2004,46:780-787.
    [211]Wang YB, Zhang L, Huang YJ, Yao J, Yang HF. Transformation of Copper Fractions in Rhizosphere Soil of Two Dominant Plants in a Deserted Land of Copper Tailings [J]. Bulletin of Environmental Contamination and Toxicology,2009,82:468-472.
    [212]Chen BD, Zhu YG, Duan J, Xiao XY and Smith SE. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings [J]. Environmental Pollution,2007,147:374-380.
    [213]Lu XC and Wang HM. Microbial Oxidation of Sulfide Tailings and the Environmental Consequences [J]. Elements,2012,8(2):119-124.
    [214]Turner BL, Bristow AW, Haygarth PM. Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance [J]. Soil Biology and Biochemistry,2001,33: 913-919.
    [215]Murty D, Kirschbaum MF, Mcmurtrie RE, Mcqilvray H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature [J]. Global Change Biology,2002,8:105-123.
    [216]Dorrepaal E, Cornelissen JHC, Aerts R, Walle'n B, van Logtestijn RSP. Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? [J]. Journal of Ecology,2005,93:817-828.
    [217]Buchmann N, Kao WY, Ehleringer J. Influence of stand structure on 13C of vegetation, soils, and canopy air within deciduous and evergreen forests, in Utah, United States [J]. Oecologia,1997,110:109-119.
    [218]Wu NQ, Lu HY, Sun XJ, Guo ZT, Liu JQ, Han JM. Climatic factor transfer from opal phytolith and its application in paleoclimate reconstruction of China loess-paleosol sequence [J]. Scientia Geologia Sinica 1 (Suppl.),1995,105-114.
    [219]刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究[J],土壤,2003,35:347-348.
    [220]Fry B. Stable isotope diagrams of freshwater food webs [J]. Ecology,1991,72:2293-2297.
    [221]Jean CC, Robert MH, Bruce JP. Isotopic investigation of denitrification in a riparian ecosystem in western France [J]. Journal of Applied Ecology,2003,40:1035-1048.
    [222]Yu ZY, Chen FS, Zeng DH, Zhao Q, Chen GS. Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy soil [J]. Pedosphere,2008,18(6):775-784.
    [223]Anderson TH, Domsch KH. Ratios of microbial biomass carbon to total organic carbon in arable soils [J]. Soil biology Biochemistry,1989,21:471-479.
    [224]Nishiyama M, Sumikawa Y, Guan G, Marumoto T. Relationship between microbial biomass and extractable organic carbon content in volcanic and non-volcanic ash soil [J]. Applied Soil Ecology,2001,17(2):183-187.
    [225]Ralte V, Pandey HN, Barik SK, Tripathi R, Prabhu SD. Changes in microbial biomass and activity in relation to shifting cultivation and horticultural practices in subtropical evergreen forest ecosystem of north-east India [J]. Acta Oecologica,2005,28(2): 163-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700